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Abstract: Infections caused by Salmonella species and Staphylococcus aureus represent major health and
food industry problems. Bacteria have developed many strategies to resist the antibacterial activity
of antibiotics, leading to multidrug resistance (MDR). The over-expression of drug efflux pumps
and the formation of biofilms based on quorum sensing (QS) can contribute the emergence of MDR.
For this reason, the development of novel effective compounds to overcome resistance is urgently
needed. This study focused on the antibacterial activity of nine symmetrical selenoesters (Se-esters)
containing additional functional groups including oxygen esters, ketones, and nitriles against
Gram-positive and Gram-negative bacteria. Firstly, the minimum inhibitory concentrations of the
compounds were determined. Secondly, the interaction of compounds with reference antibiotics was
examined. The efflux pump (EP) inhibitory properties of the compounds were assessed using real-time
fluorimetry. Finally, the anti-biofilm and quorum sensing inhibiting effects of selenocompounds
were determined. The methylketone and methyloxycarbonyl selenoesters were the more effective
antibacterials compared to cyano selenoesters. The methyloxycarbonyl selenoesters (Se-E2 and Se-E3)
showed significant biofilm and efflux pump inhibition, and a methyloxycarbonyl selenoester (Se-E1)
exerted strong QS inhibiting effect. Based on results selenoesters could be promising compounds to
overcome bacterial MDR.

Keywords: Salmonella species; Staphylococcus aureus; multidrug resistance; antibacterial activity;
symmetrical selenoesters

1. Introduction

The emergence of multidrug resistant pathogens is a major problem, leading to a progressive
reduction in the efficiency of many antibacterial agents. This phenomenon is a serious challenge in
public healthcare and medicine [1].

The most frequent multidrug resistance (MDR) mechanisms enable the resistant bacteria to
achieve one or several of the following effects: (a) limited uptake of drug; (b) target modification; (c)
drug inactivation; and (d) active efflux mediated by efflux pumps. Some efflux pumps are expressed
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constitutively, whereas others are induced or over-expressed under environmental stimuli [2]. There
are six families of the efflux pump systems: ATP-binding cassette (ABC) family, multidrug and toxic
compound extrusion (MATE) family, small multidrug resistance (SMR) family, major facilitator family
(MFS), resistance nodulation division (RND) family, and proteobacterial antimicrobial compound
efflux (PACE) family [3,4]. Gram-positive bacteria mainly express the members of the MATE and
MFS families, whereas Gram-negative bacteria also have transporters of the RND family [2]. The
AcrAB-TolC efflux system is comprised of AcrB which belongs to the RND efflux transporters, the
outer membrane protein TolC, and the periplasmic adaptor protein AcrA [5].

The formation of biofilms can also contribute to bacterial resistance. Biofilms have a dynamic
structure involving a multicellular bacterial community and an extracellular polymeric matrix produced
by the bacterial population. Biofilm-associated infections can lead to antibiotic resistant and persistent
infections as this environment enhances the ability of the embedded bacteria to resist the action of the
antibiotics [6].

One of the major food-borne illnesses is the salmonellosis caused by non-typhoidal Salmonella
enterica [7]. In addition, the staphylococcal food poisoning (SFP) is a frequent food-born disease caused
by staphylococcal enterotoxin (SE) producer enterotoxigenic Staphylococcus aureus strains [8]. S. aureus
and Salmonella enterica serovar Typhimurium are food-borne pathogens capable of forming biofilms on
various surfaces. Alkaline and acidic detergents, as well as iodophores, can be effective against biofilm.
However, these substances damage surfaces, and the inappropriate use of biocides and disinfectants
could lead to a quick and undesired emergence of resistant microbes [9]. Many bacteria use a cell–cell
communication system, namely quorum sensing (QS), to coordinate the population density-dependent
gene expression pattern [10]. This communication system plays a major role in biofilm development,
as bacteria can produce new virulence factors and thanks to them this bacterial community responds
poorly to antibiotic treatment [11].

Selenium(Se)-containing compounds could provide alternative and effective scaffolds to overcome
MDR [12]. Se is an essential trace element in living organisms and is crucial for the nutrient supply and
energy generation of bacteria. However, overdoses of Se can be highly toxic [13,14]. There is significant
evidence about the pro-oxidant effect of Se, particularly in the form of sodium selenite (Na2SeO3),
while selenomethionine and selenocysteine are less toxic [14]. It has been described previously that
Se-containing agents have an antibacterial effect [15,16]. Selenoesters and selenoanhydrides have
exhibited anti-biofilm activity against S. aureus and S. Typhimurium as described previously [17].
Furthermore, selenocompounds have been used as selenium nanoparticles (SeNPs) against S. aureus,
Escherichia coli, and Pseudomonas aeruginosa strains [18,19].

