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Abstract: Coagulase-negative staphylococci (CoNS) are among the most frequently recovered bacteria
in routine clinical care. Their incidence has steadily increased over the past decades in parallel to
the advancement in medicine, especially in regard to the utilization of foreign body devices. Many
new species have been described within the past years, while clinical information to most of those
species is still sparse. In addition, interspecies differences that render some species more virulent
than others have to be taken into account. The distinct populations in which CoNS infections play a
prominent role are preterm neonates, patients with implanted medical devices, immunodeficient
patients, and those with other relevant comorbidities. Due to the property of CoNS to colonize the
human skin, contamination of blood cultures or other samples occurs frequently. Hence, the main
diagnostic hurdle is to correctly identify the cases in which CoNS are causative agents rather than
contaminants. However, neither phenotypic nor genetic tools have been able to provide a satisfying
solution to this problem. Another dilemma of CoNS in clinical practice pertains to their extensive
antimicrobial resistance profile, especially in healthcare settings. Therefore, true infections caused by
CoNS most often necessitate the use of second-line antimicrobial drugs.

Keywords: coagulase-negative staphylococci; hospital-acquired infections; foreign body-related infections

1. Introduction

Coagulase-negative staphylococci (CoNS) form a large group of Gram-positive cocci
united by their mutual lack of the virulence factor coagulase [1]. Many species belong to
this group, the latest one, Staphylococcus borealis, being described as recent as 2020 [2]. In
daily clinical practice, CoNS are commonly regarded as less pathogenic than Staphylococcus
(S.) aureus and other members of the S. aureus complex [3–5], which in contrast possess
coagulase. There is a huge discrepancy in published literature, with publications pertinent
to S. aureus outnumbering literature on CoNS by far. This discrepancy is indicative of
the relative lack of CoNS’ scientific appraisal during the past years and decades. Many
CoNS infections are associated with foreign bodies (e.g., catheters) that facilitate biofilm
formation, which contributes to CoNS pathogenicity. Importantly, the virulence factors of
CoNS vary considerably, with some species (e.g., S. lugdunensis) being capable of significant
adverse impacts on patients [6–8]. A probable explanation to why CoNS-related infections
are overlooked so often is the fact that they are frequent commensal members of the skin
microbiota [9]. As a consequence, they are often classified as contaminants rather than the
causative agent of infection. The distinction between infection and contamination is not
always straightforward, and most attempts thus far to identify one or more distinctive
marker(s) have been unsuccessful. In this review, we will focus on the increasing clini-
cal impact of CoNS-associated infections, the challenges in diagnostics, and the current
therapeutic options.
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2. Increasing Clinical Impact of CoNS

CoNS have been increasingly recovered in clinically relevant samples, e.g., blood cul-
tures or otherwise primarily sterile samples, in parallel to the advancement in all medical
specialties [10]. These medical advancements include not only sophisticated immunosup-
pressive or -modulatory treatment regimens in oncology, but also the increased use of
implantable foreign bodies, such as central venous access devices, total joint replacements,
and vascular grafts.

Newborns and preterm neonates are a particularly vulnerable patient group, in whom
infections caused by microorganisms with low pathogenicity can occur at a higher rate
than in otherwise healthy children or adults [11–13]. Neonatal sepsis contributes heavily
to the high morbidity and mortality, and CoNS have been reported to be one of the
main causes of neonatal sepsis in neonatal intensive care units (NICU) [14]. However,
bloodstream infections (BSI) caused by CoNS are one of the most prevalent nosocomial
infections among all age groups. CoNS represented 31% among all cases of nosocomial BSI
within a period of 7 years in a total of 49 US hospitals [15]. This finding was confirmed
in several other cohorts of different geographical backgrounds over the past years [16].
For example, an observational study from Germany, which examined the prevalence of
nosocomial infections in a University hospital, identified CoNS as the second most common
cause of nosocomial infections [17]. More recent studies revealed the relationship between
CoNS and the increased use of implanted medical devices like cardiac valves or joint
replacements [18].

Several CoNS form a biofilm that enables the bacteria to adhere to medical devices and,
as a result, to protect them against antibiotics [19]. Furthermore, especially elderly people
with significant comorbidities, premature neonates or immunocompromised patients are
at high risk for CoNS-associated BSIs, skin and soft tissue infections, and both native and
prosthetic valve endocarditis. Additionally, CoNS-associated infections can occur in young
and healthy individuals as well. S. saprophyticus, for example, is a cause for urinary tract
infections, especially in young women.

