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Abstract: The genus Diaporthe and its anamorph Phomopsis are distributed worldwide in many
ecosystems. They are regarded as potential sources for producing diverse bioactive metabolites.
Most species are attributed to plant pathogens, non-pathogenic endophytes, or saprobes in terrestrial
host plants. They colonize in the early parasitic tissue of plants, provide a variety of nutrients in the
cycle of parasitism and saprophytism, and participate in the basic metabolic process of plants. In
the past ten years, many studies have been focused on the discovery of new species and biological
secondary metabolites from this genus. In this review, we summarize a total of 335 bioactive
secondary metabolites isolated from 26 known species and various unidentified species of Diaporthe
and Phomopsis during 2010–2019. Overall, there are 106 bioactive compounds derived from Diaporthe
and 246 from Phomopsis, while 17 compounds are found in both of them. They are classified into
polyketides, terpenoids, steroids, macrolides, ten-membered lactones, alkaloids, flavonoids, and
fatty acids. Polyketides constitute the main chemical population, accounting for 64%. Meanwhile,
their bioactivities mainly involve cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-
inflammatory, anti-algae, phytotoxic, and enzyme inhibitory activities. Diaporthe and Phomopsis
exhibit their potent talents in the discovery of small molecules for drug candidates.

Keywords: ascomycetes; endophytic fungi; plant pathogens; biological activities; natural products

1. Introduction

Diaporthe is an important fungal genus of plant pathogens [1] belonging to the family
Diaporthaceae, order Diaporthales, class Sordariomycetes [2]. It is mainly isolated from
various hosts distributed in tropical and temperate zones and can cause diseases to a wide
range of plant hosts, as well as humans and other mammals [3,4]. The ascomycetes of
Diaporthe Nitschke 1870 and Phomopsis (Sacc.) Bubák 1905 are regarded to form a genus [5,6].
In Index Fungorum (2020), more than 1120 records of Diaporthe and 986 of Phomopsis are
listed (http://www.indexfungorum.org/, accessed December 2020). There is a common
understanding that, in these ascomycetes, the teleomorph states are named as Diaporthe
and the anamorph states called as Phomopsis [7–10]. For a long time, a dispute has remained
concerning whether the generic name should be defined as Diaporthe or Phomopsis. Due to
the importance of this genus as plant pathogens, the classification of Diaporthe has been
discussed by many researchers. Since Diaporthe was cited earlier and represents most of
the species described in nature, more mycologists suggest that the use of Diaporthe as a
generic name have more priority and is more suitable for the current study of this fungal
group [11–13]. In recent years, the previous classification methods based on morphological
characteristics are no longer applicable to the genus Diaporthe and advanced molecular
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techniques will replace them to solve the classification problem of Diaporthe [13,14]. In this
review, we use the older name Diaporthe as the generic name.

Based on the existing literature investigations, more secondary metabolites have been
separated from Phomopsis than Diaporthe. To date, a large number of compounds have been
isolated from endophytic fungi of terrestrial plants in Diaporthe and Phomopsis, some of
which originate from the marine environment (mainly mangroves and sediments). Most of
compounds are classified as polyketides, which is the main structural type of secondary
metabolites in this genus. The reported compounds showed various bioactivities, such
as cytotoxic [15], antifungal [16], antibacterial [17], antiviral [18], antioxidant [19], anti-
inflammatory [20], phytotoxic [21], and enzyme inhibition [22]. Up to now, there are 26
known species and various unidentified species of Diaporthe and Phomopsis have been
studied for their metabolites. Our current review comprehensively summarize a total
of 335 bioactive natural products from Diaporthe and Phomopsis between 2010 and 2019,
covering their detailed chemical structures with classifications in structural types, as well
as their bioactivities and habitats.

2. Bioactive Secondary Metabolites from Phomopsis

The Phomopsis fungi are important resource of bioactive compounds in the field of
drug discovery, and have remarkable medical application value. According to the lit-
erature reports in recent ten years, a total of 246 bioactive compounds are summarized
from Phomopsis herein. These substances have rich and diverse biological activities, such
as cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, phyto-
toxic, antimalarial, antialgae, antimigratory, pro-apoptotic, accelerating, and inhibiting
the growth of subintestinal vessel plexus (SIV) branches, protecting effects on pancreatic
β-cells, motility inhibitory and zoosporicidal potential, and enzyme inhibitory activities
(Table 1). Among them, some interesting and promising bioactive compounds might be
used in pharmaceutical and agricultural fields. The derived habitats of the Phomopsis strains
can also be found in Table 1, which shows that there are 174 (accounting for 71%) and
66 (accounting for 27%) compounds obtained from terrestrial and marine environments,
respectively, while six compounds (accounting for 2%) were not mentioned their habitats.

Table 1. The bioactive secondary metabolites of the anamorph Phomopsis during 2010–2019.

Number Structural Types Compounds Strains Habitats
(T/M a) Activities Refs.

1 Xanthones
1,5-Dihydroxy-3-

hydroxyethyl-6-methoxy-
carbonylxanthone

Phomopsis sp.
Paris polyphylla

var. yunnanensis
(T)

Cytotoxic [23]

2
1-Hydroxy-5-methoxy-3-

hydroxyethyl-6-
methoxycarbonylxanthone

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Cytotoxic [23]

3 1-Hydroxy-3-hydroxyethyl-8-
ethoxycarbonyl-xanthone Phomopsis sp. P. polyphylla var.

yunnanensis (T) Cytotoxic [23]

4 Pinselin Phomopsis sp. P. polyphylla var.
yunnanensis (T) Cytotoxic [23]

5
1-Hydroxy-8-

(hydroxymethyl)-3-methoxy-
6-methylxanthone

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Cytotoxic [23]

6
2,6-Dihydroxy-3-methyl-9-

oxoxanthene-8-carboxylic acid
methyl ester

Phomopsis sp. (No.
SK7RN3G1) Sediment (M) Cytotoxic [24]

7

4,5-Dihydroxy-3-(2-
hydroxyethyl)-1-methoxy-8-

methoxy-
carbonylxanthone

P. amygdali Paris axialis (T) Cytotoxic [25]

8
1,8-Dihydroxy-4-(2-

hydroxyethyl)-3-
methoxyxanthone

P. amygdali P. axialis (T) Cytotoxic [25]

9 Hydroxyvertixanthone Phomopsis sp. YM
355364

Aconitum
carmichaelii (T) Antimicrobial [26]
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Table 1. Cont.

Number Structural Types Compounds Strains Habitats
(T/M a) Activities Refs.

10 Dalienxanthone A Phomopsis sp. Paris daliensis (T) Cytotoxic [27]
11 Dalienxanthone B Phomopsis sp. P. daliensis (T) Cytotoxic [27]
12 Dalienxanthone C Phomopsis sp. P. daliensis (T) Cytotoxic [27]
13 Paucinervin E P. amygdali P. axialis (T) Cytotoxic [25]

14
1,3-Dihydroxy-4-(1,3,4-

trihydroxybutan-2-yl)-8-
methoxy-9H-xanthen-9-one

P. amygdali P. polyphylla var.
yunnanensis (T) Cytotoxic [28]

15
3-Methoxy-1,4,8-trihydroxy-5-

(1′,3′,4′-trihydroxybutan-2′-
yl)-xanthone

P. amygdali P. axialis (T) Cytotoxic [29]

16
8-Methoxy-1,3,4-trihydroxy-5-

(1′,3′,4′-trihydroxybutan-2′-
yl)-xanthone

P. amygdali P. axialis (T) Cytotoxic [29]

17 Secosterigmatocystin Phomopsis sp.
P. amygdali

P. polyphylla var.
yunnanensis (T)

P. axialis (T)

Cytotoxic
Cytotoxic

[23]
[29]

18

3,8-Dihydroxy-4-(2,3-
dihydroxy-1-

hydroxymethylpropyl)-1-
methoxyxanthone

Phomopsis sp. P. daliensis (T) Cytotoxic [27]

19 Oliganthins E Phomopsis sp. P. daliensis (T) Cytotoxic [27]
20 Dihydrosterigmatocystin P. amygdali P. axialis(T) Cytotoxic [29]
21 Vieillardixanthone P. amygdali P. axialis (T) Cytotoxic [29]

22 1,7-Dihydroxy-2-methoxy-3-
(3-methylbut-2-enyl)xanthone Phomopsis sp. P. polyphylla var.

yunnanensis (T) Cytotoxic [23]

23 1-Hydroxy-4,7-dimethoxy-6-
(3-oxobutyl)-xanthone Phomopsis sp. P. polyphylla var.

yunnanensis (T) Cytotoxic [23]

24 Asperxanthone Phomopsis sp. P. polyphylla var.
yunnanensis (T) Cytotoxic [23]

25
6-O-Methyl-2-

deprenylrheediaxanthone
B

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Cytotoxic [23]

26 Cratoxylumxanthone D Phomopsis sp. P. daliensis (T) Cytotoxic [27]

27

3-O-(6-O-α-L-
Arabinopyranosyl)-β-D-

glucopyranosyl-1,4-
dimethoxyxanthone

Phomopsis sp.
(ZH76)

Excoecaria
agallocha (M) Cytotoxic [30]

28 Phomoxanthone A

P. longicolla
Phomopsis sp. IM

41-1
Phomopsis sp. 33#

Sonneratia
caseolaris (M)
Rhizhopora

mucronata (M)
Rhizophora stylosa

(M)

Pro-apoptotic
Antimicrobial

Inhibiting
acetylcholinesterase
and α-glucosidase,

Antioxidant

[31]
[32]
[33]

29
12-O-Deacetyl-

phomoxanthone
A

Phomopsis sp. IM
41-1 R. mucronata (M) Antimicrobial [32]

30 Dicerandrol A
P. longicolla S1B4

Phomopsis sp.
HNY29-2B

- b

Acanthus ilicifolius
(M)

Antimicrobial
Cytotoxic

[34]
[35]

31 Dicerandrol B
P. longicolla S1B4

Phomopsis sp.
HNY29-2B

- b

A. ilicifolius (M)
Antibacterial

Cytotoxic
[34]
[35]

32 Dicerandrol C P. longicolla S1B4 - b Antibacterial [34]

33 Deacetylphomoxanthone B
P. longicolla S1B4

Phomopsis sp.
HNY29-2B

- b

A. ilicifolius(M)
Antibacterial

Cytotoxic
[34]
[35]

34 Penexanthone A Phomopsis sp.
HNY29-2B A. ilicifolius (M) Cytotoxic [35]

35 Chromones (+)-Phomopsichin A Phomopsis sp. 33# R. stylosa (M)

Antimicrobial,
Antioxidant,

Inhibiting
acetylcholinesterase
and α-glucosidase

[33]
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Table 1. Cont.

Number Structural Types Compounds Strains Habitats
(T/M a) Activities Refs.

36 (−)-Phomopsichin B Phomopsis sp. 33# R. stylosa (M)

Antimicrobial,
Antioxidant,

Inhibiting
acetylcholinesterase
and α-glucosidase

[33]

37 Phomopsichin C Phomopsis sp. 33# R. stylosa (M)

Antimicrobial,
Antioxidant,

Inhibiting
acetylcholinesterase
and α-glucosidase

[33]

38 Phomopsichin D Phomopsis sp. 33# R. stylosa (M)

Antimicrobial,
Antioxidant,

Inhibiting
acetylcholinesterase
and α-glucosidase

[33]

39 Chaetocyclinone B Phomopsis sp.
HNY29-2B A. ilicifolius (M) Cytotoxic [36]

40 Pestalotiopsone F Phomopsis sp.
IFB-ZS1-S4

Scaevola
hainanensis (M)

Inhibiting
neuraminidase [37]

41 Phomoxanthone F Phomopsis sp.
xy21

Xylocarpus
granatum (M) Anti-HIV [38]

42
5-Hydroxy-3-hydroxymethyl-

2-methyl-7-
methoxychromone

Phomopsis sp. (No.
Gx-4) Sediment (M)

Cytotoxic, Inhibiting
the growth of SIV

branch
[39]

43 Phomochromone A Phomopsis sp. Cistus
monspeliensis (T)

Antimicrobial,
Antialgal [40]

44 Phomochromone B Phomopsis sp. C. monspeliensis
(T)

Antimicrobial,
Antialgal [40]

45 Phomochromanone A Phomopsis sp.
CGMCC No. 5416

Achyranthes
bidentata (T) Cytotoxic, Anti-HIV [41]

46 Phomochromanone B Phomopsis sp.
CGMCC No. 5416 A. bidentata (T) Cytotoxic, Anti-HIV [41]

47
5-Hydroxy-6,8-dimethoxy-2-
benzyl-4H-naphtho[2,3-b]-

pyran-4-one

Phomopsis sp.
ZSU-H26 E. agallocha (M) Cytotoxic [42]

48 Phomopsis-H76 A Phomopsis sp.
(#zsu-H76) E. agallocha (M) Accelerating the

growth of SIV branch [43]

49 Chromanones
(3R,4S)-3,4-Dihydro-4,5,8-

trihydroxy-3-
methylisocoumarin

Phomopsis sp. (No.
ZH-111) Sediment (M)

Accelerating the
growth of SIV branch,

Cytotoxic
[44]

50
(3R,4S)-3,4-Dihydro-8-
hydroxy-4-methoxy-3-

methylisocoumarin

Phomopsis sp. (No.
Gx-4) Sediment (M)

Cytotoxic,
Accelerating the

growth of SIV branch
[39]

51

3,4-Dihydro-8-hydroxy-3-
methyl-1H-2-benzopyran-1-

one-5-carboxylic
acid

Phomopsis sp. (No.
Gx-4) Sediment (M)

Cytotoxic,
Accelerating the

growth of SIV branch
[39]

52 5,8-Dihydroxy-4-
methylcoumarin

Phomopsis sp. (No.
Gx-4) Sediment (M)

Cytotoxic, Inhibiting
the growth of SIV

branch
[39]

53 (10S)-Diaporthin Phomopsis sp.
sh917

Isodon eriocalyx
var. laxiflora (T) Antiangiogenic [45]

54 Cytosporone D Phomopsis sp.
CMU-LMA

Alpinia malacensis
(T)

Antimicrobial,
Inibiting DnaG

primase
[46]

55 Alternariol

Phomopsis sp.
A240

Phomopsis sp.
CAFT69

Phomopsis sp.

Taxus chinensis
var. mairei (T)

Endodesmia
calophylloides (T)
Senna spectabilis

(T)

Cytotoxic
Motility inhibitory
and zoosporicidal

potential
Anti-inflammatory

[47]
[48]
[49]

56 Alternariol-5-O-methyl ether Phomopsis sp.
CAFT69

E. calophylloides
(T)

Motility inhibitory
and zoosporicidal

potential
[48]



Microorganisms 2021, 9, 217 5 of 49

Table 1. Cont.

Number Structural Types Compounds Strains Habitats
(T/M a) Activities Refs.