In the present study, and based in these antecedents, symmetrical 2-oxopropyl selenoesters,
methyloxycarbonylmethyl selenoesters, and methylcyano selenoesters have been investigated against
Gram-negative and Gram-positive bacterial strains to determine their antibacterial, efflux pump
inhibiting, and anti-biofilm properties.

2. Materials and Methods

2.1. Compounds

Nine symmetrical selenodiesters or selenotriesters were synthesized and evaluated. Three were
2-oxopropyl selenoesters (briefly, ketone selenoesters, or methylketone selenoesters; compounds
Se-K1, Se-K2 and Se-K3). The next three selenocompounds were methyloxycarbonylmethyl
selenoesters (methylcarbonyl selenoesters or methyloxycarbonyl selenoesters; compounds Se-E1,
Se-E2, and Se-E3) [20]. The final three compounds were methylcyano selenoesters (cyano selenoesters;
compounds Se-C1, Se-C2, and Se-C3). For each group of three compounds, the first is the symmetrical
para-disubstituted derivative, the second is the symmetrical meta-substituted derivative, and the
third is the symmetrical 1,3,5-trisubstituted derivative (Scheme 1). Their synthesis is described in
the patent application EP17382693, and they were adequately characterized using nuclear magnetic
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resonance spectroscopy (NMR), mass spectrometry (MS), and infrared spectroscopy (IR) techniques
and their purity was assessed by elemental analysis [21]. Before their use in biological assays the
selenocompounds were dissolved in dimethyl sulfoxide (DMSO), to obtain 10 mM concentration
stock solutions.Microorganisms 2020, 8, x FOR PEER REVIEW 3 of 15 
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2.2. Reagents and Media

DMSO (Sigma-Aldrich, St Louis, MO, USA), phosphate-buffered saline (PBS; pH 7.4), promethazine
(PMZ; EGIS), verapamil, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), ethidium bromide (EB),
ciprofloxacin-hydrochloride (CIP) tetracycline-hydrochloride (TET), crystal violet (CV), Luria-Bertani
(LB) broth, and LB agar were purchased from Sigma-Aldrich Chemie GmbH (Steinheim, Germany).
The modified LB agar (LB*) was prepared from bacteriological agar 20 g/L (Difco, Detroit, USA),
tryptone 10 g/L, NaCl 10 g/L, yeast extract 5 g/L, K2HPO4 1 g/L, MgSO4 × 7H2O 0.3 g/L, and FeNaEDTA
36 mg/L. pH of the agar was adjusted to 7.2. Mueller–Hinton (MH) broth, tryptic soy broth (TSB), and
tryptic soy agar was purchased from Scharlau Chemie S.A. (Barcelona, Spain).

2.3. Bacterial Strains

Compounds were evaluated against the following bacterial strains:
Gram-negative wild-type Salmonella enterica serovar Typhimurium SL1344 (SE01) expressing the

AcrAB-TolC pump system and its acrB gene inactivated mutant S. Typhimurium SL1344 strain (SE02),
acrA gene inactivated mutant S. Typhimurium SL1344 (SE03), and tolC gene inactivated mutant S.
Typhimurium SL1344 strain (SE39) were used in the study [22–25].

Gram-positive Staphylococcus aureus American Type Culture Collection (ATCC) 25923 was used
as the methicillin-susceptible reference bacterial strain, and the methicillin and ofloxacin-resistant
S. aureus 272123 clinical isolate (MRSA), which was kindly provided by Prof. Dr. Leonard Amaral
(Institute of Hygiene and Tropical Medicine, Lisbon, Portugal), was used in the assays.

For QS tests we used Chromobacterium violaceum 026 (CV026) as a sensor strain and
Enterobacter cloacae 31298 as a N-acyl-homoserine lactone (AHL) producer clinical bacterial isolate. If
C. violaceum reaches a high cell density, it produces violacein, which is a purple pigment [26,27].
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2.4. Cell Line

MRC-5 human embryonal lung fibroblast cell line (ATCC CCL-171) was purchased from LGC
Promochem, Teddington, UK. The cells were cultured in Eagle’s Minimal Essential Medium (EMEM,
containing 4.5 g/L glucose) supplemented with a non-essential amino acid mixture, a selection of
vitamins, and 10% heat-inactivated fetal bovine serum. The cell lines were incubated at 37 ◦C, in a 5%
CO2, 95% air atmosphere.

