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Abstract: The thermophilic strain of the genus Geobacillus, Geobacillus icigianus is a promising bacterial
chassis for a wide range of biotechnological applications. In this study, we explored the metabolic
potential of Geobacillus icigianus for the production of 2,3-butanediol (2,3-BTD), one of the cost-effective
commodity chemicals. Here we present a genome-scale metabolic model iMK1321 for Geobacillus icigianus
constructed using an auto-generating pipeline with consequent thorough manual curation. The model
contains 1321 genes and includes 1676 reactions and 1589 metabolites, representing the most-complete
and publicly available model of the genus Geobacillus. The developed model provides new insights into
thermophilic bacterial metabolism and highlights new strategies for biotechnological applications of the
strain. Our analysis suggests that Geobacillus icigianus has a potential for 2,3-butanediol production from
a variety of utilized carbon sources, including glycerine, a common byproduct of biofuel production.
We identified a set of solutions for enhancing 2,3-BTD production, including cultivation under anaerobic
or microaerophilic conditions and decreasing the TCA flux to succinate via reducing citrate synthase
activity. Both in silico predicted metabolic alternatives have been previously experimentally verified for
closely related strains including the genus Bacillus.
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1. Introduction

Biological factories designed for the production of bulk chemical and fuels are crucial components
of the future manufacturing, focused on eliminating environmental pollution and reduction of fossil
fuel and oil price dependencies. 2,3-butanediol (butadiene glycol-2,3 or 2,3-BTD) has a broad list of
industrial applications and it represents one of the essential commodity chemicals [1]. The potential
of the microbial 2,3-butanediol production was shown in the early 20th century and many bacterial
species including genera Klebsiella, Enterobacter, Bacillus, Lactobacillus and Serratia have been studied so
far as microorganisms which are able to synthesize 2,3-BTD [1,2]. While many Klebsiella spp. strains
are stable under a wide range of growth conditions and possess the highest product yield, the strain
biosafety level 2 assignment restricts its biotechnological applications for the industrial-scale 2,3-BTD
production. In a search for an alternative producer, a novel aerobic thermophilic Geobacillus strain
excreting 2,3-BTD has been identified. The thermophilic properties of the strain provide additional
cost-effective strategies for microbial fermentation of 2,3-butanediol [3].
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The majority of species of the genus Geobacillus have optimal growth conditions at temperatures near
50-60 °C that promote extremely high growth and carbon conversion rates [4]. Furthermore, members of
the genus Geobacillus are capable of utilizing various carbon sources [4-6]. Many Geobacillus spp. became
a source of thermostable proteins and enzymes [4,5]. The strains have been proposed as whole cell
biocatalysts for biotechnological applications at elevated temperatures [4,5]. The Geobacillus icigianus
G1w1T is a new thermophilic strain of the genus Geobacillus that was firstly isolated from sludge of the
hydrothermal vent located in the Valley of Geysers (Kamchatka, Russia) [6]. Availability of the annotated
bacterium’s genome [7] enables a systems-level investigation of the Geobacillus icigianus metabolism
including whole-genome metabolic reconstruction and flux balance analysis.

A genome-scale metabolic (GSM) modeling approach together with constraint-based flux balance
analysis (FBA) have been developed as computational platforms to provide a holistic view of the
cellular metabolism in pro- and eukaryotes and predict flux distribution in a global metabolic network
both under a range of environmental conditions and genetic perturbations [8]. Herein, we used a
genome-scale metabolic modeling approach [9,10] to investigate microbial metabolism and estimate
the capability of Geobacillus icigianus G1w1T strain to generate and excrete 2,3-BTD under certain
growth conditions. Based on the analysis of the developed iMK1321 model by means of diverse
evolutionary optimization algorithms we have found two feasible and alternative ways to enhance
2,3-BTD production from different carbon sources in this particular microorganism. The first mechanism
is an operating mode of the culture growth in anaerobic or microaerophilic conditions, while the second
one is related to genetic modifications of the TCA cycle leading to the reduction of succinate production.