57 5′-Hydroxyalternariol

Phomopsis sp.
A240

Phomopsis sp.
CAFT69

T. chinensis var.
mairei (T)

E. calophylloides
(T)

Antioxidant
Motility inhibitory
and zoosporicidal

potential

[47]
[48]

58 Phomochromanone C Phomopsis sp.
CGMCC No. 5416 A. bidentata (T) Cytotoxic,

Pro-apoptotic [41]

59 Benzofuranones

7-Methoxy-6-methyl-3-oxo-
1,3-dihydroisobenzofuran-4-

carboxylic
acid

Phomopsis sp.
A123

Kandelia candel
(M)

Cytotoxic, Antifungal,
Antioxidant [50]

60 Diaporthelactone Phomopsis sp.
A123 K. candel (M) Cytotoxic, Antifungal,

Antioxidant [50]

61 7-Hydroxy-4,6-dimethy-3H-
isobenzofuran-1-one

Phomopsis sp.
A123 K. candel (M) Cytotoxic, Antifungal,

Antioxidant [50]

62 7-Methoxy-4,6-dimethyl-3H-
isobenzofuran-1-one

Phomopsis sp.
A123 K. candel (M) Cytotoxic, Antifungal,

Antioxidant [50]

63
4-(Hydroxymethyl)-7-

methoxy-6-methyl-1(3H)-
isobenzofuranone

Phomopsis sp. (No.
ZH-111) Sediment (M)

Inhibiting the growth
of SIV branch,

Cytotoxic
[44]

64 Cytosporone E Phomopsis sp.
BCC 45011 X. granatum(M) Cytotoxic,

Antimalarial [51]

65 Cytosporone P Phomopsis sp.
BCC 45011 X. granatum (M) Antimalarial [51]

66 Phomopsidone A Phomopsis sp.
A123 K. candel (M) Cytotoxic, Antifungal,

Antioxidant [50]

67 Excelsione Phomopsis sp.
A123 K. candel (M) Cytotoxic, Antifungal,

Antioxidant [50]

68 Excelsional Phomopsis sp.
CAFT69

E. calophylloides
(T)

Motility inhibitory
and zoosporicidal

potential
[48]

69 Lithocarol A P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

70 Lithocarol B P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

71 Lithocarol C P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

72 Lithocarol D P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

73 Lithocarol E P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

74 Lithocarol F P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

75 Isoprenylisobenzofuran A P. lithocarpus
FS508 Sediment (M) Cytotoxic [52]

76
7-Methoxy-2-(4-

methoxyphenyl)-3-methyl-5-
(3-prenyl)-benzofuran

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]

77
2-(4-Methoxyphenyl)-3-

methyl-5-(3-prenyl)-
benzofuran-7-ol

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]

78

2-(4-Hydroxy-3,5-
dimethoxyphenyl)-3-methyl-

5-(3-prenyl)
benzofuran-7-ol

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]

79 Moracin N Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]

80
2-(2′-Methoxy-4′-hydroxy)-

aryl-3-methy-6-
hydroxybenzofuran

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]

81 Iteafuranal B Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]

82 Moracin P Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-TMV [53]
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Table 1. Cont.

Number Structural Types Compounds Strains Habitats
(T/M a) Activities Refs.

83 Pyrones Phomaspyrone A P. asparagi
SWUKJ5.2020

Kadsura
angustifolia (T) Cytotoxic [54]

84 Macommelin-8,9-diol P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

85 Phomaspyrone B P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

86 Phomaspyrone C P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

87 Phomaspyrone D P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

88 Phomaspyrone E P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

89 Macommelin-9-ol P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

90 Macommelin P. asparagi
SWUKJ5.2020 K. angustifolia (T) Cytotoxic [54]

91 Pyrenocine J Phomopsis sp. Cistus salvifolius
(T)

Antifungal,
Antibacterial,

Algicidal
[55]

92 Pyrenocine K Phomopsis sp. C. salvifolius (T)
Antifungal,

Antibacterial,
Algicidal

[55]

93 Pyrenocine L Phomopsis sp. C. salvifolius (T) Antibacterial,
Algicidal [55]

94 Pyrenocine M Phomopsis sp. C. salvifolius (T)
Antifungal,

Antibacterial,
Algicidal

[55]

95 Phomopsis-H76 C Phomopsis sp.
(#zsu-H76) E. agallocha (M) Inhibiting the growth

of SIV branch [43]

96 Quinones Anhydrojavanicin Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]

97 Dihydroanhydrojavanicin Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]

98 Fusarubin Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]

99 Javanicin Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]

100
2-Acetonyl-3methyl-5-
hydroxy-7-methoxy-

naphthazarin

Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]

101 Bostrycoidin Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]

102 Altersolanol B P. longicolla
HL-2232

Bruguiera
sexangula var.

rhynchopetala (M)
Antibacterial [57]

103 Altersolanol A
Phomopsis sp.
(PM0409092)

P. foeniculi

Nyctanthes
arbor-tristis (T)

Foeniculum
vulgare (T)

Cytotoxic
Phytotoxic

[58]
[59]

104

(2R,3S)-7-Ethyl-1,2,3,4-
tetrahydro-2,3,8-trihdroxy-6-

methoxy-3-methyl-9,10-
anthracenedione

Phomopsis sp.
PSU-MA214

Rhizophora
apiculata (M)

Cytotoxic,
Antibacterial [60]

105 Altersolanol J P. foeniculi F. vulgare (T) Phytotoxic [59]

106 2-Hydroxymethyl-4β,5α,6β-
trihydroxycyclohex-2-en Phomopsis sp. Notobasis syriaca

(T)
Antibacterial,

Algicidal [61]

107 (−)-Phyllostine Phomopsis sp. N. syriaca (T)
Antifungal,

Antibacterial,
Algicidal

[61]

108 (+)-Epiepoxydon Phomopsis sp. N. syriaca (T) Antibacterial,
Algicidal [61]

109 (+)-Epoxydon monoacetate Phomopsis sp. N. syriaca (T)
Antifungal,

Antibacterial,
Algicidal

[61]

110 Phomonaphthalenone A Phomopsis sp.
HCCB04730

Radix Stephaniae
Japonicae (T) Cytotoxic, Anti-HIV [56]
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Table 1. Cont.

Number Structural Types Compounds Strains Habitats
(T/M a) Activities Refs.

111 Ampelanol Phomopsis sp.
HNY29-2B A. ilicifolius (M) Antibacterial [62]

112 Phenols Phomosine K Phomopsis sp. N. syriaca (T) Antibacterial [61]

113 Phomosine A Phomopsis sp. Ligustrum vulgare
(T)

Antifungal,
Antibacterial,

Inhibiting algae
[63]

114 Phomosine B Phomopsis sp. L. vulgare (T) Antifungal,
Antibacterial [63]

115 Phomosine C Phomopsis sp. L. vulgare (T) Antifungal,
Antibacterial [63]

116 Phomosine D Phomopsis sp. L. vulgare (T) Antifungal, Inhibiting
algae [63]

117 Phomosine I Phomopsis sp. L. vulgare (T) Antifungal,
Antibacterial [63]

118

4-(3-Methoxy-5-
methylphenoxy)-2-(2-

hydroxyethyl)-6-
(hydroxymethyl)phenol

P. asparagi P. polyphylla var.
yunnanensis (T) Anti-MRSA [64]

119

4-(3-Hydroxy-5-
methylphenoxy)-2-(2-

hydroxyethyl)-6-
(hydroxymethyl)phenol

P. asparagi P. polyphylla var.
yunnanensis (T) Anti-MRSA [64]

120

4-(3-Methoxy-5-
methylphenoxy)-2-(2-

hydroxyethyl)-6-
methylphenol

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [65]

121

4-(3-Hydroxy-5-
methylphenoxy)-2-(2-

hydroxyethyl)-6-
methylphenol

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [65]

122

4-(3-Methoxy-5-
methylphenoxy)-2-(3-

hydroxypropyl)-6-
methylphenol

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [65]

123

1-(4-(3-Methoxy-5-
methylphenoxy)-2-methoxy-

6-methylphenyl)-3-
methylbut-3-en-2-one

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [66]

124

1-(4-(3-(Hydroxymethyl)-
5methoxyphenoxy)-2-

methoxy-6-methylphenyl)-3-
methylbut-3-en-2-one

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [66]

125

1-(4-(3-Hydroxy-
5(hydroxymethyl)phenoxy)-2-
methoxy-6-methylphenyl)-3-

methylbut-3-en-2-one

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [66]

126
1-[2-Methoxy-4-(3-methoxy-5-

methylphenoxy)-6-
methylphenyl]-ethanone

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [67]

127

1-[4-(3-(Hydroxymethyl)-5-
methoxyphenoxy)-2-

methoxy-6-methylphenyl]-
ethanone

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [67]

128
3-Hydroxy-1-(1,8-dihydroxy-
3,6-dimethoxynaphthalen-2-

yl)propan-1-one
P. fukushii P. polyphylla var.

yunnanensis (T) Anti-MRSA [68]

129

3-Hydroxy-1-(1,3,8-
trihydroxy-6-

methoxynaphthalen-2-
yl)propan-1-one

P. fukushii P. polyphylla var.
yunnanensis (T) Anti-MRSA [68]

130
3-Hydroxy-1-(1,8-dihydroxy-
3,5-dimethoxynaphthalen-2-

yl)propan-1-one
P. fukushii P. polyphylla var.

yunnanensis (T) Anti-MRSA [68]

131
5-Methoxy-2-methyl-7-(3-

methyl-2-oxobut-3-enyl)-1-
naphthaldehyde

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-MRSA [69]
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132

2-(Hydroxymethyl)-5-
methoxy-7-(3-methyl-2-

oxobut-3-enyl)-1-
naphthaldehyde

Phomopsis sp. P. polyphylla var.
yunnanensis (T) Anti-MRSA [69]

133 Tenellone H P. lithocarpus
FS508 Sediment (M) Cytotoxic [70]

134 16-Acetoxycytosporone B Phomopsis sp. YM
355364 A. carmichaeli (T) Antifungal [71]

135 Cytosporone B

Phomopsis sp.
0391

Phomopsis sp.
PSU-H188

P. polyphylla var.
yunnanensis (T)

Hevea brasiliensis
(T)

Inhibiting lipase
Protecting pancreatic

β-cells

[72]
[73]

136 Dothiorelone A Phomopsis sp.
0391

P. polyphylla var.
yunnanensis (T) Inhibiting lipase [72]

137 Lithocarpinol A P. lithocarpus
FS508 Sediment (M) Cytotoxic [74]

138 Lithocarpinol B P. lithocarpus
FS508 Sediment (M) Cytotoxic [74]

139 Phomoindene A Phomopsis sp. (No.
GX7-4A) Sediment (M) Cytotoxic [75]

140 4-Hydroxybenzaldehyde Phomopsis sp. YM
355364 A. carmichaelii (T) Antimicrobial [26]

141 5,5′-Dimethoxybiphenyl-2,2′-
diol

P. longicolla
HL-2232

B. sexangula var.
rhynchopetala (M) Antibacterial [57]

142 Phomonitroester Phomopsis sp.
PSU-MA214 R. apiculate (M) Cytotoxic [60]

143 Cytosporone U Phomopsis sp.
FJBR-11 Brucea javanica (T) Anti-TMV [76]

144 Altenusin Phomopsis sp.
CAFT69

E. calophylloides
(T)

Motility inhibitory
and zoosporicidal

potential
[48]

145 Cosmochlorin D Phomopsis sp.
N-125 Ficus ampelas (T)

Cytotoxic,
Growth-inhibition

activity
[77]

146 Cosmochlorin E Phomopsis sp.
N-125 F. ampelas (T)

Cytotoxic,
Growth-inhibition

activity
[77]

147 Oblongolides Oblongolide Z Phomopsis sp.
BCC 9789

Musa acuminate
(T)

Cytotoxic,
Anti-HSV-1 [78]

148 Oblongolide Y Phomopsis sp.
BCC 9789 M. acuminate (T) Cytotoxic [78]

149 Oblongolide C1 Phomopsis sp.
XZ-01

Camptotheca
acuminate (T) Cytotoxic [79]

150 Oblongolide P1 Phomopsis sp.
XZ-01 C. acuminate (T) Cytotoxic [79]

151 Oblongolide X1 Phomopsis sp.
XZ-01 C. acuminate (T) Cytotoxic [79]

152 6-Hydroxyphomodiol Phomopsis sp.
XZ-01 C. acuminate (T) Cytotoxic [79]

153 Oblongolide C Phomopsis sp.
XZ-01 C. acuminate (T) Cytotoxic [79]

154
2-Deoxy-4α-

hydroxyoblongolide
X

Phomopsis sp.
BCC 9789 M. acuminate (T) Anti-HSV-1 [78]

155 Unclassified
polyketides Phomoxydiene C Phomopsis sp.

BCC 45011 X. granatum (M) Cytotoxic,
Antimalarial [51]

156 1893 A Phomopsis sp.
BCC 45011 X. granatum (M) Cytotoxic [51]

157 Mycoepoxydiene Phomopsis sp.
BCC 45011 X. granatum (M) Cytotoxic,

Antimalarial [51]

158 Deacetylmycoepoxydiene Phomopsis sp.
BCC 45011 X. granatum (M) Cytotoxic,

Antimalarial [51]

159 Phomoxydiene A Phomopsis sp.
BCC 45011 X. granatum (M) Cytotoxic,

Antimalarial [51]
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160 Phomopoxide A Phomopsis sp.
YE3250

Paeonia delavayi
(T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

161 Phomopoxide B Phomopsis sp.
YE3250 P. delavayi (T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

162 Phomopoxide C Phomopsis sp.
YE3250 P. delavayi (T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

163 Phomopoxide D Phomopsis sp.
YE3250 P. delavayi (T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

164 Phomopoxide E Phomopsis sp.
YE3250 P. delavayi (T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

165 Phomopoxide F Phomopsis sp.
YE3250 P. delavayi (T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

166 Phomopoxide G Phomopsis sp.
YE3250 P. delavayi (T)

Cytotoxic, Antifungal,
Inhibiting

α-glycosidase
[80]

167 Phomentrioloxin Phomopsis sp. Carthamus lanatus
(T) Phytotoxic [81]

168 Phomotenone Phomopsis sp. C. monspeliensis
(T)

Antifungal,
Antibacterial,

Antialgal
[40]

169 Phomopsolide B Phomopsis sp.
DC275 Vitis vinifera (T) Antibacterial,

Phytotoxic [82]

170 Phomopsolidone A Phomopsis sp.
DC275 V. vinifera (T) Antibacterial,

Phytotoxic [82]

171 Phomopsolidone B Phomopsis sp.
DC275 V. vinifera (T) Antibacterial,

Phytotoxic [82]

172 Monoterpenoids Acropyrone Phomopsis sp.
HNY29-2B A. ilicifolius (M) Antibacterial [62]

173 Nectriapyrone P. foeniculi F. vulgare (T) Phytotoxic [59]

174 (1S,2S,4S)-Trihydroxy-p-
menthane Phomopsis sp. C. monspeliensis

(T)
Antibacterial,

Antialgal [40]

175 Sesquiterpenoids Phomophyllin A Phomopsis sp.
TJ507A

Phyllanthus
glaucus (T) Inhibiting BACE1 [83]

176 Phomophyllin B Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

177 Phomophyllin C Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

178 Phomophyllin D Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

179 Phomophyllin E Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

180 Phomophyllin F Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

181 Phomophyllin G Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

182 Radulone B Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

183 Phomophyllin I Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

184 Onitin Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

185 (7R,9S,10R)-3,9-Di-
hidroxicalamenene P. cassiae Cassia spectabilis

(T)

Inhibiting
acetylcholinesterase,

Antifungal
[84]

186 (7R,9R,10R)-3,9-Di-
hidroxicalamenene P. cassiae C. spectabilis (T)

Inhibiting
acetylcholinesterase,

Antifungal
[84]

187 (7S,10R)-3-Hidroxicalamen-8-
one P. cassiae C. spectabilis (T)

Inhibiting
acetylcholinesterase,

Antifungal
[84]
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188 Aristelegone-A P. cassiae C. spectabilis (T)
Inhibiting

acetylcholinesterase,
Antifungal

[84]

189 Phomoarcherin A P. archeri Vanilla albidia (T) Cytotoxic [85]

190 Phomoarcherin B P. archeri V. albidia (T) Cytotoxic,
Antimalarial [85]

191 Phomoarcherin C P. archeri V. albidia (T) Cytotoxic [85]
192 Kampanol A P. archeri V. albidia (T) Cytotoxic [85]
193 (+)-S-1-Methyl-abscisic-6-acid P. amygdali Call midge (T) Antibacterial [86]
194 (+)-S-Abscisic acid P. amygdali C. midge (T) Antibacterial [86]

195 7-Hydroxy-10-
oxodehydrodihydrobotrydial

Phomopsis sp.
TJ507A P. glaucus (T) Inhibiting BACE1 [83]

