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Abstract: The effects of long-term heavy metal contamination on the soil biological processes and
soil microbial communities were investigated in a typical electroplating site in Zhangjiakou, China. It
was found that the soil of the electroplating plant at Zhangjiakou were heavily polluted by Cr, Cr (VI),
Ni, Cu, and Zn, with concentrations ranged from 112.8 to 9727.2, 0 to 1083.3, 15.6 to 58.4, 10.8 to
510.0 and 69.6 to 631.6 mg/kg, respectively. Soil urease and phosphatase activities were significantly
inhibited by the heavy metal contamination, while the microbial biomass carbon content and the
bacterial community richness were much lower compared to noncontaminated samples, suggesting
that the long-term heavy metal contamination had a severe negative effect on soil microorganisms.
Differently, soil dehydrogenase was promoted in the presence of Chromate compared to noncon-
taminated samples. This might be due to the enrichment of Sphingomonadaceae, which have been
proven to be able to secrete dehydrogenase. The high-throughput sequencing of the 16S rRNA gene
documented that Proteobacteria, Actinobacteria, and Chloroflexi were the dominant bacterial phyla in
the contaminated soil. The Spearman correlation analysis showed the Methylobacillus, Muribaculaceae,
and Sphingomonadaceae were able to tolerate high concentrations of Cr, Cr (VI), Cu, and Zn, indicating
their potential in soil remediation.

Keywords: heavy metals; soil enzyme; microbial biomass carbon; microbial community structure

1. Introduction

Heavy metals (HMs) are severe pollutants in soil environments from either natural
processes or anthropogenic activities [1]. Electroplating industrial plants are the most
common sources of toxic metals by direct or indirect discharge, though they play an
important role in the Chinese economy [2,3]. The heavy metal waste usually piled up
in large quantities, causing a potential threat to the safety of groundwater, soil, and the
atmospheric environment [4]. Among them, copper (Cu), zinc (Zn), nickel (Ni), and
chromium (Cr) were most common in soil. Thus, the identification of HMs pollution is of
significant ecological and anthropic importance.

Soil microbial enzyme activities (EAs) and microbial biomass carbon (MBC), are
sensitive to soil ecosystem disturbance [5]. EAs and MBC can reflect the direction and
degree of soil biochemical reactions, and serve as potential biological indicators to diagnose
soil health [6]. Among enzymes, urease (UA), phosphatase (PHA), and dehydrogenase
(DHA) are often used as HMs enzyme markers [5].

Soil microbial community structure and diversity are also highly sensitive to soil
environmental changes and are often used as indicators of metal contaminations as well [6].
Many studies have shown the evolution of the microbial community caused by HMs
under long-term contamination [7–9]. Song [10] found that the microbial communities
changed with HMs (Cd, Cu, Zn) concentrations and soil physicochemical properties (pH,
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TN, TC): while Li [11] found that Cr, Pb, and Zn all negatively affected the abundance of
Nitrospirae, Bacteroidetes, and Verrucomicrobia. However, there have been few studies on
how the HMs’ combined pollution affects microbial community structure, EAs, and MBC
at electroplating sites.

In this study, an abandoned electroplating site from Zhangjiakou (Hebei Province,
China) was selected for further analysis. The soil environmental parameters, including the
concentrations of Cr, Cr (VI), Ni, Cu, and Zn, were measured. Specifically, the aims of this
study were: (i) to explore the relationships among soil HMs contamination, physicochem-
ical properties, soil EAs, MBC, and the structures of the microbial community at in situ
electroplating sites; (ii) to predict the possible functions of dominant bacteria in the process
of ecological restoration.

