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Abstract: Interleukin 2 (IL-2) is considered a key player in exacerbating multiple sclerosis (MS).
Therapies targeting its receptor have been developed; however, a resolution of the disease and side
effects are still an issue of concern. The involvement of other factors, such as Mycobacterium avium
subspecies paratuberculosis (MAP) and envelope protein derived from human endogenous retrovirus
type W (HERV-Wenv), in MS pathogenesis has been recently suggested. Here, we investigated the
levels of antibodies (Abs) directed against IL-2 and HERV-Wenv in 108 MS patients, 34 patients
affected by neuromyelitis optica spectrum disorder (NMOSD), and 137 healthy controls (HCs).
Our results show increased levels of Abs specific to IL-2 and HERV-Wenv-su antigens in MS vs. HCs
(p < 0.0001 for IL-2, p = 0.0004 for HERV-Wenv) and significantly decreased levels in NMOSD vs. MS.
The assessment of different 12-month-long therapies on Abs against IL-2, HERV-Wenv, and MAP
lipoarabinomannan (LAM) demonstrated the strongest effect on anti-LAM Abs (p = 0.018), a slight
reduction of anti-IL-2 Abs, and small variations for anti-HERV-Wenv Abs. These results highlight
the conclusion that the impact of therapy is more correlated with selected epitopes than with the
therapeutic agent. Screening for anti-IL-2 and anti-HERV-Wenv Abs has a potential as additional
future practice to distinguish between symptomatically similar MS and NMOSD.

Keywords: interleukin 2; IL-2; multiple sclerosis; antibodies; autoimmune response; Mycobacterium
avium subsp. paratuberculosis; HERV-W

1. Introduction

The interplay between genetic and environmental factors leading to the development of multiple
sclerosis (MS) is currently a commonly accepted scenario. Even though high-risk genetic variants have
been identified, definitive evidence confirming a causative contribution of exogenous agents is still
missing. The risk of MS is reported to increase several fold following delayed primary infection by
Epstein–Barr virus (EBV), known as infectious mononucleosis [1]. However, no studies have proven
the EBV-specific expression in MS, nor has the presence of EBV been demonstrated convincingly in
the MS brain. We previously showed that Mycobacterium avium subsp. paratuberculosis (MAP) may
be another infectious agent implicated in MS development as anti-MAP antibodies (Abs) targeting
peptides homologous to EBV epitopes are enriched in the blood and cerebrospinal fluid (CSF) of MS
patients [2], possibly contributing to the autoimmune process through cross-reactivity that results from
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erroneous recognition between exogenous and self-antigens. Some families of human endogenous
retrovirus (HERV) have recently emerged as possible components involved in the process leading to
autoimmunity. It is supposed that certain silenced genes of HERV integrated in multiple copies across
the human genome may, under largely unknown circumstances including infections, be transactivated
and generate antigens triggering abnormal immune responses [3–6]. In particular, hyperexpression of
the envelope protein belonging to HERV family W (HERV-Wenv) has been associated with autoimmune
diseases [5,7].

The unclear MS etiology results in the lack of therapy able to restore the function of neurons
damaged during the pathological process. In turn, currently employed treatment is symptomatic
and aims at speeding recovery from immune attacks on the central nervous system (CNS), thereby
only delaying MS progression that in numerous cases is insufficient to prevent progressive disabling
forms of the disease. Moreover, incorrect therapy may be administered to patients whose clinical
outcomes are confounded with initially similar disorders, such as neuromyelitis optica spectrum
disorder (NMOSD) [8].

In recent years, interleukin 2 (IL-2) has been suggested to play a key role in MS etiopathogenesis
by regulating immune cell responses, and its elevated expression in Th17 lymphocytes, along with
other factors promoting inflammation, could be related to high inflammatory status [9]. Low doses of
IL-2 have been successfully employed as add-on MS therapy [10], while the detection of increased IL-2
levels in MS patients has led to the development of therapeutic approaches targeting IL-2 receptor [11].
However, further observations have demonstrated that side effects such as severe inflammatory brain
disorders [12,13] and resistance to antagonistic antibody therapies that target receptors at the cell
surface may arise in a relatively short time [14]. Moreover, high expression of IL-2 has been reported in
animals after Mycobacterium tuberculosis and MAP infection [15,16]. At the same time, little attention has
been paid to anti-IL-2 antibodies (Abs) detected in a range of autoimmune diseases [17]. The functional
capacity of these anti-IL2 antibodies—at the monoclonal level—to neutralize or otherwise modulate
IL-2 function remains to be assessed.

