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Abstract: Cutaneous leishmaniasis (CL) caused by Leishmania (Leishmania) infantum is endemic in
the Mediterranean basin. Here we report an autochthonous case of CL in a patient living in central
Italy with an unsatisfactory response to treatment with intralesional Meglumine Antimoniate and
in vitro demonstration of reduced susceptibility to SbIII. Parasitological diagnosis was first achieved
by histopathology on tissue biopsy and the patient was treated with a local infiltration of Meglumine
Antimoniate. Since the clinical response at 12 weeks from the treatment’s onset was deemed unsat-
isfactory, two further skin biopsies were taken for histopathological examination, DNA extraction
and parasite isolation. L. (L.) infantum was identified by molecular typing. The low susceptibility to
Meglumine Antimoniate was confirmed in vitro: the promastigotes from the patient strain showed
significantly lower susceptibility to SbIII (the active trivalent form of antimonial) compared to the
reference strain MHOM/TN/80/IPT1. The patient underwent a new treatment course with intra-
venous liposomal Amphotericin B, reaching complete healing of the lesion. Additional studies are
needed to confirm the epidemiological and clinical relevance of reduced susceptibility to SbIII of
human L. (L.) infantum isolate in Italy.

Keywords: Leishmania infantum; antimonials; resistance; cutaneous leishmaniasis

1. Introduction

Leishmaniases are parasitic diseases transmitted by sandflies showing heterogeneous
clinical manifestation, depending on the Leishmania species and host health status. About
20 species of Leishmania, mainly belonging to the subgenera Leishmania and Viannia, can
parasitize humans. A comprehensive updated taxonomy of trypanosomatidae, including
the genus Leishmania, has been recently published [1]. Clinical manifestations range from
cutaneous lesions (cutaneous leishmaniasis, CL) to severe systemic multiorgan disease
(visceral leishmaniasis, VL). In the Old World (i.e., southern Europe, the Middle East,
Asia, and Africa) the etiological agents of CL are Leishmania (Leishmania) species, such as
L. (L.) donovani, L. (L.) infantum, L. (L.) major, L. (L.) aethiopica, and L. (L.) tropica [2]. The
lesions generally occur on skin portions easily accessible to sand flies, such as the face or
limbs. The CL lesions can manifest as a single nodular or ulcerative lesion at the site of
parasite inoculation, called localized cutaneous leishmaniasis (LCL) or as multiple lesions

Microorganisms 2021, 9, 1147. https://doi.org/10.3390/microorganisms9061147 https://www.mdpi.com/journal/microorganisms

https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0001-5456-1821
https://orcid.org/0000-0003-0862-4937
https://orcid.org/0000-0001-6456-6626
https://orcid.org/0000-0002-1747-526X
https://www.mdpi.com/article/10.3390/microorganisms9061147?type=check_update&version=1
https://doi.org/10.3390/microorganisms9061147
https://doi.org/10.3390/microorganisms9061147
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/microorganisms9061147
https://www.mdpi.com/journal/microorganisms


Microorganisms 2021, 9, 1147 2 of 8

caused by infection propagation, named diffuse cutaneous leishmaniasis (DCL) [3]. In
the Mediterranean basin, CL often manifests as a single, painless lesion caused by L. (L.)
infantum [4], which represents the etiological agent of CL and VL in humans, as well as
canine leishmaniasis (CanL).

In the Old World, intralesional pentavalent antimony compounds (i.e., sodium sti-
bogluconate and Meglumine Antimoniate) are among the first choice for the treatment
of uncomplicated CL, while liposomal amphotericin B or other systemic treatments can
be used for complicated CL or for immunosuppressed patients [5]. Antimonials are used
also in the standard therapy for CanL, either alone, or in combination with allopurinol [6].
Notably, treatment failure due to resistance to antimonials has been described in differ-
ent studies, mostly in the treatment of L. (L.) donovani VL in the Indian subcontinent [7],
and rarely in the Mediterranean region [8], where treatment efficiency exceeding 95% in
HIV-negative individuals has been reported [9].

In recent years, new evidence of CL cases in north-eastern Italy has been docu-
mented [10]. However, to the best of our knowledge, human CL cases not responding to
antimonials have never been notified in Italy so far. Here, we report an autochthonous CL
case due to L. (L.) infantum in central Italy, with unsatisfactory response to treatment with
intralesional pentavalent antimony compounds.