196 Curcumol
P. castaneae-
mollissimae

GQH87

Artemisia annua
(T) Cytotoxic [87]

197 9-Hydroxyphomopsidin Phomopsis sp.
CAFT69

E. calophylloides
(T)

Motility inhibitory
and zoosporicidal

potential
[48]

198 Phomopsidin Phomopsis sp.
CAFT69

E. calophylloides
(T)

Motility inhibitory
and zoosporicidal

potential
[48]

199 AA03390 P. lithocarpus
FS508 Sediment (M) Cytotoxic [70]

200 Diterpenoids Libertellenone J Phomopsis sp. S12 Illigera rhodantha
(T) Anti-inflammatory [88]

201 Libertellenone C Phomopsis sp. S12 - b Anti-inflammatory [89]
202 Libertellenone T Phomopsis sp. S12 - b Anti-inflammatory [89]
203 Pedinophyllol K Phomopsis sp. S12 - b Anti-inflammatory [89]
204 Pedinophyllol L Phomopsis sp. S12 - b Anti-inflammatory [89]
205 Fusicoccin J P. amygdali C. midge (T) Antibacterial [86]
206 3α-Hydroxyfusicoccin J P. amygdali C. midge (T) Antibacterial [86]

207 Triterpenoids 3S,22R,26-Trihydroxy-8,24E-
euphadien-11-one P. chimonanthi Tamarix chinensis

(T) Cytotoxic [90]

208 Betulinic acid Phomopsis sp.
SNB-LAP1-7-32

Diospyros
carbonaria (T) Antiviral, Cytotoxic [91]

209 Oleanolic acid
P.

castaneae-mollissi
mae GQH87

A. annua (T) Cytotoxic [87]

210 Steroids
(14β,22E)-9,14-

Dihydroxyergosta-4,7,22-
triene-3,6-dione

Phomopsis sp. A. carmichaeli (T) Antifungal [92]

211
(5α,6β,15β,22E)-6-Ethoxy-

5,15-dihydroxyergosta-7,22-
dien-3-one

Phomopsis sp. A. carmichaeli (T) Antifungal [92]

212 Calvasterol A Phomopsis sp. A. carmichaeli (T) Antifungal [92]
213 Calvasterol B Phomopsis sp. A. carmichaeli (T) Antifungal [92]
214 Ganodermaside D Phomopsis sp. A. carmichaeli (T) Antifungal [92]

215 Dankasterone A Phomopsis sp. YM
355364 A. carmichaeli (T) Antifungal,

Anti-influenza [71]

216
3β,5α,9α-Trihydroxy-

(22E,24R)-ergosta-7,22-dien-6-
one

Phomopsis sp. YM
355364 A. carmichaeli (T) Antifungal [71]

217 Phomopsterone B Phomopsis sp.
TJ507A P. glaucus (T) Anti-inflammatory [93]

218 Cyathisterol Phomopsis sp. YM
355364 A. carmichaelii (T) Antifungal [26]

219 Macrolides Sch-642305 Phomopsis sp.
CMU-LMA

Alpinia
malaccensis (T)

Cytotoxic,
Antimicrobial [94]

220 LMA-P1 Phomopsis sp.
CMU-LMA A. malaccensis (T) Cytotoxic [94]

221 Benquoine Phomopsis sp.
CMU-LMA A. malaccensis (T) Cytotoxic,

Antimicrobial [94]

222 Aspergillide C Phomopsis sp.
IFB-ZS1-S4 S. hainanensis (M) Inhibiting

neuraminidase [37]
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223 Lithocarpin A P. lithocarpus
FS508 Sediment (M) Cytotoxic [95]

224 Lithocarpin B P. lithocarpus
FS508 Sediment (M) Cytotoxic [95]

225 Lithocarpin C P. lithocarpus
FS508 Sediment (M) Cytotoxic [95]

226 Lithocarpin D P. lithocarpus
FS508 Sediment (M) Cytotoxic [95]

227 Alkaloids Phomopchalasin B Phomopsis sp. shj2 I. eriocalyx var.
laxiflora (T) Antimigratory [96]

228 Phomopsichalasin G P. spp. xy21 and
xy22 X. granatum (M) Cytotoxic [97]

229 18-Metoxycytochalasin J Phomopsis sp. Garcinia kola (T) Cytotoxic,
Antibacterial [98]

230 Cytochalasin H

Phomopsis sp.
Phomopsis sp.

By254
Phomopsis sp.

G. kola (T)
Gossypium

hirsutum (T)
S. spectabilis (T)

Cytotoxic,
Antibacterial
Antifungal
Inhibiting

acetylcholinesterase,
Anti-inflammatory

[98]
[99]
[49]

231 Cytochalasin J
Phomopsis sp.
Phomopsis sp.

P. asparagi

G. kola (T)
S. spectabilis (T)

Peperomia sui (T)

Cytotoxic,
Antibacterial

Anti-inflammatory
Antiandrogen

[98]
[49]
[100]

232 Phomopchalasin C Phomopsis sp. shj2 I. eriocalyx var.
laxiflora (T)

Cytotoxic,
Anti-inflammatory,

Antimigratory
[96]

233 Cytochalasin N Phomopsis sp.
By254 G. hirsutum (T) Antifungal [99]

234 Epoxycytochalasin H Phomopsis sp.
By254 G. hirsutum (T) Antifungal [99]

235 Diaporthalasin Phomopsis sp.
PSU-H188 H. brasiliensis (T) Anti-MRSA [73]

236 (+)-Tersone E P. tersa FS441 Sediment (M) Antibacterial,
Cytotoxic [101]

237 ent-Citridone A P. tersa FS441 Sediment (M) Antibacterial [101]
238 Phochrodine C Phomopsis sp. 33# R. stylosa (M) Anti-inflammatory [102]

239 Phochrodine D Phomopsis sp. 33# R. stylosa (M) Anti-inflammatory,
Antioxidant [102]

240 PM181110 P. glabrae Pongamia pinnata
(T) Anticancer [103]

241 Fusaristatin A P. longicolla S1B4 - b Antibacterial [34]

242 Exumolide A Phomopsis sp. (No.
ZH-111) Sediment (M)

Accelerating the
growth of SIV branch,

Cytotoxic
[44]

243 Flavonoids Quercetin
P. castaneae-
mollissimae

GQH87
A. annua (T) Cytotoxic [87]

244 Luteolin
P. castaneae-
mollissimae

GQH87
A. annua (T) Cytotoxic [87]

245 Naringenin
P. castaneae-
mollissimae

GQH87
A. annua (T) Cytotoxic [87]

246 Luteolin-7-O-glucoside
P. castaneae-
mollissimae

GQH87
A. annua (T) Cytotoxic [87]

a T: terrestrial environment; M: marine environment; b The habitat was not mentioned.

2.1. Polyketides

Polyketides are a large and diverse family of natural products, containing various
chemical structures and biological activities [104]. In this review, 171 polyketides are
summarized from Phomopsis, accounting for 70% of the total compounds from Phomopsis.
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The main bioactivities involve cytotoxic, antibacterial and antifungal activities. Herein,
we classify these polyketides into xanthones, chromones, chromanones, benzofuranones,
pyrones, quinones, phenols, oblongolides, and unclassified polyketides.

2.1.1. Xanthones

Xanthones are a kind of compounds with the framework of 9H-xanthen-9-one, which
mainly have anti-inflammatory, antimicrobial, antioxidant and cytotoxic activities [105]. A
series of xanthones were obtained from the fermentation products of Phomopsis sp. isolated
from Paris polyphylla var. yunnanensis, including three new compounds, 1,5-dihydroxy-3-
hydroxyethyl-6-methoxycarbonylxanthone (1), 1-hydroxy-5-methoxy-3-hydroxyethyl-6-
methoxycarbonylxanthone (2), 1-hydroxy-3-hydroxyethyl-8-ethoxy-carbonyl-xanthone (3),
and seven known ones, pinselin (4), 1-hydroxy-8-(hydroxymethyl)-3-methoxy-6-
methylxanthone (5), secosterigmatocystin (17), 1,7-dihydroxy-2-methoxy-3-(3-methylbut-2-
enyl)xanthone (22), 1-hydroxy-4,7-dimethoxy-6-(3-oxobutyl)xanthone (23), asperxanthone
(24) and 6-O-methyl-2-deprenylrheediaxanthone B (25). The cytotoxicities of all compounds
to five human tumor cells (NB4, A549, SHSY5Y, PC3, and MCF7) were evaluated by using
paclitaxel as positive control. The results showed that compounds 1 and 3 displayed
cytotoxic activities and provided the IC50 values of 3.6 and 2.5 µM against A549 cells,
and 1 gave an IC50 value of 2.7 µM against MCF7 cells. Compounds 22–23 showed weak
activities and offered IC50 values greater than 10 µM for five tested cells. The others
gave IC50 values between 3.8–10 µM against tested cells [23]. A new compound, 2,6-
dihydroxy-3-methyl-9-oxoxanthene-8-carboxylic acid methyl ester (6), was isolated from
Phomopsis sp. (No. SK7RN3G1) of mangrove sediment in the Shankou, Hainan, China. It
showed cytotoxicity towards HEp-2 (IC50 = 8 µg/mL) and HepG2 (IC50 = 9 µg/mL) cancer
cells [24]. Three secondary metabolites were characterized from fermentation products
of P. amygdali, isolated from Paris axialis: 4,5-dihydroxy-3-(2-hydroxyethyl)-1-methoxy-8-
methoxycarbonylxanthone (7), 1,8-dihydroxy-4-(2-hydroxyethyl)-3-methoxyxanthone (8),
and paucinervin E (13). Compound 7 was active against A549 (IC50 = 2.6 µM) and PC3
(IC50 = 2.4 µM) cell lines. Compounds 8 and 13 displayed moderate activities with IC50
values in the range of 5.2–9.2 µM against one or more cell lines of NB4, A549, SHSY5Y,
PC3 and MCF7 [25]. Hydroxyvertixanthone (9) was obtained from the endophytic fungus
Phomopsis sp. YM 355364, originated from Chinese medicinal plant Aconitum carmichaelii.
It showed antimicrobial activity with minimal inhibitory concentration (MIC) values of
256, 256, 128, and 64 µg/mL against Escherichia coli, Bacillus subtilis, Pyricularia oryzae, and
Candida albicans, respectively [26]. The fermentation of fungus Phomopsis sp. derived from
Paris daliensis, led to the isolation of six xanthones and identified as dalienxanthones A-C
(10–12), 3,8-dihydroxy-4-(2,3-dihydroxy-1-hydroxymethylpropyl)-1-methoxyxanthone (18),
oliganthins E (19), and cratoxylumxanthone D (26). These compounds were evaluated for
cytotoxicities of five cancer cell lines (NB4, A549, SHSY5Y, PC3 and MCF-7). Compounds
12 and 18 were active to SHSY5Y with IC50 values of 3.8 and 3.5 µM, respectively, and the
remaining compounds provided IC50 values in the range of 4.6–9.2 µM [27]. An investi-
gation of extracts from fungus P. amygdali derived from the rhizome of Paris polyphylla
var. yunnanensis afforded a new xanthone, 1,3-dihydroxy-4-(1,3,4-trihydroxybutan-2-yl)-8-
methoxy-9H-xanthen-9-one (14). The bioactive results showed that 14 exhibited significant
cytotoxic activity against A549 (IC50 = 5.8 µM) and PC3 (IC50 = 3.6 µM) [28].

An endophytic fungus P. amygdali associated with the rhizome of Paris axialis was cul-
tured to obtain five xanthones: 3-methoxy-1,4,8-trihydroxy-5-(1′,3′,4′-trihydroxybutan-2′-
yl)-xanthone (15), 8-methoxy-1,3,4-trihydroxy-5-(1′,3′,4′-trihydroxybutan-2′-yl)-xanthone
(16), secosterigmatocystin (17), dihydrosterigmatocystin (20), and vieillardixanthone (21).
The cytotoxic assay for NB4, A549, SHSY5Y, PC3 and MCF7 cancer cells were evaluated.
The IC50 values of compound 15 against A549 and 16 against SHSY5Y were 3.6 and 4.2 µM,
respectively. Compounds 17 and 20–21 displayed moderate activities with IC50 values
in the range of 5.4–8.8 µM [29]. Studies of an endophytic fungus Phomopsis sp. (ZH76)
from the stems of the mangrove tree Excoecaria agallocha contained a new O-glycoside
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compound, 3-O-(6-O-α-L-arabinopyranosyl)-β-D-glucopyranosyl-1,4-dimethoxyxanthone
(27). The IC50 values of cytotoxicity for compound 27 on HEp-2 and HepG2 cells were 9
and 16 µmol/mL, respectively [30]. Phomoxanthone A (28), a dimeric tetrahydroxanthone,
was extracted from P. longicolla of the mangrove tree Sonneratia caseolaris. Compound 28
had the strongest pro-apoptotic activity on human cancer cell lines and cisplatin-resistant
cells, and its activity on healthy blood cells was reduced by more than 100 times. It was
the most effective activator of mouse T lymphocytes, NK cells, and macrophages [31]. The
study on secondary metabolites from fungus Phomopsis sp. IM 41-1 of mangrove plant
Rhizhopora mucronata afforded phomoxanthone A (28) and 12-O-deacetyl-phomoxanthone
A (29). When the concentration was 30 µg/ disk, compounds 28 and 29 showed moderate
antimicrobial activities against Botrytis cinerea, Sclerotinia sclerotiorum, Diaporthe medusaea,
and Staphylococcus aureus, but were inactive against Pseudomonas aeruginosa [32]. Four
bioactive metabolites, dicerandrols A-C (30–32) and deacetylphomoxanthone B (33), were
derived from P. longicolla S1B4. All compounds exhibited strong antibacterial activities
against Xanthomonas oryzae KACC 10331. Dicerandrol A (30) also displayed notable an-
timicrobial activity against S. aureus, B. subtilis, and C. albicans with MIC values of 0.25,
0.125 and 2 µg/mL [34]. Phomopsis sp. HNY29-2B, isolated from mangrove plant Acan-
thus ilicifolius, produced four xanthone derivatives, 30–31, 33 and penexanthone A (34).
Compounds 30–31 and 33–34 displayed cyctotoxicities and provided IC50 values of 1.76–
42.82 µM against MDA-MB-435, HCT-116, Calu-3, Huh7, and MCF-10A human cancer cell
lines [35]. The structures of xanthones (1–34) are shown in Figure 1.