Moreover, CoNS are being increasingly studied within veterinary medicine, while
their role as disease-causing pathogens in animals is still regarded as small. Although
the relevance for human disease is not fully established, it has been shown that CoNS-
inhabiting animals can display a wide range of antimicrobial resistances, and thus may
potentially serve as a reservoir of resistance genes [20].

Currently, more than 50 different CoNS species have been described. Figure 1 displays
an overview of CoNS known thus far, their attributable clinical relevance, frequency, and
the associated infectious syndrome. In total, six species are believed to be associated
with a higher clinical significance, namely S. epidermidis, S. saprophyticus, S. haemolyticus,
S. capitis, S. hominis, and S. lugdunensis. Some species, including S. lugdunensis, are known
to cause severe clinical disease. Antibiotic resistance has become an increasing problem
with S. lugdunensis, which has some mutual features with S. aureus and has been reported
as a cause of infective endocarditis [6,8].



Microorganisms 2021, 9, 830 3 of 13
Microorganisms 2021, 9, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. Overview of CoNS, according to the predominantly affected organ site or infectious syn-
drome, from left to right: urinary tract; cardiac valves; prosthetic joints and vascular grafts; blood-
stream infections; skin and soft tissue infections; the question mark designates species of unknown 
clinical relevance. Most prevalent and relevant species are highlighted in blue; species are de-
picted in accordance with their first description, from top to bottom. Pictograms were taken with 
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Figure 1. Overview of CoNS, according to the predominantly affected organ site or infectious
syndrome, from left to right: urinary tract; cardiac valves; prosthetic joints and vascular grafts;
bloodstream infections; skin and soft tissue infections; the question mark designates species of
unknown clinical relevance. Most prevalent and relevant species are highlighted in blue; species are
depicted in accordance with their first description, from top to bottom. Pictograms were taken with
permission from Servier Medical Art [21].

Besides sporadic case reports, only limited clinical data is available about the most
recently discovered CoNS species. Six species were discovered between 2015–2020, one of
which is S. argensis [22]. Up until now, this strain has only been isolated from an aquatic
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environment, precisely from the river, Argen, in Southern Germany. S. edaphicus was
also isolated from a natural environment. Scientists first isolated S. edaphicus from stone
fragments and sandy soil in James Ross Island, Antarctica [23]. It is notable that S. edaphicus
possesses mobile genetic elements that carry antimicrobial resistance genes, thereby ren-
dering it a resistance reservoir that potentially spreads resistance-associated genes. Three
further species were described for the first time in 2019, i.e., S. caeli, S. pseudoxylosus, and
S. debuckii [24–26]. All three were isolated from various animal environments (S. caeli from
air sampling in a rabbit holding, S. pseudoxylosus from bovine mastitis and S. debuckii from
bovine milk), and their clinical relevance for humans remains to be established. The most
recently discovered species, S. borealis, was obtained from four isolates of the human skin,
as well as from one blood culture, indicating this species’ ability to colonize human skin and
potentially penetrate into the blood stream [2]. Due to lack of data, it has not been possible
yet to link the newer CoNS species to specific infectious syndromes or define their impacts
on humans. However, one existing problem is that even species that have been known for
a longer time can be difficult to assign to a specific infectious syndrome. In order to give an
exemplary overview into a selection of CoNS and the wide range of associated infections,
three species and their characteristics of clinical cases reported thus far are listed in Table 1.
For S. saccharolyticus—of note, the only anaerobic CoNS—more than a dozen clinical cases
have been reported. Several of these cases were foreign body-related infections, but also
cases without any indwelling medical devices have been documented [27–42]. Only single
case reports for the more recently described species S. massiliensis, S. petrasii subsp. petrasii,
and S. petrasii subsp. croceilyticus are existing [43,44]. However, this does not necessarily
translate into a reduced clinical significance. It was pointed out by the authors of the case
report that a variety of CoNS species were found in the clinical samples, which made it
impossible to undoubtedly identify the species that caused the infection and thus determine
the clinical significance of a species. This has been a recurring problem in the diagnosis
of CoNS.

3. The Diagnostic Complexities—How to Distinguish between Infection
and Contamination

The main challenge in diagnosis is the correct adjudication of whether or not the
detected organism, i.e., a CoNS member, is the causative pathogen of the patient’s infection.
It can be assumed that the complexity of a diagnosis leads to potentially disregarded CoNS
infections, consequently leading to undertreatment (i.e., delayed or withheld antibiotics) in
some cases and thereby contributing to morbidity and mortality [45]. On the other hand,
antibiotic overtreatment is associated with the development of antimicrobial resistance,
severe adverse events, and higher costs, mainly due to the need for in-patient therapy [46].
Ultimately, an unnecessarily prolonged hospitalization does not only cause a loss in quality-
adjusted life-years, but hospital bed occupancy exposes another factor of this complexity,
which becomes particularly immanent during times of hospital capacity shortage, especially
during pandemics, such as COVID-19 [47].