2.5. Determination of Minimum Inhibitory Concentrations by Microdilution Method

The minimum inhibitory concentrations (MICs) of compounds were determined according to the
Clinical and Laboratory Standard Institute guidelines (CLSI) [28]. MIC values of the compounds were
determined by visual inspection. The solvent was also assayed to ensure there was no antibacterial
effect and the concentration (1 v/v%) applied in the assays had no antibacterial activity. DMSO was
used at subinhibitory concentration (1 v/v%) in the assays.

2.6. Cytotoxicity Assay

The adherent MRC-5 human embryonal lung fibroblast cells were cultured in 96-well flat-bottomed
microtiter plates, using EMEM supplemented with 10% heat-inactivated fetal bovine serum. The density
of the cells was adjusted to 1 × 104 cells in 100 µL per well, the cells were seeded overnight at 37 ◦C,
5% CO2, then the medium was removed from the plates containing the cells, and the dilutions of
selenocompounds previously made in a separate plate were added to the cells in 200 µL.

The culture plates were incubated at 37 ◦C for 24 h; at the end of the incubation period, 20 µL of
MTT (thiazolyl blue tetrazolium bromide, Sigma) solution (from a stock solution of 5 mg/mL) was
added to each well. After incubation at 37 ◦C for 4 h, 100 µL of sodium dodecyl sulfate (SDS; Sigma)
solution (10% in 0.01 M HCI) was added to each well and the plates were further incubated at 37 ◦C
overnight. Cell growth was determined by measuring the optical density (OD) at 540/630 nm with
Multiscan EX ELISA reader (Thermo Labsystems, Cheshire, WA, USA). Inhibition of the cell growth
was determined according to the formula below:

IC50 = 100 − [(ODsample − ODmedium control)/(ODcell control − ODmedium control)] × 100 (1)

Results are expressed in terms of IC50, defined as the inhibitory dose that reduces the growth of
the cells exposed to the tested compounds by 50%.

2.7. Resistance Modulation Assay

The resistance modulation effect of compounds with ciprofloxacin (CIP) and tetracycline (TET)
antibiotics were evaluated by the checkerboard method on S. aureus strains. Briefly, CIP or TET was
diluted in a 96-well microtiter plate by two-fold serial dilution in MH broth and then the compounds
were added at subinhibitory concentrations ( 1

2 MIC). In this assay, only the tested compounds with
well-defined MIC values were tested. Finally, 10−4 dilution of the overnight bacterial culture in MH
was added to each well. The final volume was 200 µL in each well. The microtiter plates were
incubated at 37 ◦C for 18 h. MIC values in the presence of the antibiotics alone and in combination
with Se-compounds were determined by visual inspection.

2.8. Real-Time Ethidium Bromide Accumulation Assay

The impact of compounds on EB accumulation was determined by the automated EB method
using a CLARIOstar Plus plate reader (BMG Labtech, UK). Firstly, the bacterial strain was incubated
until it reached an optical density (OD) of 0.6 at 600 nm. The culture was washed with phosphate
buffered saline (PBS; pH 7.4) and centrifuged at 13,000× g for 3 min, the cell pellet was re-suspended in
PBS. The compounds were added at 1

2 MIC concentration to PBS containing a non-toxic concentration
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of EB (1 µg/mL). Then, 50 µL of the EB solution containing the compound were transferred into 96-well
black microtiter plate (Greiner Bio-One Hungary Kft, Hungary), and 50 µL of bacterial suspension
(OD600 0.6) were added to the each well. Then, the plates were placed into the CLARIOstar plate
reader, and the fluorescence was monitored at excitation and emission wavelengths of 530 nm and
600 nm every minute for one hour on a real-time basis. From the real-time data, the activity of the
compounds, namely the relative fluorescence index (RFI) of the last time point (minute 60) of the EB
accumulation assay, was calculated according to the following formula:

RFI = (RFtreated − RFuntreated)/RFuntreated (2)

where RFtreated is the relative fluorescence (RF) at the last time point of EB retention curve in the
presence of an inhibitor, and RFuntreated is the RF at the last time point of the EB retention curve of the
untreated control having the solvent control (DMSO).