2. Materials and Methods

2.1. Model Reconstruction

The complete genome of Geobacillus icigianus strain (GenBank assembly accession:
GCA_000750005.1) [7] was used for reannotation by means of the standard RAST (Rapid Annotation
Subsystem Technology) annotation scheme [11]. The KBase web-tool [12] was employed to generate
a draft genome-scale metabolic model of the strain with standard parameters including an in-built
gap-filling algorithm [13]. The vast majority of gene-protein-reaction (GPR) associations were added
automatically at the process of the model generation. The biomass equation was adapted from a
closely-related Bacillus subtilis strain [14], since there is no measured biomass composition for G. icigianus.
SEED [15] reaction names and IDs of the draft model were changed to BiGG Models IDs [16] using an
original script on Python 3.6 in Cobrapy [17] to improve the model consistency and make it comparable
with other GSM models. The quality of the resulting draft model was checked out using the Memote
web-service [18], which demonstrated that the consistency of the developed model is 91% (see
Supplementary Materials and https://github.com/mkulyashov/Geobacillus_icigianus_supplementary).

2.2. Applied Constraints and Model Curation

To simulate a growth of the strain on glucose as a single carbon source the lower bound of the
glucose uptake rate was considered as —16 mmol gDCW~! h™! according to the published data for
closely related species [19]. A lower bound of exchange reactions for components of the Pfennig medium
(NH3*, PO43-, Mg2+, Ca?*, K* and Na™) was set to —1000 mmol gDCW_1 h™1, while the upper bound
was set as +1000 mmol gDCW~! h~! for them. The upper bound for the majority of cellular metabolic
reactions was assumed to be +1000 mmol gDCW~! h~!, unless stated otherwise. The lower bounds of
the reversible and irreversible cellular metabolic reactions were set as —1000 mmol gDCW~! h=! and 0
mmol gDCW~! h~, respectively.

A set of carbon source exchange reactions were added for substrates known to support the growth of
Geobacillus spp: glycerine, L-arabinose and D-xylose [6]. The presence of all corresponding enzymatic
pathways in the Geobacillus icigianus genome was confirmed by BLASTP alignment [20] (see Supplementary
Materials and https://github.com/mkulyashov/Geobacillus_icigianus_supplementary), while GPR for
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ribulose-5-phosphate 4-epimerase (EC: 5.1.3.4) was based on the BioCyc annotation [21] for G.icigianus.
Additionally, the ability to grow on xylose as a single carbon source was experimentally shown [6] and
predicted from the genome-based metabolic reconstruction, previously published information for related
Geobacillus species and similarity of the pathway to the metabolic pathways of Bacillus subtilis in SEED,
KEGG [22] and BIGG databases. The BLASTP analysis identified D-xylose-specific transporter via ABC
system for G.icigianus as well. The uptake rates for other carbon sources (glycerine, L-arabinose and
D-xylose) were proportionally calculated on the basis of the number of carbon molecules regarding the
glucose since these rates were not measured in experiments yet.

2.3. Model Modification for 2,3-Butanediol Production

Reactions required for 2,3-butanediol production were manually evaluated. The metabolic routes for
2,3-BTD production to synthesize the substance comprises: acetolactate synthase (EC:2.2.1.6), acetolactate
decarboxylase (EC: 4.1.1.5) and (R,R)-butanediol dehydrogenase (EC:1.1.1.4). Only acetolactate synthase was
originally presented in the draft model, the newly identified metabolic reactions were added using Cobrapy:.
It is noteworthy that the BLASTP analysis demonstrated that acetolactate decarboxylase (EC: 4.1.1.5) is not
encoded in Geobacillus icigianus genome confirming the previous finding that this enzyme is absent in all
thermophilic microorganisms [23]. However, the production of 2,3-BTD was shown for other thermophilic
organisms and for the genus Geobacillus too [3]. Furthermore, it has been demonstrated that the first
protein of the pathway, acetolactate synthase of B.subtilis is also capable to catalyze the decarboxylation
of 2-ketoisovalerate in the isobutanol production pathway [24]. Given the similarity of these pathways
(isobutanol production and 2.3-BTD biosynthesis), it has been assumed that acetolactate synthase may
catalyze the second reaction in Geobacillus icigianus as well. (R,R)-butanediol transport and (R,R)-butanediol
exchange reactions were also added similarly to the 1'YO844 model [14]. The final version of the GSM model
was uploaded into the Memote web-service which demonstrated that the overall score of the model did
not change compared to the draft model and equals 91% indicating the model quality and ensuring its
applicability for further studies.