2.1.2. Chromones

Chromones are a class of bioactive compounds with a benzo-γ-pyrone skeleton, which
have been reported to have various activities, such as anti-tumor, anti-viral, antimicrobial,
anti-inflammatory, and antioxidant [106]. Phomopsis sp. 33#, a mangrove endophytic fun-
gus isolated from the bark of Rhizophora stylosa, produced four new chromone derivatives,
(+)-phomopsichin A (35), (−)-phomopsichin B (36), phomopsichins C (37) and D (38), along
with a known phomoxanthone A (28). These metabolites displayed low effects on inhibi-
tions of acetylcholinesterase and α-glucosidase, radical scavenging function on DPPH and
OH, and antimicrobial activities [33]. A cytotoxic chromone, chaetocyclinone B (39), was
characterized from a culture of Phomopsis sp. HNY29-2B, an endophytic fungus obtained
from the mangrove plant A. ilicifolius Linn. Compound 39 had cytotoxic activity against
PC-3 (IC50 = 8.13 µmol/L) and DU145 (IC50 = 3.59 µmol/L) [36]. The fungus Phomopsis sp.
IFB-ZS1-S4 isolated from Scaevola hainanensis Hance extracted a known pestalotiopsone
F (40), which showed moderate inhibition on neuraminidase in vitro with IC50 value of
9.90 ± 0.42 µM [37]. Cultivation of Phomopsis sp. xy21 derived from the mangrove Xylo-
carpus granatum afforded a new xanthone-derived polyketide, phomoxanthone F (41). It
showed inhibitory effects on VSV-G pseudotyped viral supernatant (HIV-1) with the in-
hibitory rate of 16.48± 6.67% at a concentration of 20 µM, which was higher than that of the
positive control, efavirenz with a rate of 88.54 ± 0.45% [38]. 5-Hydroxy-3-hydroxymethyl-
2-methyl-7-methoxychromone (42) was separated from the extracts of Phomopsis sp. (No.
Gx-4) derived from mangrove sediment in ZhuHai, Guangdong, China. It showed low
cytotoxic activity with IC50 values greater than 50 µmol/mL towards Hep-2 and HepG2.
Moreover, it also significantly inhibited the growth of subintestinal vessel plexus (SIV)
branches [39]. According to the bioassay-guided fractionation, two new chromones, pho-
mochromones A (43) and B (44) were obtained from an endophytic fungus Phomopsis sp.
of Cistus monspeliensis. They displayed remarkable antifungal, antibacterial, and antialgal
activities against Microbotryum violaceum, E. coli, Bacillus megaterium, and Chlorella fusca [40].
Chemical investigation of Phomopsis sp. CGMCC No. 5416 isolated from Achyranthes
bidentata led to the identification of two novel chromanones, phomochromanones A (45)
and B (46). They showed anti-HIV activities with IC50 values of 20.4 and 32.5 µg/mL,
and exhibited moderate cytotoxic activities towards A549, MDA-MB-231, and PANC-1
with CC50 values between 62.5–79.3 µg/mL [41]. A new naphtho-γ-pyrone compound, 5-
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hydroxy-6,8-dimethoxy-2-benzyl-4H-naphtho[2,3-b]-pyran-4-one (47), was obtained from
Phomopsis sp. ZSU-H26 of the mangrove tree E. agallocha. This compound showed cytotoxic
activity against HEp-2 (IC50 = 10 µg/mL) and HepG2 (IC50 = 8 µg/mL) [42]. The following
work on the similar strain Phomopsis sp. (#ZSU-H76) from the same host additionally
obtained phomopsis-H76 A (48), which significantly promoted the growth of the branches
of SIV [43]. The structures of chromones (35–48) are shown in Figure 2.
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2.1.3. Chromanones

Chromanones have been widely studied due to their structural characteristics. They al-
ways have important biological and pharmacological activities, including cytotoxic, antimi-
crobial, antiviral, antioxidant, etc [107]. The culture of a marine fungus Phomopsis sp. (No.
ZH-111) from mangrove sediment of Zhuhai, Guangdong, China, obtained a new isochro-
man, (3R,4S)-3,4-dihydro-4,5,8-trihydroxy-3-methylisocoumarin (49). It could promote the
growth of SIV branches and exhibited low cytotoxic activity against Hep-2 and HepG2 cells
with IC50 values above 50 mg/mL [44]. Three compounds were separated from Phomopsis
sp. (No. Gx-4), including (3R,4S)-3,4-dihydro-8-hydroxy-4-methoxy-3-methylisocoumarin
(50), 3,4-dihydro-8-hydroxy-3-methyl-1H-2-benzopyran-1-one-5-carboxylic acid (51), and
5,8-dihydroxy-4-methylcoumarin (52). All isolated compounds showed weak cytotoxic
activities against Hep-2 and HepG2 cells with IC50 values above 50 µmol/mL. In addi-
tion, compounds 50 and 51 significantly promoted the growth of SIV branches, while 52
inhibited their growth [39]. The endophytic fungus Phomopsis sp. sh917 found in stems
of Isodon eriocalyx var. laxiflora obtained (10S)-diaporthin (53), showing antiangiogenic
activity that inhibited the angiogenesis process induced by vascular endothelial growth
factor (VEGF) [45]. From agar-supported fermentation culture of Phomopsis sp. CMU-LMA
derived from Alpinia malacensis, a trihydroxybenzene lactone, cytosporone D (54) was
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isolated. It showed antimicrobial activity and inhibited E. coli DnaG primase with an IC50
value of 0.25 mM [46]. Alternariol (55) and 5′-hydroxyalternariol (57) were isolated from
the endophytic fungus Phomopsis sp. A240 of Taxus chinensis var. mairei. Compound 55
showed low cytotoxicity against SF-268 (IC50 = 88.1 µM), MCF-7 (IC50 = 94.36 µM), and
NCI-H460 (IC50 = 81.35 µM). Moreover, compound 57 had antioxidant activity with IC50
values of 42.83 µM [47]. Three compounds were sourced from Endodesmia calophylloides
associated with Phomopsis sp. CAFT69, including alternariol (55), alternariol-5-O-methyl
ether (56) and 5′-hydroxyalternariol (57). In the range of 1–10 µg/mL, compounds 55–57
had certain motility inhibition and lytic activities on the zoospores of grapevine downy
mildew pathogen P. viticola in dose- and time-dependent manner [48]. Phomochromanone
C (58) was extracted from Phomopsis sp. CGMCC No. 5416. The bioactivity assay revealed
that compound 58 showed cytotoxicity towards A549, MDA-MB-231, and PANC-1 with
CC50 values of 69.4, 53.5, and 36.5 µg/mL, and it induced early apoptosis of PANC-1 cancer
cells with the rate of 10.52% [41]. The structures of chromanones (49–58) are shown in
Figure 2.

2.1.4. Benzofuranones

Benzofuranones are an important intermediate of pharmacophores and drug molecules
in natural products. Due to the furan ring being unstable and easy to open and crack, benzo-
furanones as a pharmaceutical intermediate have been widely concerned by pharmaceutical
chemists [108]. The endophytic fungus Phomopsis sp. A123 isolated from mangrove plant
Kandelia candel (L.) Druce, produced a novel depsidone, phomopsidone A (66), a known
excelsione (67), and four known isobenzofuranones (59–62). All compounds showed differ-
ent degrees of cytotoxicities against Raji and MDA-MB-435 tumor cells with IC50 values
above 18 µM, displayed low antioxidant activities through DPPH radical scavenging effects,
and exhibited antifungal activities [50]. The research on bioactive metabolites of marine
fungus Phomopsis sp. (No. ZH-111) led to the isolation of 4-(hydroxymethyl)-7- methoxy-6-
methyl-1(3H)-isobenzofuranone (63). Compound 63 inhibited the growth of SIV branches
and exhibited low cytotoxic activity with IC50 values above 50 mg/mL against Hep-2 and
HepG2 cells [44]. Chemical investigations of secondary metabolites from Phomopsis sp. BCC
45011 of X. granatum resulted in the identification of two known metabolites, cytosporones
E (64) and P (65). Compounds 64 and 65 showed antimalarial activities against Plasmodium
falciparum K1 with IC50 values of 2.02 and 3.65 µg/mL, and 64 exhibited cytotoxicity against
MCF-7, NCI-H187, and Vero cells with IC50 values at 29.66, 5.84, and 4.53 µg/mL, respec-
tively [51]. Cultivation of Phomopsis sp. CAFT69 afforded excelsional (68). In the range
of 1–10 µg/mL, compound 68 had certain motility inhibition and lytic activities on the
zoospores of grapevine downy mildew pathogen P. viticola in dose- and time-dependent
manner [48]. Lithocarols A-F (69–74), with highly-oxygenated isobenzofuran skeleton,
and isoprenylisobenzofuran A (75), were derived from P. lithocarpus FS508 isolated from
a deep-sea sediment collected from the Indian Ocean. These metabolites were cytotoxic
and provided IC50 values between 10.5–87.7 µM against HepG-2, MCF-7, SF-268, and
A549 cells [52]. The endophytic fungus Phomopsis sp., separated from Paris polyphylla var.
yunnanensis, gave three new arylbenzofurans (76–78) and four known compounds, moracin
N (79), 2-(2′-methoxy-4′-hydroxy)-aryl-3-methy-6-hydroxybenzofuran (80), iteafuranal B
(81), and moracin P (82). Compounds 76–82 showed inhibitory effects on tobacco mosaic
virus (TMV) with inhibition rates of 18.6–35.2% [53]. The structures of benzofuranones
(59–82) are shown in Figure 3.

2.1.5. Pyrones

Pyrones are a kind of polyketides with six membered oxygen-containing hetero-
cycles. As the precursor of many plants, animals, and microorganisms’ biosynthetic
reactions, as well as its outstanding anti-tumor and antibacterial activities, researchers
have shown strong interest [109]. Eight compounds were identified from the strain P.
asparagi SWUKJ5.2020 isolated from medicinal plant Kadsura angustifolia, including five
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new 2-pyrone compounds, phomaspyrones A-E (83 and 85–88), along with three known
metabolites, macommelin-8,9-diol (84), macommelin-9-ol (89), and macommelin (90). All
isolated metabolites showed significant cytotoxic activities against six tested tumor cells
(A549, Raji, HepG2, MCF-7, HL-60 and K562) with IC50 values of 1.0–26.8 µg/mL. How-
ever, phomaspyrone C (86) display better activity than the other compounds with IC50
values of 1.0–2.2 µg/mL against all tested cells [54]. The endophytic fungus Phomopsis sp.
isolated from the plant Cistus salvifolius, yielded four new pyrenocines, pyrenocines J-M
(91–94). They exhibited antibacterial and algicidal activities against E. coli, B. megaterium,
and C. fusca. The antifungal assay showed that 92 and 94 were active against M. violaceum,
and compounds 91–92, and 94 were active against Septoria tritici [55]. An unusual pyrone
metabolite, phomopsis-H76 C (95), was isolated from Phomopsis sp. (#zsu-H76), which
inhibited the growth of SIV branch [43]. The structures of pyrones (83–95) are shown in
Figure 3.
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2.1.6. Quinones

Quinones are natural bioactive molecules with unsaturated cyclic diketones, such as
cytotoxic, antimicrobial, antiviral and anti-inflammatory activities. In recent years, the
development of new anti-tumor quinones and their derivatives as lead compounds has
become a hot topic [110,111]. Studies of the endophytic fungus Phomopsis sp. HCCB04730
associated with stems of Radix Stephaniae Japonicae obtained six known naphthoquinones 96–
101. These metabolites showed cytotoxic activities against A549, MDA-MB-231 and PANC-1
cancer cells with IC50 values of 1.1–120.5 µg/mL, and anti-HIV activities with IC50 values
between 1.6–26.8 µg/mL [56]. Altersolanol B (102) was separated from P. longicolla HL-2232
of leaves of Bruguiera sexangula var. rhynchopetala collected from the South China Sea. Com-
pound 102 showed antibacterial activity against Vibrio parahaemolyticus (MIC = 2.5 µg/mL)
and Vibrio anguillarum (MIC = 5 µg/mL) [57]. A cytotoxic anthraquinone described as
altersolanol A (103), was extracted from Phomopsis sp. (PM0409092) isolated from Nyctan-
thes arbor-tristis. Compound 103 had cytotoxic activity to 34 human cancer cells in vitro
and gave the mean IC50 (IC70) value of 0.005 µg/mL (0.024 µg/mL) [58]. A new tetrahy-
droanthraquinone, named (2R,3S)-7-ethyl-1,2,3,4-tetrahydro-2,3,8-trihydroxy-6-methoxy-
3-methyl-9,10-anthracenedione (104), was separated from Phomopsis sp. PSU-MA214 asso-
ciated with mangrove plant Rhizophora apiculata. Compound 104 was found to have low
cytotoxic activity against MCF-7 and antibacterial activity against S. aureus ATCC25923
and methicillin-resistant Staphylococcus aureus SK1 [60]. The extraction of fungus P. foeniculi
associated with Foeniculum vulgare in Bulgaria, resulted in the isolation of two octaketides
anthracenones, altersolanols A (103) and J (105). They exhibited phytotoxic activities by leaf
puncture bioassay [59]. Four known compounds were isolated from Phomopsis sp. derived
from Notobasis syriaca, including 2-hydroxymethyl-4β,5α,6β-trihydroxycyclohex-2-en (106),
(−)-phyllostine (107), (+)-epiepoxydon (108), and (+)-epoxydon monoacetate (109). All
metabolites exhibited antifungal (M. violaceum), antibacterial (E. coli, B. megaterium), and
algicidal activities (C. fusca), but 106 and 108 were inactive against M. violaceum [61]. A
novel dihydronaphthalenone, phomonaphthalenone A (110), was derived from Phomopsis
sp. HCCB04730. In terms of bioactive evaluation, compound 110 showed weak cytotoxic
activity and moderate inhibitory activity on HIV with IC50 value of 11.6 µg/mL [56]. Am-
pelanol (111) was extracted from Phomopsis sp. HNY29-2B isolated from mangrove plant
A. ilicifolius. Compound 111 showed antibacterial activity towards B. subtilis and S. aureus
with MIC of 25 and 50 µM [62]. The structures of quinones (96–111) are shown in Figure 4.

2.1.7. Phenols

Phenols are a kind of secondary metabolites which are widely distributed and have
important physiological functions. They normally have antioxidant activity and play an
important role in food industry [112]. Phomosine K (112) isolated from a Phomopsis strain
showed remarkable antibacterial activity against Legionella pneumophila Corby and E. coli
K12 [61]. Five known metabolites, phomosines A-D (113–116) and phomosine I (117) were
isolated from a Phomopsis strain derived from Ligustrum vulgare. They had antibacterial
and antifungal activities against B. megaterium and M. violaceum, except 116 was not active
against B. megaterium. Moreover, compounds 113 and 116 inhibited the growth of algae [63].
Two new diphenyl ethers (118–119) were obtained from the culture of P. asparagi isolated
from the rhizome of Paris polyphylla var. yunnanensis, collected in Kunming, Yunnan, China.
These compounds displayed anti-methicillin-resistant S. aureus (anti-MRSA) activities with
inhibition zone diameters (IZD) 10.8 ± 2.0 and 11.4 ± 1.8 mm, respectively [64]. Three
new diphenyl ethers, 4-(3-methoxy-5-methylphenoxy)-2-(2-hydroxyethyl)-6-methylphenol
(120), 4-(3-hydroxy-5-methylphenoxy)-2-(2-hydroxyethyl)-6-methylphenol (121), and 4-(3-
methoxy-5-methylphenoxy)-2-(3-hydroxypropyl)-6-methylphenol (122), were extracted
from P. fukushii of Paris polyphylla var. yunnanensis. Compounds 120–122 showed anti-
MRSA activities and provided an IZD of 20.2± 2.5 mm, 17.9± 2.2 mm, and 15.2 ± 1.8 mm,
respectively [65]. An endophytic fungus P. fukushii, separated from the rhizome of Paris
polyphylla var. yunnanensis, gave three new isopentylated diphenyl ethers (123–125). Com-