2.9. Measuring Biofilm Formation Using Crystal Violet

The anti-biofilm effect of the tested compounds against S. aureus strains and wild-type S. Typhimurium
SE01 was measured using crystal violet (CV; 0.1% (v/v)). This dye is used to detect the total biofilm
biomass formed. Overnight cultures were diluted to OD of 0.1 at 600 nm in TSB medium. Then, the
bacterial cultures were added to 96-well microtiter plates and the compounds were added at 1

2 MIC
concentration. The final volume was 200 µL in each well. The microtiter plates were incubated at 30 ◦C
for 48 h with gentle agitation (100 rpm). After the incubation period, TSB medium was discarded, and the
plates were washed with tap water to remove unattached cells. Then 200 µL crystal violet was added to
the wells and incubated for 15 min at room temperature. Then, CV was removed from the wells and the
plates were washed again with tap water, and 200 µL of 70% ethanol was added to the wells. Finally,
the biofilm formation was determined by measuring the OD at 600 nm using Multiscan EX ELISA plate
reader (Thermo Labsystems, Cheshire, WA, USA). The anti-biofilm effect of compounds was expressed in
the percentage (%) of decrease in biofilm formation.

2.10. Quorum Sensing (QS) Assay

The QS inhibitory effect of selenocompounds was examined on the AHL producer E. cloacae strain
and C. violaceum sensor bacterial strain. These strains were inoculated in parallel. The QS inhibition was
monitored by agar diffusion method on LB* agar plate as described previously [29]. Filter paper discs
(7.0 mm in diameter) were placed between the parallel inoculated strains and impregnated with 10 µL
compounds. Starting concentration of the compounds was 1

2 MIC. The agar plates were incubated at
room temperature (20 ◦C) for 24–48 h and the inhibition of violacein production was measured.

2.11. Statistical Analysis

The values are given as the mean ± standard deviation (SD) determined for three replicates from
three independent experiments. The analysis of data was performed using SigmaPlot for Windows
Version 12.0 software (Systat Software Inc, San Jose, CA, USA), applying the two-tailed t-test.
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3. Results

3.1. Determination of Minimum Inhibitory Concentrations by Microdilution Method

Based on the MIC values, the Se-compounds were more effective against S. aureus strains. The most
effective compounds were the ketone selenoesters Se-K1, Se-K2, and Se-K3 on the reference S. aureus
ATCC 25923, showing an MIC of 0.39 µM. Interestingly, these three derivatives share a common moiety,
namely a methylketone group in the alkyl moiety bound to the selenium atom. The replacement of this
methylketone by a cyano or by a methyloxycarbonyl moiety reduced the activity dramatically, as the
MICs were 16- and 32-fold higher against S. aureus ATCC 25923, respectively; with the exception of the
trisubstituted derivative Se-C3, as its MIC was only 4-fold higher than the MIC of the trisubstituted
methylketone Se-K3. The same tendency, but accentuated, was observed in S. aureus MRSA 272123,
where the MIC values of the methylketone derivatives were in the range of 64- to 128-fold lower
than the equivalent methyloxycarbonyl derivatives and in the range of 16- to 32-fold lower than the
equivalent nitrile-containing selenoesters. The compounds showed a slight antibacterial effect on
Salmonella strains. The most effective compound was Se-C3 on SE01, SE02, and SE03 strains, showing
an MIC of 12.5 µM (Table 1). Importantly, the MIC to the efflux knockout strains was unchanged
suggesting that the compounds were not substrates of the AcrAB-TolC efflux pump.

Table 1. Antibacterial activity of selenocompounds. Minimum inhibitory concentrations (MICs)
of compounds were determined on reference Staphylococcus aureus ATCC (American Type Culture
Collection) 25923 and methicillin and ofloxacin-resistant S. aureus 272123 (MRSA) strains and Salmonella
Typhimurium strains.

MIC Determination (µM)

Compounds S. aureus
ATCC 25923

S. aureus
MRSA
272123

S. Typhimurium
SE01

Wild-Type

S. Typhimurium
SE02

∆acrB

S. Typhimurium
SE03

∆acrA

S. Typhimurium
SE39
∆tolC

Se-K1 0.39 1.56 50 50 50 50
Se-K2 0.39 1.56 50 50 50 100
Se-K3 0.39 0.78 50 25 25 50
Se-E1 12.5 100 >100 >100 >100 >100
Se-E2 12.5 100 >100 >100 >100 >100
Se-E3 12.5 100 >100 >100 >100 >100
Se-C1 6.25 50 25 25 25 25
Se-C2 6.25 50 25 25 25 25
Se-C3 1.56 12.5 12.5 12.5 12.5 25

3.2. Resistance Modulation Assay

As the Se-compounds were more effective on S. aureus strains, these strains were selected for
combination studies with reference antibiotics. Selenocompound Se-E3 showed synergism with TET
on the methicillin-susceptible S. aureus ATCC 25923.