2. Materials and Methods
2.1. Study Area

The Electroplating Plant at Zhangjiakou (EPZ, 40◦50′12.008′′ N, 114◦52′26.451′′ E)
which was used for production since the 1960s, ceased production in 2015. The EPZ lies
in the temperate continental monsoon climate zone with an annual mean temperature of
9.6 ◦C, and multiyear average precipitation of about 350 mm [12,13]. The EPZ includes six
electroplating processes located in different areas. The six processes have different HMs
concentrations theoretically (Figure S1): location 1 was an electroplating laboratory (S0);
location 2 was a chrome bath (S1), location 3 was a decorative chrome tank (S2); location 4
was a postplating treatment room (S3); location 5 was a galvanizing bath (S4), while
location 6 was a sewage treatment tank (S5). To reveal the in situ HMs concentration as
accurately as possible, we took five samples from different depths in each location. Besides,
for comparison with the local soil background value, we collected noncontaminated soil
5 km away from the plant.

2.2. Soil Collection

Thirty soil samples were collected in November 2019 and carried back to the laboratory
within 12 h at 4 ◦C. All soil samples were divided into two groups, one for molecular
genome experiment (stored at −20 ◦C), another was for physicochemical properties and
HMs measurement (air-dried and processed with a 2 mm sieve to remove the stone and
root fragments, stored at 4 ◦C) [14].

2.3. Soil Physicochemical and HMs

The pH was tested in deionized water at a soil/solution ratio of 1:2.5 using HI 3221
pH meter from a 2 mm soil fraction (Seven Easy, Mettler-Toledo, Switzerland). Total
contents of Cr/Ni/Cu/Zn in the soil were analyzed with TAS-990 flame atom adsorption
spectrophotometer (Persee Inc., Beijing, China) by digesting 100 mg of soil in a mixture
of HCl-HNO3-HF-HClO4, which was constituted with 3 mL of 1.19 g/mL HCl, 5 mL of
1.42 g/mL HNO3, 5 mL of 1.49 g/mL HF, 3 mL of 1.68 g/mL HClO4 and finally constant
volume to 50 mL using deionized water. The digestion program was processed by two
stages of heating: 30 min at 120 ◦C and 1 h at 200 ◦C (Persee Inc., Beijing, China). Besides,
the total Cr (VI) concentration of soil samples was measured by alkaline digestion standard
method, using a mixture of 50 mL NaCO3/NaOH mixed solution, 400 mg MgCl2, and
50 mL K2HPO4-KH2PO4, and heat at 90–95 ◦C for 60 min [15].

2.4. Microbial Biomass Carbon and Soil EAs

Microbial biomass carbon (MBC) was determined by the fumigation-extraction (FE)
method [16]. PHA was measured spectrophotometrically by the disodium phenyl phos-
phate method of Li [17] by measuring the phenolic micrograms per gram of soil. UA activity
was determined by the indophenol colorimetric method by measuring NH4

+-N generated
per gram of soil after 24 h [18]. DHA was tested by reduction of 2,3,5-triphenyltetrazolium
chloride (TTC) method [5].
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2.5. DNA Extraction and Sequencing

In this study, we analyzed the bacterial community structure in all soil samples using
the Illumina MiSeq PE300 high-throughput sequencing approach. Total genomic DNA was
extracted from 0.25 g of well-mixed soil for each sample using the Power Soil® DNA Isola-
tion Kit (Qiagen, Redwood City, US Functional Area, USA) following the manufacturer’s
protocol described by Zhao [19–21]. DNA concentration and purity were determined
with microspectrophotometry (NanoDrop®). Extracted DNA was sent to Mingke Biotech-
nology (Hangzhou) Co., Ltd, amplified with 341F (5′-CCTAYGGGRBGCASCAG-3′) and
806R (5′-GGACTACNNGGGTATCTAAT-3′) [22,23]. The purified amplicons were then
sequenced on an Illumina Miseq sequencing platform. Sequences with >97% similarity
were assigned to the same operational taxonomic units (OTUs). Representative sequences
of each OTU were screened for further annotation [10]. Besides, the α-diversity of the
bacterial community was determined by the Chao, Shannon, and Simpson indices, and the
number of observed species was generated by QIIME2 [24,25].