Microorganisms 2021, 9, 217 19 of 49

pounds (123–125) had notable anti-MRSA activities, and their IZD were 21.8± 2.4 mm, 16.8
± 2.2 mm, and 15.6 ± 2.0 mm, respectively [66]. Two new diphenyl ethers (126–127) were
obtained from the fermentation products of P. fukushii isolated from Paris polyphylla var.
yunnanensis. The results of the anti-MRSA activities assay revealed that compounds 126 and
127 gave IZD of 13.8 ± 1.5 mm and 14.6 ± 1.6 mm, respectively [67]. Three new napthalene
derivatives (128–130) were separated from P. fukushii, an endophytic fungus isolated from
Paris polyphylla var. yunnanensis. Compounds 128–130 showed anti-MRSA activities with
MCI values of 4, 4 and 6 mg/mL [68]. From fermentation products of the fungus Phomopsis
sp. associated with Paris polyphylla var. yunnanensis, two new naphthalene derivatives
(131–132) were obtained. Compounds 131–132 displayed anti-MRSA activities with IZD
of 14.5 ± 1.2 and 15.2 ± 1.3 mm [69]. A culture of the marine fungus P. lithocarpus FS508
isolated from deep-sea sediment collected from Indian Ocean, obtained a new benzophe-
none, tenellone H (133). It showed cytotoxicity against HepG-2 (IC50 = 16 µM) and A549
(IC50 = 17.6 µM) [70].
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The new metabolite, 16-acetoxycytosporone B (134), was sourced from Phomopsis
sp. YM 355364 associated with Aconitum carmichaeli. In the bioassay, compound 134
had remarkable antifungal activity towards C. albicans, Hormodendrum compactum, and
Trichophyton gypseum with MIC values of 32, 128, and 512 µg/mL [71]. Cultivation of
Phomopsis sp. 0391 isolated from the stems of Paris polyphylla var. yunnanensis afforded
cytosporone B (135) and dothiorelone A (136). These two compounds showed notable lipase
inhibition and gave IC50 values of 115 and 275 µg/mL with Orlistat (IC50 = 43 µg/mL) as
positive control [72]. Cytosporone B (135) was extracted from the cultivation of Phomopsis sp.
PSU-H188, an endophytic fungus from Hevea brasiliensis. 135 showed protective effect on
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INS-1 832/13 pancreatic β-cells (EC50 = 11.08 µM) [73]. Two diastereomeric antineoplastic
tenellone derivatives identified as lithocarpinols A (137) and B (138), were isolated from
P. lithocarpus FS508, a deep-sea derived fungus derived from a sediment collected in the
Indian Ocean. During the cytotoxic assay, compounds 137–138 showed inhibitory effects
against HepG-2, MCF-7, SF-268, and A549 cancer cells with IC50 values ranging from 9.4
to 35.9 µmol/L [74]. Phomoindene A (139), a new indene derivative, was produced by
Phomopsis sp. (No. GX7-4A) from the mangrove sediment of BeiHai, GuangXi, China.
Compound 139 showed weak cytotoxicity againt KB, KBv 200, and MCF-7 cancer cells
with IC50 values greater than 50 µmoL/mL [75]. Then, 4-Hydroxybenzaldehyde (140)
was extracted from a strain of Phomopsis sp. YM 355364. The antimicrobial activities of
140 provided MIC values at 256 and 128 µg/mL against B. subtilis and P. oryzae [26]. An
investigation of the extracts from P. longicolla HL-2232, afforded a new biphenyl derivative,
5,5′-dimethoxybiphenyl-2,2′-diol (141). Compound 141 displayed antibacterial activity
against V. parahaemolyticus with MIC value of 10 µg/mL [57]. A known phenylethyl alcohol,
phomonitroester (142), was derived from Phomopsis sp. PSU-MA214, exhibiting cytotoxicity
with IC50 value of 43 µg/mL against KB [60]. Cytosporone U (143) was isolated from the
fermentation products of Phomopsis sp. FJBR-11. This compound displayed inhibitory
effect on TMV with IC50 value of 144.6 µg/mL [76]. Altenusin (144) was extracted from
Phomopsis sp. CAFT69, possessing a certain motility inhibitory and lytic activity against
the zoospores of grapevine downy mildew pathogen P. viticola between 1–10 µg/mL [48].
Cosmochlorins D (145) and E (146) produced by the endophytic fungus Phomopsis sp. N-125
of Ficus ampelas, showed significant cytotoxic activities against HL60 cells with IC50 values
of 6.1 and 1.8 µM, and displayed growth-inhibition activities [77]. The structures of phenols
(112–146) are shown in Figure 5.

2.1.8. Oblongolides

Oblongolides are a kind of natural active products with novel norsesquiterpene
γ-lactone. At present, oblongolides are relatively less reported than other kinds of polyke-
tides. Most of them exist in the fungi of Phomopsis, and mainly have cytotoxic activi-
ties [113]. Three new oblongolides, oblongolides Z (147) and Y (148) and 2-deoxy-4α-
hydroxyoblongolide X (154), were extracted from Phomopsis sp. BCC 9789 isolated from
a wild banana (Musa acuminata) leaf. Compound 147 was found to have inhibitory ef-
fect on anti-herpes simplex virus type 1 (HSV-1) with IC50 value of 14 µM and showed
cytotoxicities with IC50 values at 26–60 µM towards KB, BC, NCI-H187, and Vero cancer
cells. Compound 148 was cytotoxic against BC (IC50 = 48 µM) and 154 showed anti-HSV-1
activity with IC50 value of 76 µM [78]. Five metabolites, oblongolides C1 (149), P1 (150),
X1 (151), and C (153), along with 6-hydroxyphomodiol (152), were separated from the
strain Phomopsis sp. XZ-01, an endophytic fungus of Camptotheca acuminate. Compounds
149–153 displayed different degrees of selective inhibition in cytotoxicities against HepG2
and A549 [79]. The structures of oblongolides (147–154) are shown in Figure 5.

2.1.9. Unclassified Polyketides

Five compounds were obtained from Phomopsis sp. BCC 45011, including phomoxy-
diene C (155), 1893 A (156), mycoepoxydiene (157), deacetylmycoepoxydiene (158), and
phomoxydiene A (159). All metabolites, except 156, showed strong antimalarial activities
against P. falciparum K1 with IC50 values at 2.41–3.52 µg/mL and cytotoxicities against
KB, MCF-7, NCI-H187, and Vero with IC50 values between 1.49–45.5 µg/mL [51]. Seven
new polyoxygenated cyclohexenoids, phomopoxides A-G (160–166) were obtained from
the fermentation products of Phomopsis sp. YE3250 isolated from Paeonia delavayi. All
compounds exhibited α-glycosidase inhibition with IC50 values from 1.47 to 3.16 mM,
cytotoxic activities against Hela, MCF-7, and NCI-H460 cancer cell lines, and moderate
antifungal activities against C. albicans, Aspergillus niger, P. oryzae, Fusarium avenaceum,
and H. compactum [80]. A new geranylcyclohexenetriol, named phomentrioloxin (167),
was obtained from Phomopsis sp. of the plant Carthamus lanatus. This compound showed
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phytotoxic activity and might be considered a potential mycoherbicide [81]. A new natural
cyclopentenone, phomotenone (168) was produced by Phomopsis sp. Compound 168 dis-
played remarkable antifungal, antibacterial, and antialgal activities against M. violaceum, E.
coli, B. megaterium, and C. fusca [40]. The cytotoxicity-guided investigation of the fungus
Phomopsis sp. DC275 of Vitis vinifera yielded two new furanones, phomopsolidones A (170)
and B (171), and a known phomopsolide B (169). All these metabolites showed weak phy-
totoxic and antibacterial activities [82]. The structures of unclassified polyketides (155–171)
are shown in Figure 6.
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2.2. Terpenoids

Terpenoids are a kind of natural bioactive substances with isoprene as scaffold, which
are widely distributed and rich in species [114,115]. Herein, a total of 38 terpenoids, includ-
ing three monoterpenoids, 25 sesquiterpenoids, seven diterpenoids, and three triterpenoids,
were isolated from various Phomopsis strains, accounting for 15% of all the described
metabolites, second only to polyketides. It is worth noting that some terpenoids showed
interesting bioactivities, such as enzyme inhibitory and anti-inflammatory activities.

2.2.1. Monoterpenoids

Monoterpenoids and their derivatives have a variety of biological activities, such as
cytotoxic, antimicrobial, and anti-inflammatory, which have potential application value
in clinical medicine [116]. Acropyrone (172) was extracted from culture of Phomopsis sp.
HNY29-2B. Compound 172 showed antibacterial activity towards B. subtilis (MIC = 25 µM)
and P. aeruginosa (MIC = 50 µM) [62]. A phytotoxic pentaketide monoterpenoid, nectri-
apyrone (173), was produced by the fungus P. foeniculi [59]. According to bioassay-guided
procedure, a known compound, (1S,2S,4S)-trihydroxy-p-menthane (174) was obtained from
Phomopsis sp., displaying antialgal activity against C. fusca and antibacterial activity against
E. coli and B. megaterium [40]. The structures of monoterpenoids (172–174) are shown in
Figure 7.
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2.2.2. Sesquiterpenoids

Sesquiterpenoids are the most abundant members of natural terpenoids because of
their various structures and notable bioactivities. The chemical components of sesquiter-
penoids had been found in plants, animals, microorganisms and marine organisms [117,118].
A series of sesquiterpenoids (175–184 and 195) were isolated from a strain of Phomopsis
sp. TJ507A obtained from Phyllanthus glaucus. All compounds exhibited the inhibitory
rates in the range of 19.4% to 43.8% against β-site amyloid precursor protein cleaving
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enzyme 1 (BACE1) at the concentration of 40 µM [83]. From the endophytic fungus P. cassia
associated with Cassia spectabilis, two new diastereoisomeric cadinanes sesquiterpenes
(185–186), (7S,10R)-3-hidroxicalamen-8-one (187), and aristelegone-A (188) were isolated.
Compounds 185–188 showed antifungal activities towards Cladosporium cladosporioides
and Cladosporium sphaerospermum, and acetylcholinesterase inhibitory activities [84]. Four
metabolites were separated from P. archeri of Vanilla albidia, including three new sesquiter-
penes, phomoarcherins A-C (189–191), and a known kampanol A (192). The cytotoxic
activites of 189–192 provided IC50 values from 0.1 to 19.6 µg/mL against five cholangiocar-
cinoma cells (KKU-100, KKU-M139, KKU-M156, KKU-M213, and KKU-M214), and 189–190
showed little activities against the KB with IC50 values at 42.1 and 9.4 µg/mL. Compound
190 displayed antimalarial activity against P. falciparum (IC50 = 0.79 µg/mL) [85]. A new
sesquiterpene, (+)-S-1-methyl-abscisic-6-acid (193), and a known (+)-S-abscisic acid (194),
were extracted from P. amygdali of Call midge. Compounds 193–194 showed antibacterial
activities against P. aeruginosa 2033E with MIC at 30 and 58 µg/mL [86]. Curcumol (196),
isolated from P. castaneae-mollissimae GQH87 derived from medicinal plant Artemisia annua,
showed cytotoxicity against MCF-7, HepG2, and A549 with IC50 values of 25.73, 65.18, and
178.32 µg/mL, respectively [87]. The cultivation of fungus Phomopsis sp. CAFT69, afforded
two bioactive compounds, 9-hydroxyphomopsidin (197) and phomopsidin (198). Both of
them showed motility inhibition and lytic activities on the zoospores of grapevine downy
mildew pathogen P. viticola [48]. AA03390 (199) was isolated from a strain of P. lithocarpus
FS508. The compound had low cytotoxicity with IC50 values of 25.5–29.6 µM against
HepG-2, MCF-7, SF-268, and A549 [70]. The structures of sesquiterpenoids (175–199) are
shown in Figure 7.

2.2.3. Diterpenoids

Diterpenoids are a kind of terpenoids with various skeletons. They possess significant
pharmacological activities, such as cytotoxic, antimicrobial, and anti-inflammatory activ-
ities [119]. A new diterpenes, libertellenone J (200), was derived from fungus Phomopsis
sp. S12 isolated from Illigera rhodantha. This compound showed anti-inflammatory activity
by reducing the production of NO, IL-1β, IL-6 and TNF-α, and inhibiting MAPKs and
NF-κB pathways [88]. Four metabolites were extracted from Phomopsis sp. S12, including
three new pimaranes, libertellenone T (202), pedinophyllols K (203) and L (204), together
with a known compound, libertellenone C (201). Compounds 201–204 showed different
degrees of anti-inflammatory activities against inhibiting the production of inflammatory
factors (IL-1β, IL-6) by lipopolysaccharide in macrophages [89]. Secondary metabolites
from fungus P. amygdali contained two known compounds, fusicoccin J (205) and 3α-
hydroxyfusicoccin J (206). Biologically, compounds 205–206 showed antibacterial activities
against P. aeruginosa 2033E with MICs at 26 µg/mL [86]. The structures of diterpenoids
(200–206) are shown in Figure 8.

2.2.4. Triterpenoids

Triterpenoids are a kind of organic compounds widely found in nature. They have
attracted the attention of researchers because their structural diversity and rich bioactiv-
ities [120]. A new euphane triterpenoid, 3S,22R,26-trihydroxy-8,24E-euphadien-11-one
(207), was isolated from P. chimonanthi obtained from medicinal plant Tamarix chinensis
in the yellow river delta, Dongying. Compound 207 exhibited cytotoxicity against A549,
MDA-MB-231, and PANC-1 cancer cells with IC50 values of 20.32, 19.87 and 30.45 µM,
respectively [90]. The fungus Phomopsis sp. SNB-LAP1-7-32, occurring from plant Diospyros
carbonaria, produced a first lupane-type triterpenoid, betulinic acid (208). Compound 208
displayed antiviral activity on inhibiting RNA-dependant RNA polymerase with IC50 val-
ues of 4.3 µM and cytotoxicity against HCT-116 and MRC-5 [91]. Oleanolic acid (209) was
extracted from P. castaneae-mollissimae GQH87, which showed cytotoxicity against MCF-7,
HepG2, and A549 with IC50 values of 16.61, 39.53, and 40.08 µg/mL, respectively [87]. The
structures of triterpenoids (207–209) are shown in Figure 8.



Microorganisms 2021, 9, 217 25 of 49
Microorganisms 2021, 9, x FOR PEER REVIEW 24 of 49 
 

 

 

Figure 8. Chemical structures of compounds 200–209 from Phomopsis. 

2.3. Steroids 

Steroids are secondary metabolites with a variety of chemical structures and biolog-

ical activities. At present, many researchers try to find steroidal metabolites as potential 

lead compounds in drug design [121]. Till now, only nine steroids were isolated from Pho-

mopsis and showed antifungal, anti-inflammatory, and antiviral activities. Five steroids 

were derived from culture of Phomopsis sp., an endophytic fungus separated from A. car-

michaeli, including (14β,22E)-9,14-dihydroxyergosta-4,7,22-triene-3,6-dione (210), 

(5α,6β,15β,22E)-6-ethoxy-5,15-dihydroxyergosta-7,22-dien-3 one (211), calvasterols A 

(212) and B (213), and ganodermaside D (214). All isolated compounds displayed different 

degrees of selective antifungal activities against C. albicans, A. niger, P. oryzae, F. avenaceum, 

H. compactum, and T. gypseum with MIC values between 64–512 μg/mL [92]. Dankasterone 

A (215) and 3β,5α,9α-trihydroxy-(22E,24R)-ergosta- 7,22-dien-6-one (216) were isolated 

from Phomopsis sp. YM 355364. Compound 215 showed anti-influenza activity against 

H5N1pseudovirus (IC50 = 3.56 μM). Compounds 215–216 showed antifungal activities 

against C. albicans, P. oryzae, H. compactum, and T. gypseum with MIC values of 64–512 

μg/mL [71]. A new functionalized ergostane-type steroid, named phomopsterone B (217), 

was obtained from Phomopsis sp. TJ507A isolated from medicinal plant P. glaucus. Com-

pound 217 showed anti-inflammatory activity by inhibiting iNOS enzyme with an IC50 

value of 1.49 μM [93]. Cyathisterol (218) was extracted from Phomopsis sp. YM 355364, 

displaying moderate antifungal activity toward P. oryzae (MIC = 128 μg/mL) [26]. The 

structures of steroids (210–218) are shown in Figure 9. 

Figure 8. Chemical structures of compounds 200–209 from Phomopsis.