Surprisingly, all selenocompounds showed synergism with TET on the methicillin-resistant S. aureus
strain. Se-E3 and Se-C2 were the most effective compounds in combination with TET, as they reduced the
MIC value of TET against this MRSA strain to a value 32-fold lower. Additionally, compounds Se-E1 and
Se-C1 also exerted a noteworthy reduction of the MIC value, of 16-fold in this case. On the other hand,
Se-K1 and Se-E3 showed synergism with CIP on the MRSA strain, achieving a 2-fold reduction of the
MIC value (Table 2).
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Table 2. Resistance modulating effect of selenocompounds in the presence of antibiotics on S. aureus
strains. The resistance modulation effect of Se-compounds with ciprofloxacin (CIP) and tetracycline
(TET) antibiotics on the S. aureus bacterial strains were evaluated by the checkerboard method.

MIC Reduction (µM)
In Brackets, the X-Fold Reduction of MIC Is Presented

Compounds
S. aureus ATCC 25923 with S. aureus MRSA 272123 with

TET CIP TET CIP

− 0.88 1.06 14.06 33.99

Se-K1 0.88 1.06 3.51 (4) 16.99 (2)
Se-K2 0.88 1.06 7.03 (2) 33.99
Se-K3 0.88 1.06 7.03 (2) 33.99

Se-E1 0.88 1.06 0.88 (16) 33.99
Se-E2 0.88 1.06 1.76 (8) 33.99
Se-E3 0.44 (2) 1.06 0.44 (32) 16.99 (2)

Se-C1 0.88 1.06 0.88 (16) 33.99
Se-C2 0.88 1.06 0.44 (32) 33.99
Se-C3 0.88 1.06 3.51 (4) 33.99

3.3. Ethidium Bromide Accumulation Assay

The activity of the selenocompounds on EB accumulation was determined by the automated EB
method on sensitive and resistant S. aureus and S. Typhimurium SE01, -02, -03, and -39 strains. The
relative fluorescence index was calculated based on the means of relative fluorescence units (RFUs;
Table 3).

Table 3. Relative fluorescence indices based on real-time ethidium bromide (EB) accumulation data on
S. Typhimurium and S. aureus strains. The active compounds are presented in bold.

Relative Fluorescence Index (RFI)

Compounds
S. Typhimurium

SE01
Wild-Type

S. Typhimurium
SE02

∆acrB

S. Typhimurium
SE03

∆acrA

S. Typhimurium
SE39
∆tolC

S. aureus
ATCC 25923

S. aureus
MRSA
272123

Se-K1 −0.16 0.10 0.17 0.27 0.1 −0.15
Se-K2 −0.04 0.13 0.20 0.26 0.11 −0.07
Se-K3 −0.20 0.08 0.28 0.44 0.16 −0.18

Se-E1 −0.10 −0.03 0.03 0.15 0.98 0.19
Se-E2 0.09 0.70 0.56 0.59 0.67 0.33
Se-E3 0.26 0.08 0.27 0.25 4.15 0.47

Se-C1 −0.08 0.06 0.04 0.13 0.14 −0.15
Se-C2 −0.10 0.03 0.09 0.25 0.08 −0.13
Se-C3 −0.07 −0.02 0.08 0.06 0.18 −0.05

CCCP 3.50 2.46 1.81 1.32 0.52 −

Verapamil − − − − − 0.32

In case of Salmonella strains, the Se-compounds increased the intracellular EB accumulation more
efficiently on the tolC gene inactivated mutant S. Typhimurium SE39 after 60 min. In contrast, RFUs
obtained in the presence of Se-compounds were the lowest on the wild-type S. Typhimurium SE01.
CCCP, the reference efflux pump inhibitor (EPI) was the positive control in case of Salmonella and
reference S. aureus strain. In addition, verapamil was applied as reference EPI on S. aureus MRSA.
The solvent DMSO served as a negative control in the experiments. Se-E2 significantly increased the
intracellular EB accumulation on S. Typhimurium SE02, -03, and -39. In addition, a significant EB
accumulation was observed for Se-K3 on S. Typhimurium SE39 (Figure 1).
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compounds. The graphs show the relative fluorescence units (RFUs) of (a) S. Typhimurium SE01, (b) 
S. Typhimurium SE02, (c) S. Typhimurium SE03, (d) S. Typhimurium SE39, and (e) all S. 
Typhimurium bacterial strains in the presence of the compounds in the 60th minute of the assay. In 
case of S. Typhimurium SE01, -SE02 and -SE03 the level of significance was * p < 0.001. The levels of 
significance were * p = 0.004, ** p = 0.001, and *** p < 0.001 on S. Typhimurium SE39. 