2.6. Data Analysis

The correlation analysis of soil physicochemical, HMs, and microbial activities were
completed with the corrplot R package (250 Northern Ave, Boston, MA 02210). Spearman
correlation coefficient was calculated with SPSS. Other plots were completed using software
Origin (1 Roundhouse Plaza, Northampton, MA, USA).

3. Results and Discussion
3.1. Soil HMs Contamination Level and Physicochemical Properties

The HMs concentrations of tested soil samples are shown in Table 1. The concentration
of total Cr ranged from 112.8 to 9727.2 mg/kg with an average of 1617.3 mg/kg, while
Cr (VI) ranged from 0 to 1083.3 mg/kg (average value 111.1 mg/kg), Ni varied from 15.6 to
58.4 mg/kg with mean value of 30.5 mg/kg, Cu and Zn ranged from 10.8 to 510.0 mg/kg
and 69.6 to 631.6 mg/kg with an average of 105.5 mg/kg and 186.8 mg/kg, respectively.
Clearly, the concentrations of each HMs were closely related to the electroplating process.
For example, the concentrations of Cr and Cr (VI) were far higher in S1 (chrome bath) and
S2 (decorative chrome tant) (Figure S1) than at the other sites. According to a risk control
standard for soil contamination of developing land (GB36600-2018) [26], the concentration
of Cr (VI) severely exceeded the standard (3 mg/kg) at most sites, while Cu and Ni did not
exceed the standard (Cu: 2000 mg/kg, Ni: 150 mg/kg). The screening value of Zn differs
from province to province, and it is 700 mg/kg in Hunan province [27]. Thus, Cr pollution
became the main contamination in EPZ.

The soil pH is shown in Table S1. Almost all soil samples were alkaline, except the
S2 sites (lower pH ranged from 4.24 to 6.23), which contained more Cr and Cr (VI) than
the other sites. Theoretically, as shown in Equation (1), soluble Cr (VI) will be converted
to dissoluble Cr (III) by H+ under acid conditions, and with the decrease in pH, more
precipitated Cr (III) is generated [28,29]. However, the pH was negatively correlated with
the concentrations of Cr and Cr (VI) in this study (Cr, r = −0.94, p < 0.01; Cr (VI), r = −0.91,
p < 0.01) through Pearson Correlation Analysis (Figure 1). Taking human factors into
consideration, as shown in Equation (2), sulfuric acid and potassium dichromate were used
in the decorative chrome plating process (heating to generate chromium trioxide, which
was the raw material), the leakage of which may cause a lower pH and higher Cr (VI). The
negative correlation between pH and Zn (r = −0.27, p < 0.05) concentration is partly due to
the adsorption of Zn2+ on oxides and aluminosilicates, which reduced its mobility around
pH 7. The formation or dissolution of a organic Zn complex at high pH will weaken the
pH effects on Zn concentration, but it will not reverse the correlation [30].

Cr2O7
2− + 8H+ + 6e− = 2Cr(OH)3 + H2O (1)

2H2SO4 + Na2Cr2O7 = 2 CrO3 + 2 NaHSO4+ H2O (2)
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Meanwhile, pH was positively correlated with MBC, UA, and PHA (MBC, r = 0.37,
p < 0.05; UA, r = 0.3, p < 0.05; PHA, r = 0.3, p < 0.05), and negatively correlated with
DHA (r = −0.65, p < 0.01). The same result was reported by Wic Baena and Jorge-
Mardomingo [31,32]: pH had a positive relationship with UA (r = 0.33, p < 0.001) and
PHA (r = 0.43, p < 0.001) and a negative relationship with DHA (r = −0.45, p < 0.001). As
shown in Table 2, the pH was positively correlated with the abundance of Arthrobacter
(r = 0.40, p < 0.05), which have been proved highly active in an alkaline environment [33].
Members of the genus Arthrobacter were found able to secret PHA and UA [34,35]: the posi-
tive relationship between pH, UA, and PHA might be due to the enrichment of Arthrobacter
in alkaline environments, thus more PHA and UA were produced.
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Table 1. The heavy mental contents from different sampling sites.