2.3. Steroids

Steroids are secondary metabolites with a variety of chemical structures and biological
activities. At present, many researchers try to find steroidal metabolites as potential lead
compounds in drug design [121]. Till now, only nine steroids were isolated from Phomopsis
and showed antifungal, anti-inflammatory, and antiviral activities. Five steroids were
derived from culture of Phomopsis sp., an endophytic fungus separated from A. carmichaeli,
including (14β,22E)-9,14-dihydroxyergosta-4,7,22-triene-3,6-dione (210), (5α,6β,15β,22E)-6-
ethoxy-5,15-dihydroxyergosta-7,22-dien-3 one (211), calvasterols A (212) and B (213), and
ganodermaside D (214). All isolated compounds displayed different degrees of selective
antifungal activities against C. albicans, A. niger, P. oryzae, F. avenaceum, H. compactum,
and T. gypseum with MIC values between 64–512 µg/mL [92]. Dankasterone A (215) and
3β,5α,9α-trihydroxy-(22E,24R)-ergosta- 7,22-dien-6-one (216) were isolated from Phomopsis
sp. YM 355364. Compound 215 showed anti-influenza activity against H5N1pseudovirus
(IC50 = 3.56 µM). Compounds 215–216 showed antifungal activities against C. albicans,
P. oryzae, H. compactum, and T. gypseum with MIC values of 64–512 µg/mL [71]. A new
functionalized ergostane-type steroid, named phomopsterone B (217), was obtained from
Phomopsis sp. TJ507A isolated from medicinal plant P. glaucus. Compound 217 showed
anti-inflammatory activity by inhibiting iNOS enzyme with an IC50 value of 1.49 µM [93].
Cyathisterol (218) was extracted from Phomopsis sp. YM 355364, displaying moderate
antifungal activity toward P. oryzae (MIC = 128 µg/mL) [26]. The structures of steroids
(210–218) are shown in Figure 9.
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2.4. Macrolides

Macrolides are a class of medicinal compounds containing macrolactone ring struc-
tures, many of which are used as antifungal and antibacterial drugs in clinic, such as
erythromycins [122]. Nowadays, a large number of macrolide antibiotics are widely used
in the treatment of human diseases. Eight secondary metabolites were obtained from
Phomopsis and showed cytotoxic, antimicrobial, and enzyme inhibitory activities. Three
cytotoxic polyketides, Sch-642305 (219), LMA-P1 (220), and benquoine (221), were found
in the endophytic fungus Phomopsis sp. CMU-LMA of Alpinia malaccensis. Compounds
219 and 221 also displayed antimicrobial activities [94]. The endophytic fungus Phomopsis
sp. IFB-ZS1-S4 provided a known aspergillide C (222), which had moderate inhibitory
effect on neuraminidase in vitro with IC50 value of 5.59 µM [37]. Four highly oxygenated
tenellone-macrolide conjugated dimers, lithocarpins A-D (223–226), were obtained from
P. lithocarpus FS508 isolated from the deep-sea sediment sample collected in the Indian
Ocean. All metabolites (223–226) showed cytotoxic activities against three human tumor
cells (SF-268, MCF-7, and HepG-2) with IC50 values in the range of 17.0–52.2 µM [95]. The
structures of macrolides (219–226) are shown in Figure 10.
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2.5. Alkaloids

Alkaloids are important nitrogen-containing organic compounds widely existing in
microorganisms. At present, some alkaloids have been used to treat human diseases [123].
A total of 16 alkaloids have been isolated from Phomopsis and display various important
bioactivities, such as cytotoxic, antibacterial, anti-inflammatory activities. Two compounds
with special carbon skeleton, named phomopchalasins B (227) and C (232) were isolated
from Phomopsis sp. shj2, an endophytic fungus obtained from the stems of Isodon eriocalyx
var. laxiflora. Compound 232 showed cytotoxic activity against HL-60, SMMC-7721, and
A-549 with IC50 values of 14.9, 22.7, and 21.1 µM, and displayed anti-inflammatory activity
by reducing NO production (IC50= 11.2 µM). In addition, compounds 227 and 232 showed
antimigratory activities against MDA-MB-231 with IC50 values of 19.1 and 12.7 µM [96].
Chemical investigation of Phomopsis spp. xy21 and xy22 obtained from leaves of the man-
grove tree X. granatum, collected in Trang Province, Thailand, led to the isolation of a new
cytochalasin, phomopsichalasin G (228). It showed cytotoxicities against HCT-8, HCT- 8/T,
A549, MDA-MB-231, and A2780 cancer cells with IC50 values between 3.4–8.6 µM [97].
Three known compounds, namely 18-metoxycytochalasin J (229), cytochalasins H (230)
and J (231), were obtained from Phomopsis sp. isolated from the nut of Garcinia kola. These
three compounds exhibited cytotoxicities against HeLa (LC50 = 3.66–35.69 µg/mL) and
Vero (LC50 = 73.88–129.10 µg/mL), and different degrees of antibacterial activities against
six bacterial pathogens (Vibrio cholera SG24, V. cholera CO6, V. cholera NB2, V. cholera PC2,
Shigella flexneri SDINT, and S. aureus ATCC 25923) [98]. The cytochalasins, epoxycytocha-
lasin H (234) and cytochalasin N (233) and H (230), were extracted from Phomopsis sp.
By254 derived from the root of Gossypium hirsutum. They showed remarkable antifungal
activities with IC50 values between 0.1–50 µg/mL against S. sclerotiorum, Bipolaris maydis,
Fusarium oxysporum, B. cinerea, Bipolaris sorokiniana, Gaeumannomyces graminis var. tritici
and Rhizoctonia cerealis [99]. Cytochalasins H (230) and J (231), and alternariol (55) were
extracted from Phomopsis sp. of Senna spectabilis and showed anti-inflammatory activities by
inhibiting the production of reactive oxygen species (ROS). Compound 230 also showed an-
tifungal and acetylcholinesterase enzyme (AChE) inhibitory activities [49]. Cytochalasin J
(231) was derived from P. asparagi of plant Peperomia sui and exhibited antiandrogen activity
(IC50 = 6.2 µM) [100]. The antibacterial diaporthalasin (235) was extracted from Phomopsis
sp. PSU-H188, showing anti-MRSA activity with MIC of 4 µg/mL [73]. A phenylfuropy-
ridone racemate, (+)-tersone E (236), and a known ent-citridone A (237), were separated
from P. tersa FS441 derived from deep-sea sediment in the Indian Ocean. Compound
236 showed cytotoxicity with IC50 values at 32.0, 29.5, 39.5 and 33.2 µM towards SF-268,
MCF-7, HepG-2, and A549 cancer cells. Compounds 236–237 had antibacterial activities
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against S. aureus with MIC value of 31.2 and 31.5 µg/mL [101]. Two new chromenopyridine
derivatives, phochrodines C (238) and D (239) with 5H-chromeno[4,3-b]pyridine, were
isolated from Phomopsis sp. 33# associated with the bark of R. stylosa in the South China
Sea. Compounds 238–239 displayed anti-inflammatory activities with IC50 values of 49
and 51 µM by inhibiting nitric oxide production. Moreover, compound 239 also showed
antioxidant activity with IC50 value at 34 µM [102]. A novel depsipeptide, PM181110 (240),
was obtained from P. glabrae of Pongamia pinnata. It showed anticancer activity towards
40 human cancer cells in vitro (mean IC50 = 0.089 µM) and 24 human tumor xenografts ex
vivo (mean IC50 = 0.245 µM) [103]. Fusaristatin A (241) was separated for the first time
from P. longicolla S1B4, showing antibacterial activity against X. oryzae [34]. Exumolide A
(242) from the strain Phomopsis sp. (No. ZH-111) significantly promoted the growth of SIV
branches and showed low cytotoxic activity against Hep-2 and HepG2 [44]. The structures
of alkaloids (227–242) are shown in Figure 11.
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2.6. Flavonoids

Flavonoids are a kind of natural active substances of polyphenols. They are relatively
less occurred in fungi [124]. In this review, only four flavonoids, quercetin (243) (Figure 12),
luteolin (244), naringenin (245), and luteolin-7-O-glucoside (246) were isolated from P.
castaneae-mollissimae GQH87. They displayed cytotoxic activities against MCF-7, HepG2,
and A549 with IC50 values between 18.7 and 169.8 µg/mL [87].
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3. Bioactive Secondary Metabolites from Diaporthe spp.

In the last ten years, a total of 106 bioactive secondary metabolites have been isolated
from the genus Diaporthe (Table 2). These compounds exhibit various bioactivities, such as
cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, phytotoxic,
antitubercular, antifibrotic, antidiabetic, antimigratory, antiangiogenic, antihyperlipidemic,
inhibiting leishmanicidal, activating the NF-κB pathway, enzyme inhibition, inhibitory
effects on osteoclastogenesis, antifeedant, contact toxicity, and oviposition deterrent activi-
ties. The habitats of the Diaporthe strains were also shown in Table 2, which revealed that
there are 73 (accounting for 69%) and 32 (accounting for 30%) compounds isolated from
terrestrial and marine environments, respectively, while only one compound (1%) was not
mentioned with its habitat.

Table 2. The bioactive secondary metabolites of the genus Diaporthe during 2010–2019.

Number Structural Types Compounds Strains Habitats (T/M a) Activities Refs.

247 Xanthones
3,8-Dihydroxy-6-
methyl-9-oxo-9H-

xanthene-1-carboxylate
Diaporthe sp. SCSIO 41011 Rhizophora stylosa (M) Anti-IAV [125]

28 Phomoxanthone A
Diaporthe sp. GZU-1021

D. phaseolorum FS431

Chiromanteshae-
matochir (M)Sediment

(M)

Anti-inflammatory

Cytotoxic

[126]

[127]

248 Chromones Penialidin A Diaporthe sp. GZU-1021 Chiromanteshae
matochir (M) Anti-inflammatory [126]

35 (+)-Phomopsichin A D. phaseolorum SKS019 Acanthus ilicifolius (M) Inhibitory effects on
osteoclastogenesis [128]

249 (−)-Phomopsichin A D. phaseolorum SKS019 A. ilicifolius (M) Inhibitory effects on
osteoclastogenesis [128]

250 (+)-Phomopsichin B D. phaseolorum SKS019 A. ilicifolius (M) Inhibitory effects on
osteoclastogenesis [128]

36 (−)-Phomopsichin B
D. phaseolorum

SKS019Diaporthe sp.
GZU-1021

A. ilicifolius (M)
Chiromateshaem

atochir (M)

Inhibitory effects on
osteoclastogenesis
Anti-inflammatory

[128]
[126]

251 Diaporchromanone C D. phaseolorum SKS019 A. ilicifolius (M) Inhibitory effects on
osteoclastogenesis [128]

252 Diaporchromanone D D. phaseolorum SKS019 A. ilicifolius (M) Inhibitory effects on
osteoclastogenesis [128]

40 Pestalotiopsone F Diaporthe sp. SCSIO 41011 R. stylosa (M) Anti-IAV [125]

253 Pestalotiopsone B Diaporthe sp. SCSIO 41011
D. pseudomangiferaea

R. stylosa (M)
Tylophora ouata (T)

Anti-IAV
Antifibrotic

[125]
[129]

254 Diaportheone A Diaporthe sp. P133 Pandanus
amaryllifolius (T) Antitubercular [130]

255 Diaportheone B Diaporthe sp. P133 P. amaryllifolius (T) Antitubercular [130]

53 Chromanones (10S)-Diaporthin D. terebinthifolii LGMF907 Schinus terebinthifolius
(T) Antibacterial [131]

256 Orthosporin D. terebinthifolii LGMF907 S. terebinthifolius (T) Antibacterial [131]

54 Cytosporone D D. pseudomangiferaea T. ouata (T)
Cytotoxic,

Antioxidant
Antidiabetic

[129]
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257 Mucorisocoumarin A D. pseudomangiferaea T. ouata (T) Antifibrotic [129]

258
3,4-Dihydro-8-hydroxy-

3,5-dimethyl-
isocoumarin

D. eres Hedera helix (T) Phytotoxic [132]

259 Diportharine A Diaporthe sp. Datura inoxia (T) Antioxidant [133]

260 Furanones

(1R,2E,4S,5R)-1-[(2R)-5-
Oxotetrahydrofuran-2-
yl]-4,5-dihydroxy-hex-

2-en-1-yl(2E)-2-
methylbut-2-enoate

Diaporthe sp. SXZ-19 Camptotheca acuminate
(T) Cytotoxic [134]

261
Butyl 5-[(1R)-1-

hydroxyethyl]-γ-
oxofuran-2-butanoate

Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]

262
3,4-Dihydro-5′-[(1R)-1-

hydroxyethyl]
[2,2′-bifuran]-5(2H)-one

Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]

263
3,4-Dihydro-5′-[(1R)-1-

hydroxymethylethyl][2,2′-
bifuran]-5(2H)-one

Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]

264 Kongiidiazadione D. Kongii Carthamus lanatus (T) Phytotoxic,
Antibacterial [135]

265 Pyrones Phomopsolide A D. maritima Picea mariana(T)
Picea rubens (T)

Antifungal,
Antibiotic [136]

169 Phomopsolide B D. maritima P. mariana (T) P.
rubens (T)

Antifungal,
Antibiotic [136]

266 Phomopsolide C D. maritima P. mariana (T)P. rubens
(T)

Antifungal,
Antibiotic [136]

267
(S,E)-6-(4-Hydroxy-3-

oxopent-1-en-1-yl)-2H-
pyran-2-one

D. maritima P. mariana (T) P.
rubens (T)

Antifungal,
Antibiotic [136]

268 7-Hydroxy-6-
metoxycoumarin D. lithocarpus Artocarpus

heterophyllus (T) Antifungal [137]

269 Coumarin D. lithocarpus A. heterophyllus (T) Antibacterial [137]

270 Quinones Phyllostine acetate D. miriciae Cyperus iria (T)

Antifeedant,
Contact toxicity,

Oviposition
deterrent activities

[138]

107 (−)-Phyllostine D. miriciae C. iria (T)

Antifeedant,
Contact toxicity,

Oviposition
deterrent activities

[138]

271 Biatriosporin N Diaporthe sp. GZU-1021 Chiromanteshae-
matochir (M) Anti-inflammatory [126]

272 Emodin D. lithocarpus A. heterophyllus (T) Cytotoxic,
Antibacterial [137]

273 1,2,8-
Trihydroxyanthraquinone D. lithocarpus A. heterophyllus (T) Antibacterial [137]

274 (+)-2,2′-Epicytoskyrin A Diaporthe sp. GNBP-10 Uncaria gambir Roxb
(T) Antifungal [139]

275 Cytoskyrin C Diaporthe sp. Anoectochilus
roxburghii (T)

Cytotoxic,
Activating the

NF-κB pathway
[140]

276 (+)-Epicytoskyrin Diaporthe sp. A. roxburghii (T)
Cytotoxic,

Activating the
NF-κB pathway

[140]

277 Phenols Tyrosol D. helianthin
D. eres

Luehea divaricate (T)
Vitis vinifera (T)

Antagonistic
Phytotoxic

[141]
[142]

278 2,5-Dihydroxybenzyl
alcohol D. vochysiae LGMF1583 Vochysia divergens (T) Cytotoxic [143]

140 4-
Hydroxybenzaldehyde D. eres V. vinifera (T) Phytotoxic [142]
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279 p-Cresol D. eres V. vinifera (T) Phytotoxic [142]
280 4-Hydroxybenzoic acid D. eres V. vinifera (T) Phytotoxic [142]
281 Arbutin D. lithocarpus A. heterophyllus (T) Cytotoxic [137]

113 Phomosine A Diaporthe sp. F2934 Siparuna gesnerioides
(T) Antibacterial [144]

115 Phomosine C Diaporthe sp. F2934 S. gesnerioides (T) Antibacterial [144]

282
Flavomannin-6,6′-di-O-

methyl
ether

D. melonis Annona squamosal (T) Antimicrobial [145]

283 Acetoxydothiorelone B D. pseudomangiferaea T. ouata (T) Antifibrotic [129]
284 Dothiorelone B D. pseudomangiferaea T. ouata (T) Antifibrotic [129]
285 Dothiorelone L D. pseudomangiferaea T. ouata (T) Antifibrotic [129]
286 Dothiorelone G D. pseudomangiferaea T. ouata (T) Antifibrotic [129]