Figure 1. Ethidium bromide (EB) accumulation in S. Typhimurium strains in the presence of Se-compounds.
The graphs show the relative fluorescence units (RFUs) of (a) S. Typhimurium SE01, (b) S. Typhimurium
SE02, (c) S. Typhimurium SE03, (d) S. Typhimurium SE39, and (e) all S. Typhimurium bacterial strains in
the presence of the compounds in the 60th minute of the assay. In case of S. Typhimurium SE01, -SE02 and
-SE03 the level of significance was * p < 0.001. The levels of significance were * p = 0.004, ** p = 0.001, and
*** p < 0.001 on S. Typhimurium SE39.
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In case of the reference S. aureus and resistant MRSA strain the highest RFUs were recorded in the
presence of Se-E3, for this reason this compound exerted the most prominent EPI activity. In addition,
methylcarbonyl selenoesters Se-E1 and Se-E2 were proven to be effective in both S. aureus strains
(Figure 2).
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Figure 2. EB accumulation on S. aureus strains. The graphs show the RFUs of (A) S. aureus ATCC 25923
(B) S. aureus MRSA 272123 bacterial strains in the presence of the compounds in the 60th minute of
the assay. In case of S. aureus ATCC 25923 the levels of significance were * p = 0.006 and ** p < 0.001.
The levels of significance were * p = 0.003, ** p = 0.001, and *** p < 0.001 on S. aureus MRSA 272123.
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3.4. Measuring Biofilm Formation Using Crystal Violet

The effect of selenocompounds on biofilm formation of sensitive and resistant S. aureus strains
and wild-type S. Typhimurium SE01 was evaluated. The biofilm inhibition (%) was calculated based
on the mean of absorbance units (AUs). The absorbance expressed in AUs was the following on
non-treated samples: reference S. aureus showed an absorbance of 2.4 ± 0.1, the resistant S. aureus
exhibited 1.3 ± 0.1 AU, and the wild-type S. Typhimurium presented 2.2 ± 0.3 AU. Selenocompounds
Se-K1 (AU: 0.45 ± 0.17; inhibition: 64.5%), Se-K3 (AU: 0.16 ± 0.06; inhibition: 84.7%), Se-E3 (AU:
0.32 ± 0.07; inhibition: 74.6%), and Se-C1 (AU: 0.72 ± 0.15; inhibition: 43.7%) could efficiently inhibit
the biofilm formation of S. aureus MRSA. In case of the reference S. aureus strain, the anti-biofilm effect
was observed for Se-K2 (AU: 1.67 ± 0.10; inhibition: 30.3%) and Se-E3 (AU: 1.22 ± 0.17; inhibition:
74.6%). The compounds showed no significant anti-biofilm effect on S. Typhimurium SE01 (Figure 3).
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Figure 3. Anti-biofilm effect of Se-compounds on S. Typhimurium SE01 wild-type and on sensitive and
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3.5. Quorum Sensing (QS) Assay

The sensor strain C. violaceum 026 and the AHL producer strains E. cloacae 31298 were inoculated
as parallel lines. Interactions between the strains and compounds were evaluated for the reduction in
the size of the zone of pigment production and the zone of growth inhibition of the affected strains,
in millimeters. Promethazine (PMZ) was applied as a QS inhibitor and its zone of inhibition was
46 mm. Selenocompounds Se-K1, Se-K2, and Se-E1 had QS inhibitory effect. In addition, Se-K1 and
Se-K2 showed inhibition zones of 37 mm and 40 mm, respectively, whereas the methyloxycarbonyl
selenoester Se-E1 was the most effective QS inhibitor with an inhibition zone of 41 mm (Figure 4).
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3.6. Cytotoxicity Assay on Normal Human Fibroblasts

In order to determine the toxicity and safety of the selenocompounds on human cells, a cytotoxicity
assay was performed using normal MRC-5 human embryonal lung fibroblast cells (Table 4).

Table 4. Cytotoxic activity of selenocompounds on MRC-5 human embryonal fibroblast cells, expressed
in Inhibitory Concentration 50 (IC50) and with the calculated standard deviation (SD).