Total Ni (mg/kg) Total Cu (mg/kg) Total Cr (mg/kg) Total Zn (mg/kg) Total Cr (VI) (mg/kg)

S0-1 24.8 ± 0.72 38.0 ± 1.04 411.2 ± 0.72 83.6 ± 1.20 1.4 ± 0.28
S0-2 22.0 ± 0.40 20.0 ± 0.28 172.4 ± 0.44 83.6 ± 0.52 3.2 ± 0.34
S0-3 28.0 ± 0.16 29.2 ± 0.72 232.4 ± 0.80 105.6 ± 0.56 1.3 ± 0.37
S0-4 28.0 ± 0.52 20.0 ± 0.04 292.0 ± 0.68 91.2 ± 0.16 2.2 ± 0.22
S0-5 34.0 ± 1.52 35.2 ± 0.28 292.0 ± 0.20 124.8 ± 0.36 5.0 ± 0.64
S1-1 30.8 ± 0.56 16.8 ± 0.36 292.0 ± 0.20 96.4 ± 0.60 6.5 ± 0.68
S1-2 15.6 ± 0.20 16.8 ± 0.16 292.0 ± 0.36 143.6 ± 0.40 4.2 ± 0.20
S1-3 24.8 ± 0.76 10.8 ± 0.04 351.6 ± 0.44 69.6 ± 0.60 13.0 ± 0.22
S1-4 30.8 ± 0.72 486.0 ± 0.60 5786.0 ± 7.76 590.4 ± 0.52 104.5 ± 2.60
S1-5 24.8 ± 0.84 16.8 ± 0.16 351.6 ± 0.32 165.2 ± 0.16 82.0 ± 1.60
S2-1 18.8 ± 1.12 126.0 ± 0.08 7338.8 ± 4.76 258.0 ± 0.72 302.6 ± 1.04
S2-2 37.2 ± 0.40 132.0 ± 0.12 9727.2 ± 4.80 245.2 ± 2.40 861.9 ± 2.80
S2-3 28.0 ± 0.52 147.2 ± 0.28 9249.6 ± 6.44 251.2 ± 1.04 861.9 ± 3.40
S2-4 22.0 ± 0.40 219.6 ± 0.36 6681.6 ± 3.80 304.4 ± 0.60 1083.3 ± 4.40
S2-5 28.0 ± 0.52 23.2 ± 0.36 471.2 ± 0.24 133.2 ± 1.04 47.5 ± 1.04
S3-1 30.8 ± 0.32 258.8 ± 0.52 530.8 ± 0.20 156.0 ± 1.20 3.5 ± 0.24
S3-2 40.0 ± 0.28 376.8 ± 0.64 530.8 ± 0.24 191.6 ± 0.24 5.2 ± 0.04
S3-3 30.8 ± 0.24 510.0 ± 1.12 351.6 ± 0.24 121.6 ± 1.16 2.3 ± 0.04
S3-4 28.0 ± 0.20 86.4 ± 0.16 351.6 ± 0.52 98.8 ± 0.40 3.3 ± 0.68
S3-5 22.0 ± 0.76 20.0 ± 0.08 172.4 ± 0.44 123.2 ± 1.64 0.5 ± 0.44
S4-1 46.4 ± 0.56 189.2 ± 0.40 2859.6 ± 2.48 631.6 ± 2.08 0.1 ± 0.20
S4-2 28.0 ± 0.52 98.8 ± 0.12 590.4 ± 0.16 310.0 ± 2.60 23.3 ± 0.72
S4-3 40.0 ± 0.76 92.4 ± 0.24 590.4 ± 0.32 327.6 ± 0.88 1.8 ± 0.22
S4-4 22.0 ± 0.72 122.8 ± 0.76 351.6 ± 0.72 192.4 ± 0.88 7.4 ± 0.80
S4-5 30.8 ± 0.72 77.6 ± 3.48 411.2 ± 0.32 192.4 ± 0.40 8.4 ± 0.96
S5-1 24.8 ± 0.12 16.8 ± 0.20 112.8 ± 1.04 128.4 ± 2.08 3.5 ± 0.34
S5-2 30.8 ± 0.56 16.8 ± 0.16 292.0 ± 0.36 106.4 ± 1.80 1.0 ± 0.28
S5-3 37.2 ± 0.32 16.8 ± 0.08 351.6 ± 0.28 104.0 ± 0.20 2.1 ± 0.28
S5-4 58.4 ± 0.36 20.0 ± 0.04 232.4 ± 0.52 98.8 ± 0.40 0
S5-5 34.0 ± 0.52 10.8 ± 0.08 172.4 ± 0.80 148.4 ± 3.92 0
NC 43.2 ± 0.76 20.0 ± 0.03 292.0 ± 0.52 114.8 ± 0.19 0