287 Diaporthol A Diaporthe sp. ECN-137 Phellodendron
amurense (T) Anti-migration [146]

288 Diaporthol B Diaporthe sp. ECN-137 P. amurense (T) Anti-migration [146]

289 Tenellone C Diaporthe sp. SYSU-HQ3 Excoecaria agallocha
(M) MptpB inhibitory [147]

290 Tenellone D Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]
291 Diaporindene A Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]
292 Diaporindene B Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]
293 Diaporindene C Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]
294 Diaporindene D Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]

75 Isoprenylisobenzofuran
A Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]

295 Oblongolides Oblongolide D Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]
296 Oblongolide H Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]
297 Oblongolide P Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]
298 Oblongolide V Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]

299 Unclassified
polyketides Phomentrioloxin B D. gulyae C. lanatus (T) Phytotoxic [149]

300 epi-Isochromophilone II Diaporthe sp. SCSIO 41011 R. stylosa (M) Cytotoxic [150]
301 Isochromophilone D Diaporthe sp. SCSIO 41011 R. stylosa (M) Cytotoxic [150]

302 Monoterpenoids (1R,2R,4R)-Trihydroxy-
p-menthane Diaporthe sp. SXZ-19 C. acuminate (T) Cytotoxic [134]

303 Gulypyrone A D. gulyae C. lanatus (T) Phytotoxic [149]
304 Gulypyrone B D. gulyae C. lanatus (T) Phytotoxic [149]
173 Nectriapyrone D. Kongii C. lanatus (T) Phytotoxic [135]

305 Sesquiterpenoids Diaporol R Diaporthe sp. R. stylosa (M) Cytotoxic [151]
306 Eremofortin F Diaporthe sp. SNB-GSS10 Sabicea cinerea (T) Cytotoxic [152]
307 Lithocarin B D. lithocarpus A740 Morinda officinalis (T) Cytotoxic [153]
308 Lithocarin C D. lithocarpus A740 M. officinalis (T) Cytotoxic [153]

309 Triterpenoids
19-Nor-lanosta-

5(10),6,8,24-tetraene-
1α,3β,12β,22S-tetraol

Diaporthe sp. LG23 Mahonia fortunei (T) Antibacterial [154]

216 Steriods
3β,5α,9α-Trihydroxy-

(22E,24R)-ergosta-7,22-
dien-6-one

Diaporthe sp. LG23 M. fortunei (T) Antibacterial [154]

310 Chaxine C Diaporthe sp. LG23 M. fortunei (T) Antibacterial [154]

311 Ten-membered
lactones Phomolide C Diaporthe sp. Aucuba japonica var.

borealis (T)

Inhibitory of
proliferation of
human colon

adenocarcinoma
cells

[155]

312 Xylarolide D. terebinthifolii Glycyrrhiza glabra (T) Antimicrobial,
Cytotoxic [156]

313 Phomolide G D. terebinthifolii G. glabra (T) Antibacterial [156]

314 Xylarolide A Diaporthe sp. D. inoxia (T) Cytotoxic,
Antioxidant [133]
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315 Alkaloids 18-Des-hydroxy
cytochalasin H D. phaseolorum-92C Combretum

lanceolatum (T)

Inhibiting
leishmanicidal,

Antioxidant,
Cytotoxic

[157]

316 21-Acetoxycytochalasin
J2

Diaporthe sp. GDG-118 Sophora tonkinensis (T) Antifungal,
Antibacterial [158]

317 21-Acetoxycytochalasin
J3

Diaporthe sp. GDG-118 S. tonkinensis (T) Antifungal,
Antibacterial [158]

318 Cytochalasin J3 Diaporthe sp. GDG-118 S. tonkinensis (T) Antifungal,
Antibacterial [158]

230 Cytochalasin H Diaporthe sp. GDG-118
Diaporthe sp. GZU-1021

S. tonkinensis (T)
Chiromanteshae

matochir (M)

Antifungal,
AntibacterialAnti-

inflammatory

[158]
[126]

319 7-Acetoxycytochalasin
H Diaporthe sp. GDG-118 S. tonkinensis (T) Antifungal,

Antibacterial [158]

231 Cytochalasin J Diaporthe sp. GDG-118 S. tonkinensis (T) Antifungal,
Antibacterial [158]

320 Cytochalasin E Diaporthe sp. GDG-118 S. tonkinensis (T) Antifungal,
Antibacterial [158]

321 21-O-Deacetyl-L-
696,474 Diaporthe sp. GZU-1021 Chiromanteshae

matochir (M) Anti-inflammatory [126]

322 Cordysinin A D. arecae Kandelia obovate (M) Anti-angiogenic [159]
323 5-Deoxybostrycoidin D. phaseolorum SKS019 A. ilicifolius (M) Cytotoxic [160]
241 Fusaristatin A D. phaseolorum SKS019 A. ilicifolius (M) Cytotoxic [160]

324 Vochysiamide B D. vochysiae LGMF1583 V. divergens (T) Antibacterial,
Cytotoxic [143]

325 Diaporisoindole A Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]
326 Diaporisoindole B Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]

327 Diaporisoindole D Diaporthe sp. SYSU-HQ3
Diaporthe sp. SYSU-HQ3

E. agallocha (M)
E. agallocha (M)

Anti-inflammatory
MptpB inhibitory

[148]
[147]

328 Diaporisoindole E Diaporthe sp. SYSU-HQ3 E. agallocha (M) Anti-inflammatory [148]
329 Phomopsin F D. toxica -b Cytotoxic [161]

330 Fatty acids 3-Hydroxypropionic
acid D. phaseolorum Laguncularia racemose

(M) Antimicrobial [162]

331 3-Nitropropionic acid D. gulyae C. lanatus (T) Phytotoxic [149]
332 Diapolic acid A D. terebinthifolii G. glabra (T) Antibacterial [156]
333 Diapolic acid B D. terebinthifolii G. glabra (T) Antibacterial [156]
334 Diaporthsin E Diaporthe sp. JC-J7 Dendrobium nobile (T) Antihyperlipidemic [163]

335
3-Hydroxy-5-

methoxyhex-5-ene-2,4-
dione

Diaporthe sp. ED2 Orthosiphon stamieus
(T) Antifungal [164]

a T: terrestrial environment; M: marine environment; b The habitat was not mentioned.

3.1. Polyketides

There are 67 polyketides reviewed from Diaporthe and they exhibit rich biological
activities. Here, we classify these polyketides into the following structural types: xan-
thones, chromones, chromanones, furanones, pyrones, quinones, phenols, oblongolides,
and unclassified polyketides.

3.1.1. Xanthones

Chemical investigation of Diaporthe sp. SCSIO 41011 derived from mangrove plant
R. stylosa led to identification of a known compound, 3,8-dihydroxy-6-methyl-9-oxo-9H-
xanthene-1-carboxylate (247) (Figure 13). It showed influenza A virus (IAV) inhibition
against A/Puerto Rico/8/34 H274Y (H1N1), A/FM-1/1/47 (H1N1), and A/Aichi/2/68
(H3N2) with IC50 values of 9.40, 4.80, and 5.12 µM, respectively [125]. Phomoxanthone
A (28) with novel carbon skeleton was isolated from the fungus Diaporthe sp. GZU-1021
derived from a red-clawed crab Chiromanteshaematochir and D. phaseolorum FS431 of deep-
sea sediment from the Indian Ocean. This compound showed anti-inflammatory activity
by inhibiting nitric oxide (NO) production in RAW 264.7 cells with an IC50 value of
6.1 µM [126], and it displayed good cytotoxicity against MCF-7, HepG-2, and A549 with
IC50 values of 2.60, 2.55, and 4.64 µM, respectively [127].
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3.1.2. Chromones

Chemical analysis of Diaporthe sp. GZU-1021 associated with Chiromanteshaematochir
resulted in the identification of penialidin A (248) and (−)-phomopsichin B (36). They
showed inhibitory effects on NO production with IC50 values at 11.9 and 16.5 µM [126].
Six bioactive metabolites were separated from D. phaseolorum SKS019 derived from man-
grove plant A. ilicifolius, including four new compounds, (−)-phomopsichin A (249), (+)-
phomopsichin B (250), diaporchromanones C (251) and D (252), along with two known
compounds, (+)-phomopsichin A (35) and (−)-phomopsichin B (36). These metabolites
showed moderate inhibition on osteoclastogenesis by inhibiting RANKL-induced NF-κB
activation [128]. Pestalotiopsones F (40) and B (253) were isolated from Diaporthe sp. SCSIO
41011. The two compounds exhibited remarkable anti-IAV activities with IC50 values
between 2.52–39.97 µM [125]. Two new benzopyranones, diaportheones A (254) and B
(255), were extracted from Diaporthe sp. P133 derived from Pandanus amaryllifolius. They
showed moderate antitubercular activities and provided MIC values of 100.9 and 3.5 µM
against Mycobacterium tuberculosis H37Rv with Rifampin (MIC = 0.25 µM) as the positive
control [130]. The structures of chromones (248–255) are shown in Figure 13.

3.1.3. Chromanones

Two isocoumarins, (10S)-diaporthin (53) and orthosporin (256), were extracted from
D. terebinthifolii LGMF907 isolated from Schinus terebinthifolius. They showed antibacterial
activities against the methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-
resistant S. aureus (MRSA) [131]. Cytosporone D (54) and mucorisocoumarin A (257) were
isolated from the endophytic fungus D. pseudomangiferaea of Tylophora ouata. Compound 257
displayed anti-fibrosis activity with the inhibitory rate of 52.1% on the activation of human
lung fibroblasts MRC-5 cells induced by TFG-β at 10 µM. Cytosporone D (54) showed
cytotoxicity toward BGC-823 (IC50 = 8.1 µM), antioxidant activity with the inhibition rate of
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63.3% by releasing MOA at the concentration of 10 µM, and moderate antidiabetic activity
against protein tyrosine phosphatase 1B (PTP1B) [129]. The fungus D. eres derived from
pathogen-infected leaf of Hedera helix produced an isocoumarin, 3,4-dihydro-8-hydroxy-3,5-
dimethylisocoumarin (258), showing phytotoxic activity in Lemna paucicostata growth [132].
A novel metabolite, diportharine A (259), was obtained from the culture of Diaporthe sp.
isolated from Datura inoxia. It showed notable antioxidant activity through DPPH radical
scavenging effects (EC50 = 10.3 µM) [133]. The structures of chromanones (256–259) are
shown in Figure 13.

3.1.4. Furanones

Furanones are widely used in the field of synthesis, and the synthesized products
have important pharmacological activities, such as antiviral, antitumor and antimicro-
bial [165]. Four bioactive furanones were derived from Diaporthe sp. SXZ-19 of C. acuminate,
including the new (1R,2E,4S,5R)-1-[(2R)-5-oxotetrahydrofuran-2-yl]-4,5-dihydroxy-hex-
2-en-1-yl(2E)-2-methylbut-2-enoate (260) and three linear furanopolyketides (261–263).
These compounds had weak cytotoxicities against HCT 116 cells with the concentration at
10 µM [134]. A new 3-substituted-5-diazenylcyclopentendione, named kongiidiazadione
(264), was separated from D. kongii of plant C. lanatus, which was phytotoxic component
and showed low antibacterial activity against Bacillus amyloliquefaciens [135]. The structures
of furanones (260–264) are shown in Figure 13.

3.1.5. Pyrones

Four secondary metabolites were isolated from D. maritima of healthy Picea mariana and
Picea rubens needles collected from the Acadian forest of Eastern Canada, including three
dihydropyrones, phomopsolides A (265), B (169), and C (266), and a stable α-pyrone, (S,E)-6-
(4-hydroxy-3-oxopent-1-en-1-yl)-2H-pyran-2-one (267). All compounds showed antifungal
and antibiotic activities against M. violaceum, Saccharomyces cerevisiae, and B. subtilis [136].
Two known metabolites, 7-hydroxy-6-metoxycoumarin (268) and coumarin (269), were
isolated from the endophytic fungus D. lithocarpus obtained from Artocarpus heterophyllus.
Compounds 268 showed significant antifungal activity against Sporobolomyces salminocolor
with the of 12.2± 0.3 mm, and 269 had a diameter inhibition zone of 12.3 ± 0.3 mm against
the bacteria B. subtilis [137]. The structures of pyrones (265–269) are shown in Figure 13.

3.1.6. Quinones

Two cyclohexeneoxidedione derivatives, phyllostine acetate (270) and phyllostine
(107), showing strong antifeedant activities on Plutella xylostella, were extracted from culture
of D. miriciae of plant Cyperus iria. Compounds 270 and 107 had the feeding inhibition of
100% at 50 µg/cm2 and the 50% feeding deterrence (DC50) values of 9 and 4.7 µg/cm2,
displayed contact toxicities with the median lethal concentration (LC50) values of 4.38 and
6.54 µg/larva, and exhibited oviposition deterrent activities with the indexes of 100% and
28.6% at 50 µg/cm2, respectively [138]. The new biatriosporin N (271) was isolated from the
marine-derived fungus Diaporthe sp. GZU-1021 and displayed anti-inflammatory activity
by inhibiting NO production in RAW 264.7 cells with an IC50 value of 11.5 µM [126]. Two
anthraquinone derivatives, emodin (272) and 1,2,8-trihydroxyanthraquinone (273), were
isolated from an endophytic fungus D. lithocarpus. Emodin (272) exhibited notable cytotoxic
activity against murine leukemia P-388 cells (IC50 = 0.41 µg/mL) and antibacterial activity
against B. subtilis, M. luteus, Pseudomonas fluorescences, E. coli, and S. cerevisiae with the
diameter of inhibition zones of 14.7, 13.2, 13.7, 12.7, and 11.7 mm, respectively. Compound
273 also displayed antibacterial activity against B. subtilis, E. coli, and S. cerevisiae at 14.2,
11.3, and 10.7 mm, respectively [137]. A bis-anthraquinone derivative, named (+)-2,2′-
epicytoskyrin A (274), was isolated from Diaporthe sp. GNBP-10 of Uncaria gambir Roxb.
It showed antifungal activity against 22 yeast strains and 3 filamentous fungi with MICs
between 16–128 µg/mL [139]. Two cytoskyrin type bisanthraquinones, cytoskyrin C
(275) and (+)-epicytoskyrin (276), were isolated from Diaporthe sp., an endophytic fungus
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obtained from Anoectochilus roxburghii. Compounds 275–276 could activate NF-κB pathway
and increase the relative activity of luciferase at the concentration of 50 µM, and showed
cytotoxicities against SMMC-7721 cells in dose-dependent manner [140]. The structures of
quinones (270–276) are shown in Figure 14.
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3.1.7. Phenols