Another diagnostic challenge is the correct identification on a species level. In some
laboratories, matrix-assisted laser desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) may not be as readily available as in others, even though this method has
been considered the gold standard since its introduction into microbiological diagnostics
more than a decade ago [48–50]. As described above, significant interspecies differences
in clinical relevance, pathogenicity, and even antimicrobial susceptibility exist [50,51].
Therefore, identification to the species level can be regarded as fundamental. Yet, taxo-
nomic categorizations are ongoing. Some previously described species have been partially
re-classified, and some newly described CoNS may not yet be deposited in the relevant
MALDI-TOF MS databases [52]. An additional problem that can complicate the microbi-
ological identification is the fastidious and slow growth of some species, for example of
S. saccharolyticus [38].

The group of CoNS is a heterogenous group constituted by a variety of different
species, each with a unique set of traits. These microbiological properties have previously
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been described in detail [53]. Nevertheless, many studies have the tendency to compile all
CoNS into one group. Not only do the phenotypic traits differ, but the niches which they
tend to colonize vary widely. For example, S. capitis is found preferably on the scalp, while
S. cohnii is isolated from feet, and S. saccharolyticus from back skin [40,54]. Considering the
CoNS trait to colonize the human skin as commensals, it is not surprising that they can
result in contaminated samples. Currently it remains a challenge to find valid and univer-
sally applicable tools that make it possible to decide whether the clinical case is an infection
caused by CoNS or if the detection of a CoNS species indicates just a contamination with
the same respective microorganism. Figure 2 summarizes a proposed set of criteria for the
distinction between contamination and infection derived from the literature.
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Figure 2. Model for differentiation between contamination and infection pertaining to the finding of CoNS in a primary
sterile material; BC: blood culture.

Beekmann and colleagues proposed that in order to prevent misclassification of CoNS
as a cause of infection, at least two independent blood cultures must be positive for CoNS
within 5 days. Alternatively, one positive blood culture suffices if the clinical symptoms are
suggestive of an infection [55]. Other research groups have similarly reasoned that one sin-
gle positive blood culture may be clinically significant, especially in the context of clinical
syndromes with high mortality, e.g., sepsis [56]. García-Vázquez proposed an algorithm
including a Charlson score ≥ 3, Pitt score ≥ 1, neutropenia, the presence of central venous
catheter, identification of S. epidermidis, and time to positivity < 16 h, which yielded a
positive predictive value of 83% [57]. Apart from this, additional criteria can be considered.
For example, Hitzenbichler and colleagues performed a single-center retrospective analysis
of 252 patients with blood cultures positive for CoNS other than S. epidermidis [54]. They
considered an infection as “likely” when all of the following criteria where met: absence of
another likely infection at the time of blood culture withdrawal; ≥ 2 blood cultures were
positive with the same species or one of the findings was a relevant clinical specimen; and
if the symptoms or markers of inflammation improved after therapy. To account for cases
with only one positive blood culture, they designated these as “possible” infections, if in
addition a foreign body was in situ. Additionally, according to the authors, the time to
positivity, the resistance profile, and the sole growth in anaerobic blood cultures should
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also be examined for their potential do distinguish between infection and contamination.
Leveraging sequencing or genotyping data to characterize the pathogenic potential of
CoNS constitutes another approach that has been applied recently [58]. Aiming to find a
genotype-phenotype correlation, Shelburne and colleagues showed with whole-genome
sequencing that certain sequence types of S. epidermidis predominate among patients with
complicated BSI [59]. Sánchez and colleagues sought to find a genetic marker to distinguish
between commensal and infecting strains of S. epidermidis in prosthetic joint infections [60].
While some differences between the strains were noted, especially pertaining to antibiotic
resistance and genes linked with increased pathogenicity, properties like biofilm forma-
tion were equally distributed. They concluded that despite some differences, no single
distinction marker, which would be sensitive and specific enough, could be found.

In conclusion, it can be summarized that several distinguishing features exist, but a
general and reliable method remains elusive. Another, yet different approach would entail
taking the host response into account. This can be achieved by either measuring novel
biomarkers or sets thereof [61], or by exploiting transcriptomics to measure differential
gene expression [62]. Several research groups have developed transcriptomic tools utilizing
different gene sets, while the feasibility on a large-scale and in point-of-care settings remains
to be established [63,64]. We hypothesize that future steps could combine both modern
microbiological methods with probing the host response. However, clinical data employing
this dual approach are currently very scarce [65,66].