2.4. Flux Balance Analysis

The maximization of the biomass equation was used as an objective function of the model for
parsimonious flux balance analysis (pFBA) which attempts to minimize overall cellular flux while
maximizing the growth rate [25]. Optflux tool [26] was harnessed to perform in silico simulations in
order to predict both growth rates for different carbon sources and production rate of 2,3-BTD. The Escher
web-tool was used for the visualization of the central metabolic pathways including glycolysis,
pentose phosphate pathway, TCA cycle, biochemical reactions of the oxidative phosphorylation and
their relevant fluxes [27]. The model file in json and sbml formats as well as flux distribution map
are available online at https://github.com/mkulyashov/Geobacillus_icigianus_supplementary/tree/
master/model_files. The model is also available online at BloUML web-service (https://ict.biouml.org/
bioumlweb/#de=data/Collaboration/FBA%20models/) [28]. The list of reactions and metabolites of
the developed model as well as flux distribution on the metabolic map for different carbon sources
(glucose, glycerine, xylose and arabinose) are presented in the Supplementary Materials in Excel format
and can be also downloaded from corresponding folder on github.

2.5. Model Analysis for 2,3-Butanediol Production Optimization

To identify genetic modifications which are essential to enhance 2,3-butanediol production a
Biomass-Product Coupled Yield (BPCY) as the objective function of an evolutionary optimization
approach has been used in the Optflux tool. To conduct this type of analysis, the following
simulation algorithms have been selected: pFBA, Minimization of Metabolites Balance (MiMBL) [29],
Linear implementation of Minimization Of Metabolic Adjustment (LMOMA) [30]. All algorithms were
started with 5000 maximum evolutionary functions and with the maximum number of modifications
equal to 2. The optimization algorithm was chosen considering specific options of simulation methods.
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LMOMA and pFBA simulation methods as well as the MiMBL algorithm were run with default options
for Strength Pareto Evolutionary Algorithm 2 (SPEA2).

3. Results

3.1. Model Reconstruction

The genome-scale metabolic model was reconstructed using a semi-automatic pipeline including
genome annotation with RAST [11] and subsequent generation via Kbase methodology [12].
The developed model contains 1676 reactions, 1589 metabolites and 1321 genes. According to
recently published phylogenetic re-annotation of the genus Geobacillus, G.icigianus belongs to the
Clade 1 while G. thermoglucosidasius strains are included in the second clade [31]. Although the almost
200 genome assemblies are available at NCBI for the genus Geobacillus, there are only a few published
GSM models for this genus. Table 1 demonstrates the model statistics compared to the previously
published genome-scale metabolic models of other strains Furthermore, analysis and verification of
the model quality by the Memote service (https://memote.io/, [18]), the current standard tool for GSM
models verification and comprehensive overview [32-34], demonstrates the highest level of the GSM
model consistency and completeness (see Supplementary Files: MemoteReportInitialModel.html and
MemoteReportFinalModel.html and at github).

A manual curation of the model enabled us to enhance the number of gene-protein-reaction
associations (only 56 enzymatic reactions without assigned genes, while the total number of enzymatic
reactions is 1405) and incorporate reactions required for uptake and initial steps of metabolic
conversion of diverse carbon sources as well as a set of metabolic reactions for 2,3-BTD production.
Parsimonious flux balance analysis was conducted via the Optflux software [26]. Figure 1 represents
predicted flux distribution for different carbon sources on the metabolic network for TCA cycle
reconstructed via the Escher web-tool ([27], detailed figures of the metabolic network for different
carbon sources are provided as Supplemental Figures S1-54).