The phenolic metabolite, tyrosol (277), was extracted from D. helianthi isolated from Lue-
hea divaricate. Tyrosol showed significant antagonistic activity against the tested pathogenic
bacteria (Enterococcus hirae, E. coli, M. luteus, Salmonella typhi, S. aureus, and Xanthomonas
asc. Phaseoli) [141]. 2,5-Dihydroxybenzyl alcohol (278) was derived from D. vochysiae
LGMF1583 of medicinal plant Vochysia divergens, which showed cytotoxic activity against
A549 (EC50 = 54.8 µM) and PC3 (EC50 = 9.45 µM) [143]. Four phytotoxic compounds,
4-hydroxybenzaldehyde (140), p-cresol (279), 4-hydroxybenzoic acid (280), and tyrosol
(277), were isolated from D. eres of grapevine (V. vinifera) wood. In the leaf disk and leaf
absorption bioassay, phytotoxicities of all compounds increased with the concentration
ranging in 0.1–1 mg/mL [142]. Arbutin (281), obtained from an endophytic fungus D.
lithocarpus, had moderate cytotoxicity against murine leukemia P-388 cells and gave an
IC50 value at 2.91 µg/mL [137]. Two antibacterial metabolites, phomosines A (113) and C
(115), were extracted from Diaporthe sp. F2934 of plant Siparuna gesnerioides. They were
active against S. aureus, M. luteus, Streptococcus oralis, Enterococcus fecalis, Enterococcus cloacae,
and Bordetella bronchiseptica with inhibition zone diameter from 6 ± 0.62 to 12 ± 1.18 mm
at the concentration of 4 µg/µL [144]. Flavomannin-6,6′-di-O-methyl ether (282) was ex-
tracted from an endophytic strain of D. melonis from Annona squamosal, which showed
antimicrobial activity against S. aureus 25697, S. aureus 29213, and Streptococcus pneumoniae
ATCC 49619 with MIC values of 32, 32, and 2 µg/mL, respectively [145]. Four secondary
metabolites, acetoxydothiorelone B (283), and dothiorelones B (284), L (285) and G (286),
were isolated from D. pseudomangiferaea. All of them displayed antifibrotic activities with
the inhibitory rates of 17.4, 62.9, 59.2 and 41.1% on the activation of human lung fibroblasts
MRC-5 cells induced by TFG-β at 10 µM, with pirfenidone (53.2%) as positive control at 1
mM [129]. Two diphenyl ether derivatives, diaporthols A (287) and B (288), were extracted
from Diaporthe sp. ECN-137 isolated from the leaves of Phellodendron amurense. Compounds
287–288 exhibited anti-migration effects on TGF-β1-elicited MDA-MB-231 breast cancer
cells with an concentration at 20 µM [146]. Tenellone C (289) was obtained from Diaporthe
sp. SYSU-HQ3 of mangrove plant E. agallocha, displaying inhibitory effect on M. tubercu-
losis protein tyrosine phosphatase B (MptpB) (IC50 = 5.2 µM) [147]. Six compounds were
isolated from endophytic fungus Diaporthe sp. SYSU-HQ3 derived from the branches of
E. agallocha, including a new benzophenone derivative, tenellone D (290), four special
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2,3-dihydro-1H-indene isomers, diaporindenes A-D (291–294), and isoprenylisobenzofuran
A (75). All isolated compounds showed anti-inflammatory activities by LPS-Induced NO
production in RAW 264.7 cells with IC50 values of 4.2–18.6 µM [148]. The structures of
phenols (277–294) are shown in Figure 15.
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3.1.8. Oblongolides

Four lovastatin analogues, oblongolides D (295), H (296), P (297) and V (298), were
obtained from the endophytic fungus Diaporthe sp. SXZ-19. These metabolites showed
weak cytotoxic activities against HCT 116 cells with the concentration of 10 µM [134]. The
structures of oblongolides (295–298) are shown in Figure 16.
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3.1.9. Unclassified Polyketides

Phomentrioloxin B (299) was obtained from a strain of D. gulyae isolated from C. lana-
tus, which had low phytotoxic effect to cause small necrosis against several weedy and crop
plant species [149]. The fungus Diaporthe sp. SCSIO 41011 derived from mangrove plant
R. stylosa, afforded two metabolites, epi-isochromophilone II (300) and isochromophilone
D (301). Compound 300 displayed cytotoxicities against ACHN, OS-RC-2, and 786-O
cells with IC50 values between 3.0 and 4.4 µM, and 301 had an IC50 of 8.9 µM against
786-O cancer cells [150]. The structures of unclassified polyketides (299–301) are shown in
Figure 16.

3.2. Terpenoids

(1R,2R,4R)-Trihydroxy-p-menthane (302) was isolated from Diaporthe sp. SXZ-19, and
displayed weak cytotoxicity on HCT 116 cells [134]. Two new α-pyrones, gulypyrones A
(303) and B (304), were extracted from D. gulyae. Both of them showed phytotoxic activities
and gulypyrone A caused necrosis against Helianthus annuus plantlets [149]. A pentaketide
monoterpenoid, nectriapyrone (173), was isolated from culture of D. Kongii, showing
phytotoxic activity [135]. A new brasilane-type sesquiterpenoid, diaporol R (305) was
produced by an endophytic fungus Diaporthe sp. isolated from leaves of R. stylosa. Diaporol
R had moderate cytotoxic effect on SW480 cancer cells and provided an IC50 value at
8.72 ± 1.32 µM [151]. Eremofortin F (306) was obtained from endophytic fungus Diaporthe
sp. SNB-GSS10 of Sabicea cinerea. It showed cytotoxic activity against KB and MRC5 cells
with IC50 values of 13.9 and 12.2 µM [152]. Two new eremophilanes, lithocarins B (307)
and C (308), were extracted from D. lithocarpus A740, an endophytic fungus isolated from
Morinda officinalis. These compounds displayed low cytotoxicities against SF-268, MCF-7,
HepG-2, and A549 tumor cells with IC50 values between 37.68–97.71 µM [153]. The new
triterpenoid, 19-nor-lanosta-5(10),6,8,24-tetraene- 1α,3β,12β,22S-tetraol (309), was obtained
from Diaporthe sp. LG23 of the Chinese medicinal plant Mahonia fortunei, and displayed
antibacterial activity against both Gram-positive and Gram-negative bacteria [154]. The
structures of terpenoids (302–309) are shown in Figure 17.

3.3. Steriods

Only two steroids, 3β,5α,9α-trihydroxy-(22E,24R)-ergosta-7,22-dien-6-one (216) and
chaxine C (310) (Figure 17), were isolated from Diaporthe sp. LG23, showing antibacterial
activities against B. subtilis with streptomycin as a positive control [154].
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3.4. Ten-Membered Lactones

Ten-membered lactones always have anti-tumor, anti-inflammatory, anti-viral, anti-
bacterial and other pharmacological activities, exhibiting important medical value in
clinical practice [166]. Phomolide C (311) from Diaporthe sp. of Aucuba japonica var. borealis,
inhibited the proliferation of human colon adenocarcinoma cells with concentration of
50 µg/mL [155]. The endophytic fungus D. terebinthifolii GG3F6 derived from medicinal
plant Glycyrrhiza glabra, afforded two known compounds, xylarolide (312) and phomolide
G (313). Compound 312 had cytotoxicity in vitro against cancer cells MIAPaCa-2, HCT-116
and T47D cancer cells with IC50 values of 38, 100, and 7 µM and showed notable antimi-
crobial activity against C. albicans and Yersinia enterocolitica with IC50 values at 78.8 and
72.1 µM. Moreover, Compound 313 showed an IC50 value of 69.2 µM against Y. enteroco-
litica [156]. A novel metabolite, named xylarolide A (314), was isolated from the fungus
Diaporthe sp. of D. inoxia. Compound 314 had remarkable cytotoxicities against MIAPaCa-2
and PC-3 cancer cells with IC50 values between 14–32 µM, and also showed antioxidant
activity on DPPH radical scavenging effect (EC50 = 10.3 µM) [133]. The structures of four
ten-membered lactones (311–314) are shown in Figure 17.

3.5. Alkaloids

18-Des-hydroxy cytochalasin H (315) was obtained from endophytic fungus D. phase-
olorum-92C of Combretum lanceolatum. This compound inhibited leishmanicidal activity,
displayed moderate antioxidant activity, and had cytotoxic activity against the breast cancer
cells MDA-MB-231 and MCF-7 [157]. A series of the cytochalasins were extracted from Dia-
porthe sp. GDG-118 of Sophora tonkinensis, including 21-acetoxycytochalasins J2 (316) and J3
(317), 7-acetoxycytochalasin H (319), and cytochalasins J3 (318), H (230), J (231), and E (320).
All isolated metabolites showed different degrees of antifungal activities against Alternaria
oleracea, Pestalotiopsis theae, Colletotrichum capsici, and Ceratocystis paradoxa with MIC values
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of 1.56–100 µg/mL, and antibacterial activities against Gram-positive bacteria (B. subtilis,
B. megaterium and Bacillus anthraci) and Gram-negative bacteria (Proteus vuigaris, E. coli
and Salmonella paratyphi B) with MIC values in the range of 12.5–100 µg/mL [158]. The
fungus Diaporthe sp. GZU-1021 yielded cytochalasin H (230) and 21-O-deacetyl-L-696,474
(321), which showed anti-inflammatory activities by inhibiting NO production in RAW
264.7 cells with IC50 values of 1.94 and 7.35 µM [126]. Cordysinin A (322) was derived from
endophytic fungus D. arecae of Kandelia obovate. It showed anti-angiogenic activity against
the human endothelial progenitor cells (EPCs) with IC50 value of 15.1 ± 0.2 µg/mL [159].
Further research led to the identification of 5-deoxybostrycoidin (323) and fusaristatin A
(241) from D. phaseolorum SKS019 of mangrove plant A. ilicifolius. Compound 323 showed
cytotoxic activity against MDA-MB-435 and NCI-H460 with IC50 values at 5.32 and 6.57 µM,
and the IC50 value of 241 was 8.15 µM on MDA-MB-435 [160]. A new carboxamide, vochysi-
amide B (324), was extracted from new species D. vochysiae LGMF1583, which displayed
antibacterial activity on the Gram-negative bacterium Klebsiella pneumoniae (KPC) with MIC
value at 80 µg/mL and showed cytotoxic activity against A549 (EC50 = 86.4 µM) and PC3
(EC50 = 40.25 µM) [143]. Four compounds, diaporisoindoles A (325), B (326), D (327), and E
(328), were obtained from an endophytic fungus Diaporthe sp. SYSU-HQ3. They all showed
anti-inflammatory activities by reducing NO production with IC50 values of 22.7, 18.2, 8.9,
and 8.3 µM, respectively [148]. Diaporisoindole D (327) also exhibited inhibitory activity
towards M. tuberculosis protein tyrosine phosphatase B (MptpB) (IC50 = 4.2 µM) [147]. Pho-
mopsin F (329) was isolated from D. toxica, and showed cytotoxic activity against HepG2
cells [161]. The structures of alkaloids (315–329) are shown in Figure 18.
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3.6. Fatty Acids

Fatty acids are simple linear compounds that play an important role in the synthesis
and catabolism of organisms [167]. Over here, six fatty acids are reported from Diaporthe.
The fungus D. phaseolorum derived from Laguncularia racemose, afforded 3-hydroxypropionic
acid (330), which showed antimicrobial activity against S. aureus and S. typhi [162]. A
phytotoxic metabolite, 3-nitropropionic acid (331), was isolated from D. gulyae. Compound
331 was notably active in causing necroses on several weedy and crop plant species [149].
Two new fatty acids, diapolic acids A and B (332 and 333), were isolated from endophytic
fungus D. terebinthifolii. They had moderate antibacterial activities against Y. enterocolitica
with IC50 values of 78.4 and 73.4 µM [156]. Studies of the strain Diaporthe sp. JC-J7 from
stems of Dendrobium nobile led to the isolation of a new compound, diaporthsin E (334). It
showed low antihyperlipidemic activity on triglycerides (TG) in steatotic L-02 cells with
the inhibition rate of 26% at the concentration of 5 µg/mL [163]. The novel anti-candidal
metabolite, 3-hydroxy-5-methoxyhex-5-ene-2,4-dione (335), was derived from Diaporthe sp.
ED2 of medicinal herb Orthosiphon stamieus Benth. It showed antifungal activity against
C. albicans with MIC value of 3.1 µg/mL [164]. The structures of fatty acids (330–335) are
shown in Figure 19.
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4. Characteristics of Bioactive Secondary Metabolites from the Genus Diaporthe and
Anamorph Phomopsis

In this paper, a total of 335 bioactive compounds from the genus Diaporthe and Phomop-
sis are summarized. There are 106 secondary metabolites from Diaporthe and 246 ones from
Phomopsis, in which 17 compounds were obtained from both of Diaporthe and Phomopsis.
These compounds are classified into polyketides, terpenoids, steroids, macrolides, ten-
membered lactones, alkaloids, flavonoids, and fatty acids. As seen in Figure 20, about two
thirds of all compounds reported from Diaporthe and Phomopsis are refered to polyketides,
accounting for 63% and 70%, respectively. Moreover, terpenoids (8%, 15%), alkaloids (17%,
6%), and steroids (2%, 4%) were also produced by both of Diaporthe and Phomopsis. It
is worth noting that fatty acids (6%) and ten-membered lactones (4%) are only reported
from Diaporthe, while flavonoids (2%) and macrolides (3%) are only found in Phomopsis.
Polyketides, as the largest member of the metabolites, are widely used in the field of
medicine and play an important role in the treatment of cancer diseases.

The various bioactivities of the compounds isolated from Diaporthe and Phomopsis
are presented in Figure 21, mainly containing cytotoxic, antibacterial, antifungal, antiviral,
anti-inflammatory, antioxidant, antialgae, enzyme inhibition, and phytotoxic activities.
Most of compounds have at least one kind of bioactivities. As seen in Figure 21 and
Tables 1 and 2, secondary metabolites of Diaporthe and Phomopsis mainly exhibit cytotoxic,
antibacterial and antifungal activities, accounting for 73% of all compounds, with 56 in
Diaporthe and 200 from Phomopsis. Interestingly, in recent years, more and more compounds
with anti-inflammatory, antioxidant and enzyme inhibitory activities have been studied in
important human diseases.
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Figure 20. (a) The proportion of structural types of bioactive compounds from Diaporthe; (b) The
proportion of structural types of bioactive compounds from Phomopsis.

Figure 21. The distribution of main bioactivities of compounds isolated from Diaporthe and Phomopsis.

5. Conclusions

This review presents the diverse chemical structures and bioactivities of 335 com-
pounds isolated from 26 known species and various unidentified species of the genus Dia-
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porthe and its anamorph Phomopsis between 2010–2019. Here, we can see from Tables 1 and 2,
among all of the reported compounds, there are 236 (accounting for about 70%) and 92
(about 27%) compounds derived only from terrestrial and marine environments (including
mangroves, sediments, deep-sea fungi and marine animals), respectively. In addition,
only one compound is obtained from both of terrestrial and marine environments. In
contrast, six compounds are not mentioned with their habitats in the literature. Polyketides
represent the main chemical population, accounting for 64%. About 73% of all metabolites
possess cytotoxic, antibacterial, and antifungal activities. The species named as Phomopsis
significantly produce much more compounds than Diaporthe, and most strains have not yet
been identified at the species level. In conclusion, these results illustrate that the metabolic
resources of Diaporthe and Phomopsis are of great value and deserved to conduct further re-
search. Interestingly, in the past three years, there have been more reports on the secondary
metabolites of the fungi in Diaporthe and Phomopsis than before, displaying an increasing
trend, which indicates that Diaporthe and Phomopsis are regarded as important sources for
discovering new natural bioactive substances.

In the past many years, lots of interesting fungal bioactive metabolites had been widely
developed into new drugs, like antibiotics. Although most compounds obtained from
Diaporthe and Phomopsis fungi had been studied on their isolation, structures, and activities,
the in-depth research on pharmacological mechanisms and development of potent active
compounds in drugs are still less. According to current studies, some compounds with
remarkable bioactivities may serve as potential drug candidates in the future, such as
cytotoxic altersolanol A and PM181110, and antimicrobial dicerandrol A. In order to
ascertain the therapeutic potential of these compounds, further studies of pharmacological
and producing mechanisms are required.

The fungal species in Diaporthe and Phomopsis have been considered to be important
sources that can produce diverse and novel bioactive metabolites, which has attracted many
natural product chemists and pharmacologists to study in recent years. The metabolites
produced by Diaporthe and Phomopsis have rich biological activities, which is enough to
show the importance of its metabolic resources. Nowadays, many fungi produce interesting
bioactive metabolites that have been studied for their biosynthesis pathway, while similar
studies in Diaporthe and Phomopsis are performed relatively less often. In the following work,
the microbial biosynthesis pathway might be considered for further developing valuable
products from Diaporthe or Phomopsis, which are hoped to be used as drug molecules for
disease treatment. However, it cannot be ignored that Diaporthe or Phomopsis are important
plant pathogens which might cause a wide range of plant host diseases and even serious
human pathogens. In the future work, we should also focus on the role of metabolites
produced by these pathogens, as well as the relationships with their hosts.
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