Compound
MRC-5

IC50 (µM) SD ±

Se-K1 0.54 0.00
Se-K2 1.34 0.16
Se-K3 0.74 0.04

Se-E1 77.91 15.86
Se-E2 >100 −

Se-E3 76.61 9.18

Se-C1 >100 −

Se-C2 >100 −

Se-C3 >100 −

Based on the data obtained, ketone selenoesters Se-K1, Se-K2, and Se-K3 presented high toxicity
on normal cells (IC50 between 0.5 and 1.5 µM). Fortunately, the methylcarbonyl selenoesters (Se-E1,
Se-E2, and Se-E3) and the cyano selenoesters (Se-C1, Se-C2, and Se-C3) showed no toxicity on normal
cells as all their IC50 values were above 75 µM.

4. Discussion

In case of MIC determination, the symmetrical selenoesters evaluated herein (whose
selenium-bound alkyl moiety contains functional groups as a ketone, oxygen ester or nitrile) were more
effective on sensitive and resistant S. aureus strains compared to the four S. Typhimurium bacterial strains.
This suggests that these symmetrical selenoesters are more active against Gram-positive bacteria (as
Staphylococcus aureus) than against Gram-negative bacteria (as Salmonella enterica serovar Typhimurium).
This fact is in accordance with the antibacterial activity of non-symmetrical selenoesters, which were
evaluated in a previous work of the group [27]; only three non-symmetrical ketone selenoesters
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(9–11 in [27]) were active against S. aureus, whereas none of them were active against Escherichia coli.
Interestingly, all of them were active against Chlamydia trachomatis (Gram-negative), but since Chlamydia
is an intracellular bacterium this may affect its sensitivity to the compounds [27].

The methylketone selenoesters Se-K1, Se-K2, and Se-K3 were the most potent antibacterials on
reference S. aureus. In contrast, the methyloxycarbonyl selenoesters Se-E1, Se-E2, and Se-E3 and the
cyano selenoesters Se-C1 and Se-C2 showed strong resistance modulating activity with tetracycline
against the MRSA strain. Comparing the antibacterial activity with the previously reported data [27],
two observations are of interests. First, the symmetrical selenoesters are more potent antibacterials
against S. aureus ATCC 25923 than the respective asymmetrical derivatives. This is observed when
we compare the 0.39 µM MIC values of Se-K1, Se-K2, and Se-K3 with the 3.12 µM MIC value of
9 in [27] (methylketone selenoesters), and the 12.5 µM MIC values of Se-E1, Se-E2 and Se-E3 with
7 in [27], which was not active at concentrations below 100 µM (methyloxycarbonyl selenoesters).
Second, the symmetrical methyl selenoesters 2–5 in [27] were not active against S. aureus ATCC 25923
(MIC > 100 µM), whereas all the functionalized selenoesters evaluated in this work (-CH2COCH3,
-CH2COOCH3, -CH2CN) showed MIC values against this strain at 12.5 µM or lower. This indicates
that these second-generation selenoesters have improved antibacterial activity compared with those
that have been previously reported.

If we compare the antibacterial activity of the symmetrical selenocompounds with its toxicity
against MRC-5 normal embryonal lung fibroblast cell line, we observe that the MIC values of the
compounds against S. aureus ATCC 25923 were lower than the IC50 values against this cell line.

In the resistance modulation assay, the selenocompounds were tested at 1
2 of their MIC in

combination with tetracycline and ciprofloxacin in the two S. aureus strains (ATCC 25923 and MRSA
272123). As mentioned previously, all compounds were able to modulate the activity of tetracycline
against S. aureus MRSA 272123. The results were somehow comparable with the antibacterial activity.
Interestingly, the –CH2COOCH3 and –CN containing symmetrical selenoesters were more potent
modulators than the –CH2COCH3 selenoesters (X-fold reductions of 2–4, 8–32, and 4–32, respectively).
However, as MIC values of the selenocompounds were higher against this S. aureus strain, only Se-C1
and Se-C2 could be used at a safe concentration (25 µM, non-toxic in MRC-5 cells) with a noteworthy
effect (16- and 32-fold reduction of MIC value of tetracycline).