2. Description of the Case

A 61-year-old male was referred from the San Salvatore–Muraglia hospital (Pesaro,
Italy), in May 2019 as a suspected case of CL, with a skin lesion on the dorsal left forearm
with diameter of 5 × 3 cm. The patient reported not having traveled abroad in the previous
years. Physical examination did not reveal any clinical sign of pathology, except for the
abovementioned lesion. The lesion was biopsied by a dermatologist in aseptic conditions,
with histological report of skin characterized by intense chronic limphoplasmocytoid
inflammation and presence of histiocytes containing several Leishmania amastigotes. The
ensuing pathological diagnosis was cutaneous leishmaniasis of the left forearm. Laboratory
results showed 5.81 × 106 erythrocytes, Hb 17.1 g/dL, MCV 88, normal white blood cells,
and platelet count and biochemical parameters within normal range. Renal and liver
function were also normal, and no autoantibodies were detected. The patient had just been
tested for polyglobulia by a hematologist, and he was in clinical follow-up. No evidence of
BCR-ABL or Jak2 mutations was reported.

The patient was treated with a local infiltration of Meglumine Antimoniate (Glucantime®

vials 1.5 g/5 mL—1 vial every week for a total of 5 weeks) in the skin lesion and along its
margins. Twelve weeks after the beginning of therapy the clinical result was not deemed
satisfactory by the managing clinicians (Figure 1).
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After 12 weeks from the beginning of treatment, the patient underwent a second
skin biopsy. Maintaining aseptic conditions and after the expression patient’s informed
consent, two 5 mm diameter biopsies were collected from the nodular lesion. One biopsy
was fixed in 4% formalin and sent for microscopic analysis which showed persistence of
histiocytes containing Leishmania amastigotes. The second biopsy was collected in 5 mL
sterile Tobie medium, disrupted by pipetting and divided into two aliquots: one was used
for parasite isolation as described previously [11,12] and the other for DNA extraction.
The DNA was extracted with the DNeasy Blood & Tissue kit (Qiagen) and amplified by a
real-time PCR assay (qPCR-ML) as previously described [13–15]. The qPCR-ML assay gave
positive amplification results indicating the presence of Leishmania spp DNA in the skin
sample. Melting analysis [13] allowed amplicons to be assigned to Leishmania (Leishmania)
subgenus (Figure 2A). The ITS1-PCR RFLP analysis, performed as described by Schönian
et al. [16], enabled the identification of L. (L.) infantum species (Figure 2B). The species
identification was confirmed by partial sequencing of glucose-6-phosphate isomerase gene
and successive alignment against Leishmania sequences using the BLASTN algorithm,
followed by construction of the phylogenetic tree (Figure 3).
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Figure 2. Molecular identification and characterization of the parasite from the skin biopsy. (A) Melting analysis of
qPCR-ML amplicons. A region of kinetoplast DNA (kDNA) was amplified by a qPCR assay using primer pairs MLF/MLR
as described previously [13]. Briefly, PCR reactions were carried out in duplicate, in 25 µL volume containing 1 µL template
DNA (corresponding to 140 ng DNA) and 24 µL SYBR green PCR master mix (Diatheva srl) with 200 nM of each primer,
using a Rotor-Gene 6000 instrument (Corbett life science). The amplification conditions were: 94 ◦C for 10 min; followed
by 45 cycles at 94 ◦C for 20 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. At the end of the run, a melting curve analysis was
performed from 82 ◦C to 90 ◦C. As positive control, DNA from L. (L.) infantum MHOM/FR/78/LEM75 was used. Melting
temperatures of PCR products were overlapping (85.8 ◦C) indicating that parasites were from Leishmania (Leishmania)
subgenus. (B) ITS1-PCR RFLP analysis. ITS1 region was amplified by PCR as described previously [16] using primers
LITSR 5′-CTGGATCATTTTCCGATG-3′ and L5.8 S 5′-TGATACCACTTATCGCACTT-3′. ITS1 PCR products obtained from
skin biopsy (1) and L. (L.) infantum MHOM/FR/78/LEM75 (2) were digested with 10 U HaeIII enzyme (Thermo Fisher