Table 1. Detailed clinical information on the cases reported thus far with S. saccharolyticus, S. massiliensis, and the different S.
petrasii subspecies.

Species Main Source Case Reports References

S. saccharolyticus

Human skin (especially back
skin), animal skin (gorilla),

contaminated platelet
concentrates

13
Anaerobic endocarditis, prosthetic

valve endocarditis, bacteremia,
discitis and vertebral

osteomyelitis, pneumonia, lung
infections in cystic fibrosis

patients, infection of the shoulder
joint, bone marrow infection,

pyomyositis, heart valve disease,
spondylodiscitis, empyema.

[27–33,35–37,39,41,42]

S. massiliensis Human skin 1
Brain abscess. [43,67,68]

S. petrasii

subsp. petrasii Human skin and ear canal 1
Cerebral hemorrhage. [44]

subsp. croceilyticus Human skin and ear canal 1
Acute otitis externa. [44]

subsp. jettensis not documented

/
Strains were isolated from human

clinical samples which were
expected to be sterile (catheters,

biopsies, cerebrospinal fluid,
blood and deep swabs). Moreover,
they were found in mixtures with

other CoNS, which made it
difficult to assess their clinical

significance.

[69,70]

subsp. pragensis not documented

6
Prostatitis, hand wound infection,
appendicitis, pancreatitis, sepsis,

phlegmona.

[71]
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4. Therapy and Prevention—Many Old Bugs, Little New Drugs
4.1. General Remarks

As opposed to strains acquired in community settings, nosocomial or healthcare-
associated CoNS usually display a wider range of resistance patterns. Most notable are the
higher resistance rates to beta-lactam antibiotics, including penicillin, oxacillin/methicillin,
but also gentamicin, clindamycin, ciprofloxacin, and erythromycin. Hence, CoNS can
be considered as relatively “difficult to treat”, which is somewhat in stark contrast to
the aforementioned low pathogenicity compared to S. aureus or others. Moreover, CoNS
have the ability to rapidly acquire and modify resistance genes. This ability subsequently
promotes the transmission of these genes into different staphylococcal species or even other
bacterial genera [72,73]. While methicillin-susceptible strains can and should be treated like
methicillin-susceptible S. aureus infections, i.e., with an anti-staphylococcal penicillin e.g.,
(flucl-)oxacillin (or alternatively, cefazolin), the majority of CoNS in health-care settings
require the use of second-line antibiotics such as vancomycin, daptomycin, or linezolid.
Specific therapy recommendations depend on the affected organ system; on the presence
of foreign bodies, the contingency to remove those; and patient characteristics, such as age,
immune status, and comorbidities.

4.2. Glycopeptides

Vancomycin, the oldest glycopeptide antibiotic, offers a broad Gram-positive coverage
through inhibiting cell wall synthesis [74]. Initially, its use was propagated for the treat-
ment of penicillin-resistant Staphylococcus aureus, but with the advent of penicillinase-stable
beta-lactam antibiotics, it soon became a reserve substance, e.g., for patients allergic to
beta-lactams, and the drug of choice for infections caused by methicillin-resistant S. aureus
(MRSA). Although the increasing prevalence of vancomycin-resistant enterococci (VRE)
has limited its empiric use in settings with high VRE prevalence, the rate of vancomycin-
resistance among staphylococci has remained steadily low [75]. Therapeutic drug moni-
toring (TDM) is recommended to ensure target attainment and to minimize drug toxicity,
mainly nephrotoxicity. The so-called “red man syndrome” has been associated with rapid
infusion. A recently revised guideline of the Infectious Disease Society of America (IDSA)
has proposed a more sophisticated approach to TDM in the context of MRSA. It propagates
computing the target area under the curve over 24 h to minimum inhibitory concentration
(AUC/MIC) of 400–600 mg/L/hour on the basis of two or more measurements [76], while
the more traditional approach relied on target trough levels as a surrogate marker [77].

Teicoplanin was discovered a few decades later [78], but with a similar mode of action,
with clinically relevant differences pertaining to the MIC variability in some CoNS. In
a French study, as much as one third of CoNS isolates were found to have an MIC of
>4 µg/mL, and thus were non-susceptible to teicoplanin [79].