In this study, we evaluated the levels of Abs against two IL-2 peptides and antigens deriving
from the surface portion of HERV-Wenv (HERV-Wenv-su) and lipoarabinomannan (LAM) of MAP
in Sardinian MS patients with a common high-risk haplotype. Even though a conspicuous body of
literature describes the association of both agents with the disease, few studies are focused on the
impact that MS therapy has on specific Abs. Our previous results demonstrated that a two-year-long
natalizumab treatment is able to effectively reduce the levels of Abs against HERV-W and MAP [18].
Here, we assessed changes in humoral responses involving autoreactive and HERV-W/MAP-specific
Abs patterns following a 12-month therapy with fingolimod, teriflunomide, interferon beta (INF-β), or
the lack of treatment.

2. Materials and Methods

2.1. Study Population

In all, 108 MS patients (66 females, 42 males; mean age 40.06 ± 13.90) diagnosed according to the
revised McDonald diagnostic criteria [19] were enrolled at the Multiple Sclerosis Centre of the University
of Cagliari, Cagliari, Italy, and the Neurology section of the University of Sassari, Sassari, Italy. Of
these, 34 patients underwent a relapse in the following 12 months (classified as relapsing-remitting
multiple sclerosis (RRMS)), 4 had their MS criteria changed to secondary progressive multiple sclerosis
(SPMS), and 70 were at onset (Table 1). Ten MS patients with HLA-DRB1*0301-DQB1*0201 haplotype
that confers a high risk of developing the disease [20], (9 females, 1 male; mean age 44.98 ± 11.55) were
kept under observation to evaluate effects of MS therapy on serological outcomes. Follow-up samples
were available after one year without therapy (n = 3) or following administration of natalizumab
(n = 2), teriflunomide (n = 2), fingolimod (n = 1), or INF-β (n = 2). In addition, 34 NMOSD patients
(5 males, 29 females; mean age 51.32) at disease onset and diagnosed based on established criteria [21]
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and free from immunomodulatory therapy over the last 12 months were enrolled at the Neurology
Clinic of the University Hospital of Sassari, Italy. All NMOSD sera were tested for the presence of Abs
to aquaporin-4 (AQP4) through the commercial Anti-Aquaporin-4 IIFT screening test (Euroimmun,
Luebeck, Germany) [22]. Finally, 137 reference control subjects (90 females, 47 males; mean age 46.30
± 12.72) were enrolled from among voluntary blood donors attending the Transfusion Unit of the
University Hospital of Sassari, Italy.

Table 1. Demographic and clinical characteristics of multiple sclerosis (MS) patients, neuromyelitis
optica spectrum disorder (NMOSD) patients, and healthy controls (HCs).

Clinical Data MS n = 108 NMOSD n = 34 HCs n = 137

Age, years 40.06 51.32 46.30
Female, n 66 29 90
Male, n 42 5 47

AQP4-Abs − 11
AQP4-Abs + 23

Cortisone 25
No cortisone 18

Interferon beta 6
Alemtuzumab 3

Dimethylfumarate 5
Teriflunomide 5
Ocrelizumab 1
Natalizumab 2
Fingolimod 4
No therapy 39

EDSS 2.53 ± 2
RRMS, n (%) 34 (31.48)
SPMS, n (%)
Onset, n (%)

4 (3.7)
70 (64.81)

MS: multiple sclerosis; NMOSD: neuromyelitis optica spectrum disorder; HCs: healthy controls; AQP4-Abs:
anti-aquaporin-4 antibodies; EDSS: Expanded Disability Status Scale; RRMM: relapsing-remitting MS; SPMS:
secondary progressive MS.

Demographic and clinical features of study participants are presented in Table 1.

2.2. Antigens and Serological Testing

Synthetic peptides IL-26–20KK (KK-LLSCIALSLALVTNS-KK) and IL-256–70 (LTEMLTFKFYMPKKA)
were commercially obtained at >90% purity (LifeTein, South Plainfield, NJ, USA) based on Pérol et
al. [17] with modifications and used for detection of relative antibodies in patients’ sera. Responses
to retroviral peptides HERV-Wenv-su93–108 (NPSCPGGLGVTVCWTY) and HERV-Wenv-su248–262

(NSQCIRWVTPPTQIV) corresponding to surface portions of the HERV-W envelope glycoprotein,
which previously showed a high immunogenic activity in MS patients, were assessed in parallel.
Additionally, we investigated the effect of MS therapy on the presence of Abs targeting LAM as the
major mycobacterial antigen purified from the MAP 1515 strain.