Note: The results are presented as mean ± SD. NC: noncontaminated soil.

Table 2. Spearman correlation coefficient of environmental substrates on bacterial communities.

Methylophilaceae_Unclassified Methylobacillus Arthrobacter MB-A2-108_Norank Vicinamibacterales_Norank Sphingomonadaceae_Uncultured Muribaculaceae_Norank

Ni 0.100 −0.219 −0.058 0.236 0.095 −0.290 −0.112
Cu 0.107 0.132 −0.266 −0.152 −0.157 0.250 0.363 *
Cr −0.338 0.294 −0.285 −0.426 * −0.377 * 0.406 * 0.402 *
Zn −0.345 0.259 −0.246 −0.367 * 0.097 0.574 ** 0.312

Cr (VI) −0.444 * 0.487 ** −0.278 −0.500 ** −0.416 * 0.456 * 0.458 **
pH 0.558 ** −0.167 0.404 * 0.444 * 0.393 * −0.154 −0.365 *

* p < 0.05, ** p < 0.01.

3.2. Relationship Between HMs, EAs, and MBC

HMs had a strong influence on the soil EAs and MBC [36]. The EAs concentrations in
the soils at different sites were shown in Table S1. As shown in Figure 1A, the EAs and
MBC were negatively correlated with nearly all HMs in the electroplating plant.

DHA was very sensitive to HMs contamination and was usually used as an indicator
of chromium contamination in soil [37–40]. In this study, DHA was positively correlated
with the Cr and Cr (VI) concentration (Cr, r = 0.65, p < 0.01; Cr (VI), r = 0.87, p < 0.01).
However, previous studies showed that Cr(VI) can inhibit DHA activity by over 70%
after 35 d, and DHA activities were the lowest with 0.25 g/kg Cr (VI) [39]. Furthermore,
the increase of chromium (K2Cr2O7) from 40 mg/kg to 120 mg/kg caused a decrease of
DHA from 2.90 U/g to 0.25 U/g [40]. Thus, we assumed that other factors like microbial
processes might affect the activity of DHA.

As shown in Table 2, the abundance of Sphingomonadaceae_uncultured increased with
Cr and Cr (VI) concentration (Cr, r = 0.463, p < 0.05; Cr (VI), r = 0.738, p < 0.01). Since
the Sphingomonadaceae family were found to secret DHA [41,42], the positive relationship
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between DHA and Cr/Cr (VI) might be that Cr and Cr (VI) stimulated the growth of
Sphingomonadaceae family which could produce DHA.