4.3. Lipoglycopeptides

Telavancin, dalbavancin, and oritavancin belong to the newly developed semisynthetic
group of glycopeptides. Hence, the spectrum of antimicrobial activity resembles those of
vancomycin and teicoplanin [80–82]. Their main indications per approval are acute bacterial
skin and skin structure infections; in addition, telavancin can be used in pneumonia caused
by MRSA as well. Intriguingly, dalbavancin offers the possibility of once-a-week dosing,
owing to its long half-life of 8.5 days. Side effects of note are renal impairment (telavancin);
gastrointestinal symptoms and liver enzyme elevation (dalbavancin); and infusion reaction
and potential drug–drug interactions (oritavancin). Experience from extended clinical use
is still relatively limited.

4.4. Daptomycin

Daptomycin is a cyclic lipopeptide that was discovered in the 1980s; however, its
approval in the US and in Europe followed decades later in 2003 and 2006, respectively.
This substance targets the cell membrane of Gram-positive bacteria. Its spectrum of
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activity is similar to that of glycopeptides. A low rate of resistance among CoNS has
recently been reported [83]. Examples for its clinical use include prosthetic joint infections
by oxacillin-resistant staphylococci with either non-susceptibility or reported allergy to
vancomycin [84] and bacteremia by S. aureus, including right-sided endocarditis. Initially,
this substance was approved primarily for acute bacterial skin and skin structure infections
caused by Gram-positive cocci. It has also been proposed as an alternative to linezolid in
the treatment of VRE infections, albeit with a higher than approved dose, i.e., 8–12 mg/kg
per day [85]. Relevant adverse effects are a reversible muscle toxicity, which was especially
prevalent during the early years when daptomycin was given twice daily, and eosinophilic
pneumonia [86].

4.5. Oxazolidinones

Linezolid is the most widely used oxazolidinone, a group of bacteriostatic drugs that
inhibit protein synthesis. The main role of linezolid has been as a therapeutic option for
VRE infections. Currently, only limited data is available to recommend its use in CoNS
as a first-line treatment. Still, there have been increasing reports on linezolid use in the
past years [87,88]. In a large study on the feasibility of early oral step-down therapy in
endocarditis, linezolid was among the antibiotics that were used, and was largely used
in combination with other antibiotics [89]. The study which rightfully gained a lot of
attention by showing the non-inferiority of early oral step-down therapy to the conven-
tional intravenous therapy, was however underpowered to assess individual antibiotic
combinations and their comparison among each other. Nevertheless, the continuing trend
to shorten intravenous therapies in favor of an early step-down is likely to keep linezolid
relevant, due to its oral formulation with high bioavailability. However, imprudent use of
linezolid has been linked to the emergence of linezolid-resistant strains [90], in particular
linezolid-resistant S. epidermidis [91–93]. CoNS have a higher and easier ability to acquire
and develop linezolid-resistance factors following exposure to the drug. The incidence of
linezolid resistance in CoNS is currently higher than in S. aureus. It is believed that linezolid
resistance originally emerged in CoNS, and then transmitted to S. aureus [94]. Another
concern is severe and partially irreversible side effects, such as bone marrow toxicity, lactic
acidosis, and neuropathies. The risk for adverse events steeply increases after 2 weeks.
Another limitation is the restriction of approval for a maximum of 28 days, which hampers
its longer-term use in, e.g., bone and joint infections [95].

4.6. Alternatives and Biofilm-Active Substances

Alternative substances that are of importance, especially in non-critical, localized infections,
such as skin and soft tissue infections or bone and joint infections, are e.g., co-trimoxazole,
clindamycin, and doxycycline. All of these possess a high oral bioavailability [96]. In foreign
body-related infections, the additive use of a biofilm-active substance has been propagated
by relevant guidelines and experts [84,97,98]. For CoNS, these are largely rifampicin and, to a
lesser extent, fosfomycin [99].

5. Conclusions

In conclusion, CoNS form a large group of skin microbiota that play an increasingly
important role, especially in health-care associated infections. The advent of MALDI-TOF
MS in routine microbiology diagnostics and the increasing feasibility of whole-genome
sequencing will bring even more CoNS species to life, while also helping to better charac-
terize their pathogenicity and resistance profiles. The main challenge in routine diagnostics
remains to correctly assign the causative role of CoNS recovered from primarily sterile
materials, as no single or composite diagnostic tool with a sufficiently high sensitivity and
specificity exists to allow for a reliable diagnosis. Future studies aiming to leverage both
modern pathogen detection methods and assessment of the host response could help shed
light on the clinical utility on such a combined approach. Moreover, clinical data are highly
needed especially for the rarer and newly described CoNS.
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