The presence of Abs directed against the selected peptides was assessed through an optimized
protocol for indirect enzyme-linked immunosorbent assay (ELISA) employed as previously
described [18,20] using 10 ng/µL peptide concentration for plate coating. Optical density values
read at a wavelength of 405 nm were normalized to a highly responsive serum included in each
experiment with the maximum reactivity established at 1.0 arbitrary units (AU)/mL. The mean of two
technical replicates was considered for further data analysis.
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2.3. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8.0 software (GraphPad Software Inc.,
La Jolla, CA, USA). After determining sample distribution through the D’Agostino–Pearson normality
test, the comparison between MS and control groups was executed using a two-tailed Mann–Whitney
U test with p < 0.05 considered statistically significant. The positivity threshold was set at 0.51 (AU)/mL
for IL-256–70, 0.62 (AU)/mL for IL-26–20KK, 0.64 (AU/mL) for HERV-Wenv-su93–108, and 0.46 (AU/mL) for
HERV-Wenv-su248–262 based on the receiver operating characteristic (ROC) curve with ≥ 90% specificity
and 95% confidence interval. The percentage of positive subjects in both groups was assessed through
Fisher’s exact test. Patients classified in age-related groups were compared using ANOVA. Correlations
between levels of peptide-specific Abs and clinical or demographic variables were determined by
principal component analysis (PCA) using XLSTAT software ver. 17 (Addinsoft, New York, NY, USA).

3. Results

Seroreactivity elicited by IL-26–20KK was higher in the MS group compared to healthy subjects
reaching 58.33% of patients whose autoreactive Abs exceeded positivity threshold, while elevated
responses against IL-256–70 were registered in 43.52% of MS individuals (Figure 1). Abs prevalence
among control subjects was significantly lower for both peptides with respective positivity observed in
2.92% and 8.03% of samples. For each peptide, the comparison between MS and controls by analyzing
either mean seroreactivity values or the number of positive patients was highly significant (p < 0.0001).
When considering anti-IL-2 Abs overlap, 37.04% of MS and two control subjects showed double
positivity that was reflected by correlation coefficients (R2 = 0.4958 and R2 = 0.1926, respectively).
In contrast, NMOSD patients showed significantly lower Abs responses to IL-2 peptides compared to
both MS and healthy controls, with only one sample positive to IL-256–70 (Figure 1).

Overall trends observed for anti-IL-2 reactivity were maintained for HERV-W-derived epitopes;
however, the difference regarding the percentage of positive samples between groups was less
pronounced (Figure 1). Among MS patients, 21.3% were positive to HERV-Wenv-su93–108 and 15.74%
to HERV-Wenv-su248–262, and in both tests the difference was significant when comparing to healthy
controls (p = 0.0006 and p = 0.0004, respectively), who reached 9.49% of positive subjects for each peptide.
Although NMOSD reactivity was lower with respect to the other groups with no samples exceeding the
positivity threshold for HERV-Wenv-su93–108 and 11.76% of samples positive to HERV-Wenv-su248–262,
statistical significance was attained only upon comparison with results relative to MS (p = 0.0028 and
p < 0.0001, respectively; Figure 1).

Upon evaluation of Abs status in follow-up samples, a slight but not significant decrease of
seroreactivity to both IL-2 peptides was observed after a one-year therapy (Figure 2). Contrarily, therapy
seemed not to have had significant overall effects on the levels of Abs targeting HERV-W epitopes,
which increased only slightly, and the large span of Abs levels was mainly due to untreated patients.
In light of findings that some immuno-modulating drugs administered to alleviate symptoms of chronic
inflammatory disorders, such Crohn’s disease, may exert inhibiting action on mycobacteria [23,24], we
evaluated serological responses against MAP-purified LAM, observing a striking decrease of relative
Abs (p = 0.018).
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Figure 1. (A–D) Abs reactivity of MS, NMOSD, and healthy subjects against peptides derived from
interleukin 2 (IL-2) (A,B) and human endogenous retrovirus type W (HERV-W) (C,D). Values relative
to statistical differences between groups are reported above each distribution. Dotted lines correspond
to the positivity threshold established for each peptide based on the receiver operating characteristic
(ROC) curve analysis.
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Figure 2. Changes in antibody (Abs) profiles of MS patients after a one-year follow-up. Overall Abs
levels specific for each antigen are shown along with corresponding peptide position indicated at the
base (A). Changes in Abs response to lipoarabinomannan (LAM) glycolipid (B), as well as IL-2 (C)
and HERV-Wenv-su (D) peptides are also shown for single patients. Dark grey bars and black dots
correspond to T0 sampling, while light grey bars and white dots indicate values after 12 months of MS
therapy or the lack of therapy. On the X-axis, patient reference numbers are reported.