Scientific) at 37 ◦C for 3 h and visualized on a 3.5% high-resolution MetaPhor (Cambrex) agarose gel stained with GelRed
(Biotium). NTC, no template control; M, DNA marker 9.
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Figure 3. The partial sequence of glucose-6-phosphate isomerase gene (1335 bp) was obtained from isolated parasites in
the context of a multilocus sequence typing approach by a customized sequencing panel designed with Ion AmpliSeq™
designer (Thermo-Fisher-Scientific). This panel included 7 primer pairs specific for the glucose-6-phosphate isomerase
gene. The library was prepared using Ion AmpliSeq™ library kit plus (Thermo-Fisher-Scientific) following manufacturer’s
instructions. The library sequencing was performed using the Ion Torrent S5 instrument (Thermo-Fisher-Scientific) and the
reads were mapped to L. infantum JPCM5 genome (LinJ.12 291520-292854) using Torrent Browser. The consensus sequence
was analyzed by BLASTN against Leishmania sequences. The results with 100% coverage were selected. A distance tree
of pairwise comparisons was visualized by BLAST tree view, using Neighbor Joining algorithm [17]. The sequence of the
clinical isolate is highlighted.
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Regarding parasite isolation, after 7 days of culture, the liquid phase of Evans’ modi-
fied Tobie’s medium (EMTM) presented numerous motile promastigotes, confirming the
presence of viable parasites in the bioptic sample (Figure 4).
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Furthermore, the isolate was genotyped by analyzing the nucleotide polymorphism
390 T > G in the malic enzyme gene by High Resolution Melt (HRM) analysis, as described
previously [18]. The HRM analysis showed a 390 G genotype (Figure 5), which is not
associated with the zymodemes MON-1 (the most common in the Mediterranean basin),
MON-72, 201 [18].
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Figure 5. Genotyping of L. (L.) infantum clinical isolate through HRM analysis. The malic enzyme gene sequence en-
compassing the polymorphism 390 T/G was amplified by qPCR-MEint in 25 µL volume containing SYBR green PCR
master mix (Diatheva srl) with 200 nM of primers forward (5′-TCAGAACCTTCGCAAGACGA-3′) and reverse (5′-
CACTTGCCGATGCTGATGC-3′), using a Rotor-Gene 6000 instrument (Corbett life science) [18]. The amplification conditions
were: 94 ◦C for 10 min; followed by 45 cycles at 94 ◦C for 20 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. After amplification,
high-resolution melting (HRM) analysis was performed over the range 77–95 ◦C, rising by 0.1 ◦C/s and waiting for 2 s at
each temperature. Raw HRM curves were normalized by the Rotorgene 6000 v.1.7 software. Controls for genotypes 390 T
and 390 G were L. (L.) infantum MHOM/FR/78/LEM75 and L. (L.) infantum MHOM/TN/80/IPT1, respectively.
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To determine whether unresponsiveness to Glucantime® was due to the presence of
resistant parasites, the IC50 of SbIII (the active trivalent antimonial form) was determined in
the promastigotes isolated from the lesion. Briefly, late log/stationary phase promastigotes
were resuspended in complete RPMI-PY medium [19] at a density of 2.5× 106 parasites/mL
in 96-well plates (100 µL/well). The promastigotes were treated with potassium antimonyl
tartrate trihydrate (SbIII) (Sigma-Aldrich) at concentrations of 1, 5, 25, 125, 625 µM for
72 h at 26 ◦C. The reference strain L. (L.) infantum MHOM/TN/80/IPT1 was included as
control. Moreover, the promastigotes were also treated with Miltefosine (Sigma–Aldrich).
Each condition was repeated sixfold. To evaluate the promastigote viability, the CellTiter
96 H Aqueous Non-Radioactive Cell Proliferation Assay (Promega) was carried out. The
parasites derived from the unresponsive patient were significantly less susceptible to
SbIII than the reference strain parasites (p < 0.01, unpaired t-test with Welch’s correction)
(Table 1). On the contrary, promastigotes from the clinical isolate appeared more sensitive
to Miltefosine compared to the reference strain.

Table 1. In vitro susceptibility tests.