The observed distribution of fluxes through G. icigianus metabolic map differs from the B. subtilis
flux distribution, despite the fact that the B. subtilis metabolic pathways and biomass equation were
used as a template for our draft model. For instance, G. icigianus mainly uses FRD3 reaction catalyzed
by fumarate reductase as a reaction in the electron transfer system, when glucose is a carbon source
and SUCDI reaction for other carbon sources, while B. subtilis employs SUCDi and NADH4 reactions.
Furthermore, a metabolic reaction catalyzed by 6-phosphogluconolactonase (PGL, EC:3.1.1.31) is
absent in the pentose phosphate pathway of G.icigianus according to the reconstructed iMK1321
model, while this reaction is presented in iYO844 model for B.subtilis loaded from BIGG database
(http://bigg.ucsd.edu/models/iYO844). Seemingly, it is due to the evolutionary elimination of the
gene encoding 6-phosphogluconolactonase in the genus Geobacillus since an experimental verification
indicated that this reaction can spontaneously proceed at room temperature and the reaction rate
might be sufficient in thermophilic microorganisms for the functionality of the pentose phosphate
pathway [4]. It was also experimentally demonstrated that some Geobacillus spp. may have an
alternative oxidation route for the production of ribulose-5-phosphate via reactions catalyzed by
6-phospho-3-hexuloisomerase and 3-hexulose-6-phosphate synthase [4]. However, these enzymes
were not identified by the BLASTP analysis in the G.icigianus genome (see Supplementary Materials
and https://github.com/mkulyashov/Geobacillus_icigianus_supplementary). Further analysis of the
flux distribution for different carbon sources shows that lactate and succinate are excreted compounds
during the growth on xylose, glucose and arabinose and it is consistent with published experimental
data [6]. pFBA predicts glucose and glycerine as the most promising substrates for active growth
of G.icigianus (0.5 mmol gDCWI~! h~1), but growth on glycerine requires more oxygen (Table 2 and
corresponding Supplementary Tables for G.icigianus). A comparative analysis of the pFBA predictions
(Table 2) conducted for iMK1321 model and published GSM model of Bacillus subtilis (iYO844, [14])
demonstrates significantly lower growth rate for B.subtilis if a glucose uptake rate corresponds to
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the used one in the original model (1.7 mmol gDCWI1~! h™!) and slightly enhanced growth rate for
B.subtilis comparing to G.icigianus if the glucose consumption rate equals to the used one in iMK1321
model (=16 mmol gDCWI~! h~!) experimentally measured for Geobacillus thermoglucosidasius NCIMB
11955 [19]. It is noteworthy that the high level of substrate consumption has never been experimentally
demonstrated for Bacillus subtilis while all published growth rates for strains of the genus Geobacillus
are much higher than the estimation for B.subtilis [35,36].
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Figure 1. The flux distribution maps for TCA cycle predicted by iMK1321 for growth of Geobacillus
icigianus on: (a) glucose, (b) glycerine, (c) xylose, (d) arabinose. The maps were drawn in Escher

web-tool, where the circles represent metabolites, while the arrows refer to reactions [27]. The flux value

through the reaction is reflected by colour, where numbers represent corresponding range of the reaction
fluxes in mmol gDCW‘1 hL: purple—0-1; blue—5-10; green—10-30; red—30-80 mmol gDCW'1 h1.
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Table 1. Network statistics for published genome-scale models of Geobacillus strains and comparison with iMK1321.

Species # of Genes in # of Reactions in  # f’f Metabolites  Genome Size and # of Protein-Coding Reference
the Model the Model in the Model RefSeq ID Genes
Geobacillu(sctélgi';?;ggél;cosidusius 736 1159 1163 I\STIZZ_eC=P218277§b1 3659 [35]
Geobaci(llNuz:: iiilz\jlgﬁlgtégsidasius 859 1011 1050 I\SIIZZ;(::P218277;/%; 3615 [19]
Geobacillus icigianus (G1IW1) 1321 1676 1589 NZ_JPYA00000000.1 3183 this study

Size = 3.46 Mb

6 of 13
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Table 2. Comparison of parsimonious flux balance analysis (pFBA) predictions for iMK1321 and iYO844
models on different substrates.

Growth Rate on Growth Rate on Growth Rate on Growth Rate on

Organism Glucose (h71) Xylose (h~1) Arabinose (h™1) Glycerine (h™1)
B.subtilis * 0.118 0.113 0.128 0.140
G.icigianus 0.502 0.497 0.497 0.502
B.subtilis ** 0.624 0.624 0.624 0.624

* with glucose rate —1.7 mmol gDCW~! h~! [14]; ** glucose uptake rate is the same as for G.icigianus and equals to
~16 mmol gDCW~1 h~1 [19].