PHA usually acts as a catalyst in the hydrolysis of ester and anhydride of phosphoric
acid [29]. In present study, PHA was observed negatively correlated to all the metals except
Ni (Cr, r = −0.36, p < 0.05; Cr (VI), r = −0.28, p < 0.05; Cu, r = −0.42, p < 0.05; Zn, r = −0.37,
p < 0.05). The UA, which was considered to be closely associated with the transformation,
biological turnover, and bioavailability of N [43], had a negative correlation with HMs
(Cr, r = −0.33, p < 0.05; Cr (VI), r = −0.28, p < 0.05; Zn, r = −0.36, p < 0.05; Cu, r = −0.4,
p < 0.05) too. Similar results found that Cr, Cr(VI), Cu, and Zn had negative correlations
with PHA and UA in previous studies [14,44–46]. As shown in Table 2, the Cr and Cr (VI)
had a negative correlation with Methylophilaceae_Unclassified and Vicinamibacterales_norank.
Since they were found to secret PHA and UA [34,47–49], the negative relationship between
PHA, UA, and Cr, Cr (VI) might be caused by the Methylophilaceae and Vicinamibacterales
family members inhibited by Cr and Cr (VI).

The microbial biomass of soil is comprised by the total mass of fungi, bacteria, pro-
tozoa, and algae [50]. It is usually correlated with the supply of carbon (C) substrate [51].
MBC represents the microbial community size and usually decreased by HMs. Thus, MBC
has frequently been used to investigate the long-term impact of HMs on microorganisms
within the soil environment [46,52–54]. In our study, MBC was negatively correlated with
Cu, Cr, and Cr (VI) (Cu, r =−0.17, p < 0.05; Cr, r =−0.32, p < 0.05, Cr (VI), r =−0.26, p < 0.05),
and decreased compared to the noncontaminated soils (Table S1). The reason might be that
under the HMs pressure, microorganisms spend more energy on detoxification rather than
growth and biomass accumulation [55].

3.3. Relationship between Bacterial Diversity and HMs

The Illumina MiSeq platform was used to analyze the bacterial diversity of the soil
samples across the six contaminated sites. A total of 1,348,872 16S rDNA trimmed sequences
with an average length of 416 bp were obtained for classification. The sequences were
placed into 60–1778 operational taxonomic units (OTUs) at a level of sequence similarity
of ≥97%. To compare species richness, rarefaction curves were generated by randomly
sampling reads and plotting the number of novel 97% OTUs against the number of sample
size (Figure S2). Clearly, the increase in sample size contributed to an increase in OTUs. As
the sample size increased, the curve tended to be flat, indicating a sufficient sequencing
data volume.

The bacterial α-diversity index is shown in Table S2. It had been reported that long-
term contamination with high load HMs (Cr, Cu and Zn) could shift the abundance and
the diversity of microbial communities [56]. The Chao indices represent the microbial
richness and was negatively related to Cu, Cr, Zn, and Cr (VI) (Cu, r = −0.35, p < 0.05;
Cr, r = −0.51, p < 0.01; Zn, r = −0.35, p < 0.05; Cr (VI), r = −0.39, p < 0.05) (Figure 1B)
in this study. The same result showing a negative relationship between Cr and Chao
was found in Li’s research [11], while there was no evidence supporting relationships
among Ni, Cu, Zn, and Chao. Furthermore, the Shannon and Simpson indices represented
the microbial diversity and only Shannon was negatively correlated with Cu (r = −0.38,
p < 0.05). As illustrated by Kong, the addition of Cu up to 100 µm strongly reduced
functional diversity and evenness of microbial community, suggesting that Cu was the key
factor in reducing microbial diversity [57]. Besides, the bacterial community’s richness and
diversity decreased significantly compared to the noncontaminated soils. Previous studies
showed that the diversity of sensitive microbial species abruptly decreased under long-
term HMs contamination, while the abundance of resistant microorganisms increased by
adapting to new habitats [56,58,59]. This further supported the assumption that the growth
of microorganisms was inhibited and the sensitive species might be replaced by resistant
species under the pressure of HMs, causing a lower microbial richness and diversity.
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3.4. Relationship between Bacterial Community and HMs

By using principal component analysis (PCA), we separated the data of bacterial genus
into two factors that explained 74.03% of the variance (Figure 2). Clearly, the bacterial
communities of the S1 site, which contained more Methylobacillus, were totally different
from other sites. The other sites (S0, S2, S3, S4 and S5) were grouped tightly, indicating that
most of the soil samples shared high similarity in terms of their bacterial structure.