Real-time EB accumulation was applied in order to monitor the EPI activity of the compounds.
The intracellular EB accumulation was the highest on the tolC gene inactivated mutant S. Typhimurium
SE39, and the lowest EB accumulation was obtained in the wild-type S. Typhimurium SE01 in the
presence of methyloxycarbonyl selenoester Se-E2. This compound significantly increased the EB
accumulation in the efflux pump gene inactivated (∆acrA, ∆acrB, and ∆tolC) mutant S. Typhimurium
strains due to efflux independent mechanisms, e.g., membrane destabilizing effect. In addition,
methyloxycarbonyl selenoester Se-E3 showed significantly effective pump inhibition on sensitive
(p < 0.001) and resistant (p = 0.001) S. aureus strains. Unfortunately, these two Se-compounds have to
be applied at a high concentration (50 µM, which is 1

2 of their MIC) against S. Typhimurium (Se-E2)
or S. aureus MRSA 272123 (Se-E3), respectively. Compound Se-E3 could be used in this application
against S. aureus ATCC 25923, as in this case its concentration would be 6.25 µM, much lower.

Regarding the anti-biofilm effect, the methyloxycarbonyl selenoester Se-E3 showed significant
biofilm inhibition on both of sensitive and resistant S. aureus strains. Furthermore, the methylketone
selenoester Se-K3 was the most effective anti-biofilm agent on resistant S. aureus MRSA. In addition,
Se-K1 was also interesting, as it showed a biofilm inhibiting effect higher than 50% against MRSA.
It was surprising that Se-K2 promoted the biofilm formation of S. aureus MRSA, because it has
the same chemical formula as Se-K1 (both are 2-oxopropyl selenodiesters); they only differ in the
substitution pattern at the phenyl ring, such that Se-K1 has a para substitution (1,4) and Se-K2 has
a meta substitution (1,3). It is interesting to see how such a small change in the substitution pattern
at the core phenyl ring leads to completely different activities. What is more, in Se-K2 the inclusion
of a third –COSeCH2COCH3 at the position five of the core phenyl ring led to Se-K3, recovering
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the biofilm inhibition in respect to Se-K2 and enhancing it in respect to Se-K1. In the case of the
methyloxycarbonyl selenoesters, only the trisubstituted derivative Se-E3 was capable of significantly
inhibiting the biofilm formation in both strains of S. aureus (reference and MRSA), whereas the two
disubstituted ones were inactive. Methylcyano selenoesters showed a lower inhibition than the other
two families of compounds, however, one of them (the para-disubstituted (Se-C1)) was close to exerting
a 50% inhibition of S. aureus MRSA.

Finally, QS inhibiting effect of compounds was evaluated based on the inhibition of violacein
production. The methylketone selenoester Se-K1 and Se-K2 and the methyloxycarbonyl selenoester
Se-E1 were potent QS-inhibitors, with Se-E1 being the most effective QS inhibitor of these three
derivatives by showing an inhibition close to the reference promethazine (positive control).

All these findings reveal that the symmetrical selenoesters have a potent antibacterial activity,
mainly against S. aureus strains. Furthermore, the methylcyano selenoesters could be used as potential
novel antibiotics. Additional studies to evaluate the ADME-Tox properties of these compounds
is needed to evaluate their applicability in medicine more in-depth. Besides, the methylketone
selenoesters, which are less selective, still could be used, for example, in disinfection of surfaces or in
the coating of surfaces to prevent biofilm formation.

5. Conclusions

It can be concluded that all the symmetrical selenoesters evaluated have a potent antibacterial
activity against S. aureus ATCC 25923. The most potent derivatives were the methylketone selenoesters
(Se-K1, Se-K2, and Se-K3), followed by the cyano selenoesters (Se-C1, Se-C2, and Se-C3), and at
the end by the methyloxycarbonyl selenoesters (Se-E1, Se-E2, and Se-E3). After determining the
toxicity on normal fibroblasts, the more selective ones were the cyano selenoesters, followed by the
methyloxycarbonyl selenoesters, and the ones by the methylketone selenoesters. Combining both the
antibacterial activity and the cytotoxic activity, the most promising compound against S. aureus ATCC
25923 was Se-C3. The tested selenocompounds also showed antibacterial activity against S. aureus
MRSA 272123 and against different strains of S. Typhimurium, although with higher MIC values.

In addition to the antibacterial activity, the methyloxycarbonyl selenoesters and two cyano
selenoesters showed strong resistance reversing activity in the presence of tetracycline against the
MRSA strain. Additionally, the methyloxycarbonyl selenoester Se-E3 was the most effective compound
concerning the reversal of resistance, efflux pump inhibition, and anti-biofilm activity on S. aureus strains.

6. Patents

This work explores the antibacterial activity of compounds covered by the patent EP18382693 [21]
(filed on 28 September 2018 by Enrique Domínguez-Álvarez, Gabriella Spengler, Claus Jacob and
Carmen Sanmartín) more in-depth.
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