3.2. iMK1321 Model Optimization for 2,3-Butanediol Production

Since the genome-scale metabolic modeling provides a phenotype prediction based on the studied
organism genotype, this approach is a powerful computational tool for rational strain optimization
within such a booming field as metabolic engineering. To develop a strategy for achievement of desired
cellular behaviour using genetic manipulations, a myriad of in silico optimization methods have been
proposed [37]. Herein, we used a set of optimization algorithms implemented in the Optflux tool [38]:
the parsimonious enzyme usage FBA (pFBA), a Linear implementation of Minimization Of Metabolic
Adjustment method (LMOMA) and a more recent Minimization of Metabolites Balance (MiMBI)
approach in order to identify genetic mutations required for more effective 2,3-BTD production by
G.icigianus and take into account the various strain optimization strategies that may predict different
routes for metabolic engineering of the strain.

The LMOMA algorithm was able to discover 78 solutions for growth on glucose; 90 solutions for
growth on both glycerine and xylose; and 72 solutions for growth where arabinose is a carbon source.
Optimization results with the most benefit for 2,3-BTD production are presented in Table 3, and show
that reactions, which mostly require modifications are oxygen transport and citrate synthase (CS).
It should be noted that reduction of the flux via CS, which was revealed by the LMOMA algorithm as
one of the best solutions for 2,3-BTD production, was recently experimentally demonstrated by using a
weak promoter for the gene encoding CS to increase the production of (3R)-acetoin, a precursor of
2,3-BTD in Corynebacterium glutamicum [39]. Some other reactions, which are predicted by this method
for enhanced 2,3-BTD biosynthesis, are also related to TCA cycle and succinate production.

Strain optimization to increase the level of 2,3-butanediol produced by the cell using the MiMBL
algorithm predicts 43 optimal solutions for glucose, 83 solutions for xylose, 100 solutions for arabinose
and 26 solutions for glycerine, as substrates for bacterial growth. The best optimization results for this
algorithm are presented in Table 4, and demonstrate that the most common reactions are catalyzed
by a and b aconitases (ACONTa, ACONTD), 1-3 fructose bisphosphate aldolases (FBA, FBA2, FBA3),
citrate hydroxy mutase (ACO1) are related to the oxygen transportation. Although the reactions
predicted by the MiMBL as required for modification mostly differ from the list of reactions which
were identified by the LMOMA, all of them are associated with TCA cycle and succinate production.
Cultivation of the strain in anaerobic/microaerobic conditions predicted by the method as a way to
increase the accumulation of 2,3-BTD, corresponds to LMOMA results.

The pFBA algorithm was able to identify a significantly lower number of optimal solutions for
2,3-BTD production: 1 solution for cells grown on glucose, arabinose and glycerine and 2 solutions
for growth on xylose Table 5. Apparently, the algorithm is not effective to predict optimal genetic
manipulations for 2,3- BTD production. However, identified solutions via oxygen transport reactions
coincide with predictions of two above-mentioned optimization methods.
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Table 3. The most effective optimization results of iMK1321 model for 2,3-butanediol production with
the Linear implementation of Minimization Of Metabolic Adjustment (LMOMA) algorithm.

Substrate Production of 2,3-Butanediol Growth Rate Reaction
(mmol gDCW-1 h-1) (h1) Modifications *
CS =0.03125
Glucose 6.06 0.376 GLYOL1 = 0.03125
CS =0.03125
Glucose 6.06 0.376 R00014 = 0.03125
Glucose 4.14 0.4136 O2t =0.03125
Arabinose 6.00 0.371 CS =0.03125
Arabinose 4.64 04 CS=0.25
CS =0.03125
Xylose 6.24 0.3612 ALKP = 0.03125
CS =0.03125
Xylose 6.24 0.3612 RO1440 = 0.125
CS =0.03125
Xyl
ylose 6.14 0.3613 SUCCt2r = 0.03125
. EX_02 e=05
Glycerine 6.33 0.363 GF6PTA = 32.0
Glycerine 6.33 0.363 EX_02_e=05

* Value less than 1—a decrease in the flux value through the reaction compared to wildtype. A value greater than 1 is
an increase in the flux value through the reaction compared to the wildtype. CS—citrate synthase; GLYOl—glycine
oxidase; O2t—oxygen transport into cell; ALKP—alkaline phosphatase; R01440—formaldehyde glycolaldehyde
transferase; SUCCt2r—transport of succinate from the extracellular space into the cell; EX_o2_e-exchange oxygen
reaction; R00014—thiamine diphosphate acetaldehyde.