Microorganisms 2020, 8, 500 6 of 9

We further investigated trends in association with the type of administered treatment (Figure 3),
which was unvaried for natalizumab and teriflunomide or slightly decreased for INF-βwhen evaluating
anti-IL-26–20KK Abs. Responses against IL-256–70 were decreased independently of the type of therapy,
even though they corresponded to highly elevated Abs levels in patients treated with teriflunomide.
The lack of therapy was associated with elevated responsiveness to both IL-2 epitopes. Regarding
HERV-W peptides, all therapies or the lack thereof elicited slight variations in Abs levels with trends
following increasing patterns rather than a reduction in seroreactivity. Only anti-LAM Abs were
strongly reduced by each type of therapy but also when no treatment was administered (Figure 3).Microorganisms 2019, 7, x FOR PEER REVIEW 6 of 9 
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Figure 3. The effect of MS therapy on Abs against IL-2, HERV-W, and LAM peptides. The presence
of Abs was assessed at sample collection (T0) and after one year (T1) according to administered MS
therapy. Nat: natalizumab (n = 2); Ter: teriflunomide (n = 2); INFβ: interferon beta (n = 2); NT: no
therapy (n = 3). The analysis is based only on therapies for which follow-up samples of at least two
patients were available.

4. Discussion

The presence of anti-IL-2 Abs may lead to a drastic reduction of IL-2 concentrations, thus their
role in disrupting the balance of immune responses may be decisive for the onset of immune-mediated
diseases. The effects of anti-IL-2 Abs must be investigated in this context. If IL-2 activity decreases to
extremely low levels due to high titers of anti-IL-2 Abs, it leads to inhibition of activated immune cells,
increase of regulatory natural killer cells, effects on dendritic cells, and inhibition of innate lymphoid
tissue inducer cells. In the opposite case, if anti-IL-2 Abs are ineffective, we may observe an increase
of the myelin-reactive T-cell population characterized by their ability to produce large amounts of
IL-2 [25]. Of interest, daclizumab, a monoclonal antibody specific for the IL-2R α-chain (CD25), has
been used to treat and modulate immune responses in relapsing-remitting MS [26]. However, episodes
of meningoencephalitis and drug reaction with eosinophilia and systemic symptoms (DRESS) reported
after daclizumab therapy have led to its further suspension in March 2018 [27].

Our study demonstrated that, in the tested group, MS patients were more likely to display
elevated levels of anti-IL-2 Abs compared to healthy subjects. This difference was highly significant
with respect to NMOSD patients who developed low mean values corresponding to the assessed Abs
in general. In the initial disease phases, NMOSD presents similar symptoms to MS with the difference
that the former involves immune-mediated demyelination and axonal damage targeting the AQP4
water channel predominantly contained within optic nerves and spinal cord, whereas the latter affects
also the brain. As not all NMOSD patients develop anti-AQP4 Abs and false-positive results may
be obtained in the case of other inflammatory diseases of the central nervous system (CNS) [28], the
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diseases are often mistakenly diagnosed and improperly treated, resulting in a rapid accumulation
of disability. Therefore, patterns involving Abs against IL-2 and HERV-Wenv may be useful for an
additional screening to confirm diagnostic outcomes based on standard criteria.

The effect of a 12-month therapy visible for most patients showed discreet but opposite trends
for IL-2 and HERV-Wenv-su peptides. Responses to distinct therapeutic approaches evaluated here
were specific to single antigens rather than to disease-modifying agents. This may be related to
differences in molecular nature and physiological role between IL-2 and HERV-W. Especially for IL-2,
immunomodulatory drugs are expected to induce stronger responses by targeting their action on
components of the immune system. A marked decrease of seroreactivity towards LAM in patients who
did not follow any therapy may occur as a spontaneous regression similar to natural healing observed
in pulmonary tuberculosis [12] and linked to the return of MAP to latent infection phases in concert
with MS relapse recovery. Even though the course of MAP infection in humans is unclear, typical
symptoms of paratuberculosis affecting ruminant animals consist of transient active disease associated
with a massive production of cytokines including IL-2 and intervals when the mycobacterium assumes
intracellular phenotype [29]. Any link between MAP and HERV-W involving retroviral transactivation
in MS remains to be established.

In light of our previous findings detecting a significant reduction of HERV-Wenv expression
following a 24-month natalizumab treatment [18], it is plausible that a 12-month long therapy may be
insufficient to induce a similar drop of relative Abs or that therapeutic approaches are less efficient
in the assessed study population. This issue requires further investigation. The impact of HERV-W
and MAP on MS relapse will be the object of future assessment including retroviral expression and
detection of other mycobacterial antigens or markers with regard on IL-2 levels and related Abs.

The small number of follow-up samples is a limitation of this study, although the genetic
homogeneity and the availability of post-therapy samples are of great advantage. Even though data
based on populations originating from Sardinian areas characterized by high MS prevalence and by
a probable intrinsic risk supposedly due to long-lasting genetic isolation [30] provide a genetically
homogeneous study group, probably exposed to a common environmental factor, respective Abs levels
should be evaluated in cohorts with different biogeographical background. This will shed light on the
strength with which genetic factors may influence the development of MS and increase the possibility
to predict the disease for certain genotypes.
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