Treatment
L. (L.) infantum
Clinical Isolate

IC50 (µM)

L. (L.) infantum
MHOM/TN/80/IPT1

IC50 (µM)

Unpaired t-Test with
Welch’s Correction

p-Value

Potassium antimonyl
tartrate trihydrate (SbIII) 27.06 ± 2.70 13.22 ± 2.11 <0.01

Miltefosine 1.31 ± 0.14 4.27 ± 0.40 <0.01

Due to the unsatisfactory clinical response to pentavalent antimony compounds and
the in vitro demonstration of low susceptibility to antimonials of the infecting parasitic
strain, a new therapy with intravenous liposomal Amphotericin B was administered at the
dose of 3 mg/Kg in daily doses for five days, with two further doses at an interval of two
weeks. Liposomal Amphotericin B treatment was effective, with healing of the lesion after
two months and no major side-effect was reported during the follow-up. The patient did
not return with any relapse in the following 6 months.

3. Discussion

A high circulation of Leishmania strains causing cutaneous leishmaniasis has been
recently observed in northeastern Italy [10]. In the index case, a lack of travel history, the
molecular identification of L. (L.) infantum and the fact that the patient resided in the Marche
region (central Italy) where L. (L.) infantum is endemic, strongly suggest an autochthonous
origin of the infection.

The diagnosis of CL was initially performed by histology with the detection of leish-
manial amastigotes in tissue sections. However, due to treatment unresponsiveness, a
second bioptic sample was taken and histological diagnosis was repeated, followed by
molecular diagnosis and parasite isolation and characterization.

Treatment failure in leishmaniasis can be caused by drug resistance of the infecting
parasite, host factors such as immunity and nutritional status, individual variation in
pharmacokinetics, or other drug-related responses, or whether the parasite resides in
tissues accessible to drugs [7]. Antimonials are often the first choice in the treatment
of CL and they can be administered intralesionally as well as systemically [20]. In Old
World CL, intralesional antimonials have shown >90% cure rates but most of the data are
related to L. (L.) major infections. [20]. In fact, treatment data are scarce for L. (L.) infantum
CL lesions [21]. To confirm the first diagnosis and to investigate the lack of response
to treatment in the index case, the parasitic strain isolated from the lesion was further
characterized with molecular tools and its susceptibility to antimonials was evaluated in
vitro. Pentavalent antimonials (SbV) such as Meglumine Antimoniate need to be reduced
to a trivalent antimonial (SbIII) in order to be active. Since promastigotes cannot reduce
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SbV to SbIII, the susceptibility test was directly performed with SbIII, the active trivalent
antimonial form [22].

The L. (L.) infantum clinical isolate showed significantly lower susceptibility to anti-
monials than the reference strain (MHOM/TN/80/IPT1), which is itself a VL strain less
susceptible to antimonials with respect to CL causing species [23]. At the same time, the
clinical isolate exhibited a higher sensitivity to Miltefosine when compared to the reference
strain.

Treatment of CanL with Glucantime® is a common practice in many Mediterranean
countries, where repeated treatments of dogs have been shown to produce a reservoir of
L. (L.) infantum parasites with a decreased sensitivity to antimonials [24,25]. Nevertheless,
the clinical isolate of our index case was genotyped as a strain not related to zymodemes
MON-1, 72, 201 (polymorphism 390 G in malic enzyme), which include the most common
zymodeme circulating in dogs in the Mediterranean basin (MON-1). Therefore, it is
unlikely that the strain has canine origin. Since the lower susceptibility to SbIII could
not be explained with canine origin of the strain, further investigation on genes involved
in inducing antimony-resistant parasites (e.g., AQP1, MRPA, γ-GCS, TR, TDR1) will
be needed.

According to the European guidelines [5], CL lesions > 4 cm should be treated with
systemic therapy. However, Since the patient presented a single lesion that was slightly
above this index, local therapy with Glucantime® was attempted to avoid the toxic ef-
fects of the systemic therapy. Nonetheless, after the intralesional therapy, according to
the clinician’s judgment, a satisfactory clinical response was not achieved. Subsequent
investigations revealed low susceptibility to SbIII. Therefore, the incomplete response to
treatment could be due to both an insufficient therapeutic dose and the low susceptibility
of the parasite.

In the Old World, Glucantime® failure due to parasite resistance has been reported
mostly in L. (L.) donovani strains circulating in the Indian subcontinent. The L. (L.) infantum
CL case described here showed decreased susceptibility to Meglumine Antimoniate. Due
to the scarcity of data regarding treatment of L. (L.) infantum CL lesions, it is possible that
some similar cases may not have been reported. Additional studies are needed to confirm
the epidemiological and clinical relevance of these findings.
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