Thus, in silico optimization algorithms indicate two possibilities to enhance the production of
2,3-BTD by the strain including genetic modifications of the TCA cycle which lead to decrease in
succinate production and growth of G.icigianus in oxygen-limited conditions.

In addition to that, a computational optimization of 2,3-butanediol production by Bacillus subtilis
strain has been carried out with the LMOMA algorithm. Results of the optimization on different
substrates demonstrate that Geobacillus icigianus gives more effective production of 2,3-BTD in most
cases. However, Bacilus subtilis can be a more suitable microorganism for 2,3-BTD biosynthesis if
arabinose is a carbon source for the growth Figure 2 that is based on the availability of two arabinose
transporter systems in the bacterium. Flux balance analysis predicts that the arabinose transporter
via proton symport is the only transport system for growth on arabinose, while a maximization of
2,3-BTD production with simultaneous growth requires more carbon source uptake leading to the
activation of arabinose ABC transport system. As can be seen from the Figure 2, G. icigianus has the
highest level of 2,3-butanediol production on glycerine-dependent growth. The outcome proposes the
biotechnological potential of the strain in conversion of the industrial by-product into value-added
target compounds.

To verify the model predictions a thorough analysis of the published experimental data on
mechanisms of strain improvements for accumulation of 2,3-BTD including closely related species has
been undertaken. A transition of the bacterial growth to microaerobic or anaerobic conditions is one of
the common experimental approaches to increase the production of 2,3-BTD in many biotechnological
species [40—42]. Furthermore, a new avenue via the oxidative TCA cycle for metabolic engineering
of Escherichia coli was revealed to increase the production of another related commodity chemical,
1,4-butanediol [41]. Data from the literature support the predictive power of the developed iMK1321
genome-scale metabolic model.
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Table 4. Optimization results of iMK1321 model for 2,3-butanediol production with the MiMBL algorithm.

Substrate

Production of 2,3-Butanediol
(mmol gDCW-1h-1)

Growth
Rate (h™1)