For further analysis, the bacterial community composition of contaminated soils was
investigated, and the result is shown in Figure 3A at the phylum level and Figure 3B at
the genus level. The phylum shown in the Figure 3A is based on the taxa with a total
abundance >30% of all samples. Besides, the genus shown in the Figure 3B is based
on the taxa with a total abundance >30% of all samples, and abundance >10% in at
least one sample. The Actinobacteria and Proteobacteria were the dominant phyla in all
samples except S2-2 and S2-3, while Chloroflexi, Firmicutes, Acidobacteria, Patescibacteria,
and Gemmatimonadota accounted for a small amount proportion. At the genus level, the
Methylophilaceae_Unclassified, Methylobacillus, Arthrobactery and Muribaculaceae_norank, be-
longed to Proteobacteria and Actinobacteria dominated the microbial communities in soil
samples S0, S1, S2, S3 and S4. Besides, the Actinobacteria was dominant in the noncontam-
inated soils, while the Proteobacteria was dominant in the contaminated soils. Similarly,
Sheik found that the contaminated soils all had a similar phylum-level abundance, and
Proteobacteria was the dominant phylum in Cr contaminated soils in contrast to the control
soils where Actinobacteria was the dominant phylum [60]. This suggested that the genus
that belonged to Proteobacteria had more resistance towards HMs than that belonging
to Actinobacteria.
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The effects of HMs on bacteria community structure have been widely studied previ-
ously [61–63]. In this study, we investigated the relationships between HMs and some bacterial
genus in EPZ soil samples, as shown in Table 2. We found that Sphingomonadaceae_uncultured
was positively correlated with Cr (r = 0.406, p < 0.05), Zn (r = 0.574, p < 0.05) and Cr (VI)
(r = 0.456, p < 0.01).
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Downstream genes oscA, which were found to resistant to Cr (VI), were proved to exist
in Methylobacillus, suggesting that Methylobacillus may be related to Cr (VI) resistance [64].
Zhou reported that the abundance of Sphingomonadaceae increased with CrO4

2− exposure
and became the major bacteria in the cake layer of a membrane bioreactor [65]. Liu showed
that Sphingomonadaceae was significantly enriched at an 80 cm depth layer in chromium-
contaminated soil [66]. Besides the Sphingomonadaceae was found dominated in many
soils polluted with Zn, Cr and related to the Zn hyperaccumulation in the root [63,67,68],
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suggesting that Sphingomonadaceae might have a resistance to Cr, Cr (VI) and Zn, and might
help Cr (VI) contaminated soil to recover ecological function. There were few research
pieces focusing on the Muribaculaceae, and our result showed a positive correlation between
Muribaculaceae and HMs, suggesting that it might have a strong resistance towards Cr,
Cr (VI), and Cu, which had never been found before.

4. Conclusions

This study showed that DHA was significant positively correlated with Cr and Cr (VI)
in contaminated soil, which had never been found in previous studies. High-throughput
sequencing results verified that Sphingomonadaceae, which had been proved to be able to
secrete DHA, was enriched in Cr contaminated soils. Meanwhile, the microorganism might
divert energy from growth to cell maintenance functions under HMs pressure, causing a
decrease in the richness of the bacterial community and MBC. Besides, Methylobacillus and
Muribaculaceae might have strong resistance to Cr (VI), Zn, and Cu meaning these microbes
might have advantages and potential applications in the bioremediation of heavy metal
compound contaminated soils.
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