Genetic
Modifications **

Reaction
Modifications *

Glucose

5.69

0.32

EP10_15190 = 0.03125

ACO1 =0.03125
ACONTDb = 0.03125
ACONTa = 0.03125

EP10_02485 = 0.03125

FEROpp = 0.03125
R00092 = 0.03125

Glucose

0.293

EP10_09595 = 0.03125

R0467 = 0.515625
R00014 = 0.7578125
FEROpp = 0.03125
R03050 = 0.515625

EP10_15190 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Arabinose

6.32

0.35

KFX31147.1 = 16.0

URIDK3 = 8.5
URA6_1=4.75

KFX31511,1 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Arabinose

6.30

0.35

EP10_02065 = 0.03125

GDH2 = 0.03125
GLUDy = 0.03125

KFX31511.1 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Xylose

5.95

0.34

EP10_12945 = 4.0

PGM =25

EP10_15190 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Xylose

5.95

0.34

EP10_12945 = 4.0

PGM =25

KFX31511.1 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Glycerine

6.55

0.357

EP10_13815 = 0.03125

FBA = 0.03125
FBA2 = 0.03125
FBA3 = 0.03125

EP10_15190 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Glycerine

6.55

0.357

EP10_13815 = 0.0625

FBA = 0.0625
FBA2 = 0.0625
FBA3 = 0.0625

EP10_15190 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

Glycerine

6.46

0.359

EP10_10240 = 0.03125

R01056 = 0.03125

EP10_15190 = 0.03125

ACO1 =0.03125
ACONTa = 0.03125
ACONTDb = 0.03125

* Value less than 1—a decrease in the flux value through the reaction compared to wildtype. ** Value less
than 1 is a gene knockout. while a value greater than 1 is a gene overexpression. A value greater than
1 is an increase in the flux value through the reaction compared to the wildtype. FEROpp—ferrooxidase;
ACOl—Hydroxymutase Citrate; ACONTa—aconitase (citrate hydro-lyase); ACONTb—aconitase (hydrolysis
isocitrate); R00092—Fe2 + NAD + oxidoreductase; R0467—(S)-2- Aceto-2-hydroxybutanoate pyruvate lyase;
R03050—2-Acetolactate pyruvate lyase; R00014—Thiamine diphosphate, acetaldehyde transferase; URIDK3—dUMP
phosphotransferase; URA6_1—UMP phosphotransferase; GDH2—i-Glutamate NAD + oxidoreductase;
GLUDy—1-Glutamate dehydrogenase; PGM—phosphoglyceratmutase; FBA—fructose bisphosphate aldolase;
FBA2-D—Fructose 1-phosphate D-glyceraldehyde 3-phosphate lyase; FBA3—Sedoheptulose-1,7-bisphosphate
D—glyceraldehyde-3-phosphate lyase; R01056-D—ribose-5-phosphate-aldose-ketose-isomerase.
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Table 5. Optimization results of Geobacillus icigianus model for 2,3-butanediol production with the

pFBA algorithm.
Substrate Production of 2,3-Butanediol Growth Rate Reaction
(mmol gDCW-1h-1) (h-1) Modifications *
Glucose 4.16 0.42 EX_02_e =0.03125
Arabinose 411 0.41 02t =0.03125
02t =0.03125
Xylose 412 0.41 FE3abc = 0.03125
Xylose 411 0.41 02t =0.03125
Glycerine 12.23 0.25 O2t = 0.0625

* Value less than 1—a decrease in the flux value through the reaction compared to wildtype. A value greater than 1 is an
increase in the flux value through the reaction compared to the wildtype. O2t—oxygen transport from the extracellular
space into the cell; EX_02_e—exchange reaction for oxygen; FE3abc—ATP phosphohydrolase (iron ion transport).

a) Y0844
e iMK1321

0.598

06

Growth rate (h™-1)

Glucose Arabinose Glycerine

=
—

2,3-BTD production (mmol gDCW~-1 h*-1)

Glucose Xylose Arabinose Glycerine

Figure 2. Comparison of 2,3-butanediol production with the LMOMA algorithm between iMK1321
(orange) and iYO844 (blue) models on different carbon sources: (a) growth rate (b) 2,3-butanediol
production rate.
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4. Discussion

With the development of industrial biotechnology, thermophilic microorganisms are considered
as a unique and attractive platform in whole cell applications. In this study, a genome scale metabolic
model, iMK1321 for a recently isolated thermophilic strain of the genus Geobacillus, Geobacillus icigianus
has been reconstructed. The model has been built using Kbase web-service with consequent manual
curation. The final version of the model represents the most comprehensive GSM reconstruction
developed for this genus, enabling in silico interrogation of the bacterial growth on diverse substrates
including glucose, glycerine, xylose and arabinose. Computational analysis of the model indicates
glycerine and glucose as the most suitable carbon sources for G.icigianus cultivation. To validate
the model predictions, continuous culture cultivation of the strain on different carbon sources is
planned to be conducted in future studies. Furthermore, a comparative analysis of the model
simulations with distribution of the fluxes predicted by the iYO844 model for closely related Bacillus
subtilis demonstrates some differences in metabolic rearrangements between these microbial systems.
The developed model has also been employed to predict optimal solutions for enhanced 2,3-butanediol
production by this particular thermophilic strain. In silico predictions based on different optimization
algorithms to accelerate biosynthesis of 2,3-BTD comprise genetic modifications related to some steps
of the TCA cycle which result in a decrease in succinate production and cultivation of the strain in
oxygen-limited conditions. Identified strategies of metabolic engineering for G.icigianus have been
already experimentally demonstrated as capabilities for active 2,3-BTD biosynthesis in closely related
species [39,40,42-45], thereby affirming a benefit of the computational modeling in biotechnological
strain design.

Supplementary Materials: The Supplementary materials are available online at http://www.mdpi.com/2076-2607/
8/7/1002/s1. The program code used for model extension and manual curation as well as other supplementary
materials are available online at https://github.com/mkulyashov/Geobacillus_icigianus_supplementary.
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