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Abstract: Edible mushrooms are functional foods and valuable but less exploited sources of biolog-
ically active compounds. Herbal teas are a range of products widely used due to the therapeutic
properties that have been demonstrated by traditional medicine and a supplement in conventional
therapies. Their interaction with the human microbiota is an aspect that must be researched, the
therapeutic properties depending on the interaction with the microbiota and the consequent fermen-
tative activity. Modulation processes result from the activity of, for example, phenolic acids, which
are a major component and which have already demonstrated activity in combating oxidative stress.
The aim of this mini-review is to highlight the essential aspects of modulating the microbiota using
edible mushrooms and herbal teas. Although the phenolic pattern is different for edible mushrooms
and herbal teas, certain non-phenolic compounds (polysaccharides and/or caffeine) are important
in alleviating chronic diseases. These specific functional compounds have modulatory properties
against oxidative stress, demonstrating health-beneficial effects in vitro and/or In vivo. Moreover,
recent advances in improving human health via gut microbiota are presented. Plant-derived miRNAs
from mushrooms and herbal teas were highlighted as a potential strategy for new therapeutic effects.

Keywords: pattern; miRNAs; antioxidant; SCFAs; polyphenols

1. Introduction

There are numerous published results on herbal products’ in vitro activity and edible
or/and medicinal mushrooms. Only a small part of them are supported by an in vivo
activity. The bioavailability of the target compounds is based on their molecular size and
the solubilization capacity of the lipid carriers [1]. The result is low absorption, poor
bioavailability, and the relatively small amount available to the body for physiological
activity [2]. A well-known example in this regard is curcumin, present in Curcuma longa.
It has low absorption, and in vitro studies have shown a modulatory activity on the
microbiome by stimulating microbiota that generates butyric and propionic acid [3]. To
be biologically active, herbal products must contain compounds that can be absorbed and
regulate biological activity in a concentration-dependent manner [4]. The evaluation of
the therapeutic potential of herbal teas takes into account the bioavailability of the main
components. Their concentration is relatively low in teas and has only an adjuvant effect in
classical therapies [5]. This aspect is less noticeable for mushrooms, as they also contain
other classes of compounds that have a modulating effect, for example, polysaccharides
and fibers [6]. Microbial dysbiosis is often associated with chronic pathologies such as
type 2 diabetes and hypertension [7]. Fungi are also implicated in microbial modulation
associated with attenuation or reversal of these chronic pathologies [7]. In both mushrooms
and herbal teas, the determination of compounds with therapeutic impact remains a critical
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detail necessary for the characterization of the final product. Seasonal and geographical
variability of these products plays a significant role in determining the quality of the
product. Still, the effects on human health ensue from the characteristics of species [8].
These aspects influence the functional properties and lack of public awareness of these
issues, leading to distrust in their use. Although they are not the only sources of functional
compounds, mushrooms and herbal teas are some of the most used substrates in functional
products. In addition, coffee or wine and the by-products resulting from their use (coffee
grounds or leftovers from wine production) are alternative sources functional compounds
that can be used to formulate innovative products [9].

Studies regarding human and animal gut microbiota biodiversity and dynamics have
expanded during the last two decades, proving the essential role it plays in maintain-
ing body host health. Implicitly, new research directions have been opened, aiming to
determine the effect of the nutrients, food supplements, drugs, products belonging to
non-conventional medicine, etc., on the microbiota structure. The diverse microbial strains
are part of the human gut. They have beneficial effects on human health, including in-
volvement in host metabolism, promoting immunity (innate and adaptative response) and
defense against pathogens, synthesis of some essential nutrients, disease prevention, or
reduced Firmicutes/Bacteroidetes ratio [10]. According to data obtained in international
projects like the Human Microbiome Project and MetaHIT (Metagenomics of Human In-
testinal Tract) [11], the number of microorganisms in the human gastrointestinal tract (GI)
exceeds 1010. It includes bacteria, archaea and eukaryotes. The new sequencing technolo-
gies and bioinformatics software allowed the identification of 2172 species in the human
GI microbiome classified into 12 different phyla, 93.5% of Proteobacteria, Firmicutes, Acti-
nobacteria, and Bacteroidetes [12]. The dominant phyla are Firmicutes and Bacteroides.
Some of the identified phyla include Verrucomicrobia, for which only one species, namely
Akkermansia muciniphila, has been isolated from human GI [13–15].

In contrast to the host genome, the microbiome is characterized by high plasticity and
the ability to adapt to various conditions. Thus, bacteria can break down polysaccharides
that reach the colon to generate short chain fatty acids (SCFAs), that cross feed the micro-
biota and have physiological effects on gut integrity. Furthermore, the dynamics of GI
microbiome composition are associated with many factors, including age, nutrition, health
status [16], drug treatments [17], and the community [18].

Although fungi and herbal teas show a wide variety and profile of chemical con-
stituents, several compounds are found in both. An example is rosemary acid, which
has multiple therapeutic qualities and is a characteristic compound for Boraginaceae and
Lamiaceae families of herbs, with the highest levels found in the Nepetoideae [19]. Given
the varying concentrations in the different species, bioavailability has also been observed
to vary between species [20]. The presence of rosemary acid in mushrooms has also been
demonstrated in freeze-dried extracts from Boletus edulis [21]. An in vitro study showed
that it is not stable, being degraded by transit through the stomach and small intestine. The
stability of the bioactive component plays an important role in its antioxidant effect and
ability to modulate the human gut microbiota [22]. Thus, the purpose of this mini-review is
to highlight the essential aspects of modulating the microbial pattern by edible mushrooms
and herbal teas. The phytochemical profile will be highlighted, and the phenolic com-
pound’s action will be evaluated as the starting point of the modulating function. A new
approach based on the increasing evidence that plant miRNAs might act as new bioactive
compounds that directly modulate the gut microbiota is also investigated.

2. Interaction of Mushrooms with Human Microbiota

Edible mushrooms have been part of the human diet for thousands of years, but
their beneficial effect in maintaining the consumers’ health has been studied only during
the last decades has it been proved. Many mushrooms belonging to genera such as
Ganoderma, Pleurotus, Boletus, Inonotus, Grifola, and Armillaria have been used for a long
time as medicinal food due to their activities: antimicrobial, antiviral, antidiabetic, anti-
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inflammatory, hypocholesterolemic, and antitumor [23]. Lately, mushrooms are used as
prebiotics and food supplements to improve consumers’ health [24].

Although the mechanisms involved in this beneficial effect are not yet elucidated,
one hypothesis is the influence of the mushrooms on the GI microbiome composition.
Mushrooms are rich in polysaccharides, proteins, vitamins, minerals, trace elements, and
antioxidants. The in vitro and in vivo studies have shown the consequence of mushrooms
consumption on the stimulation or depletion of some microbial phyla/species (Table 1).

Table 1. Impact of mushrooms consumption on gut microbiota pattern.

Mushrooms Gut Bacteria Increased Gut Bacteria Depleted Human/
Animal References

Hericium erinaceus
(Lion’s mane mushroom)

Bifidobacterium, Coprococcus,
Desulfovibrio, Lactobacillus,
Parabacteroides, Prevotella

Corynebacterium, Dorea,
Roseburia, Ruminococcus,
Staphylococcus, Sutterella

Animal
(rat) [25]

Ganoderma lucidum
(Reishi)

Firmicutes, Proteobacteria
(Helicobacter), Rikenella

Acinetobacter,
Actinobacteria
(Arthrobacter,

Corynebacterium),
Bacteroidetes (Bacteroides,
Parabacteroides, Prevotella),

Blautia, Brevundimonas,
Clostridium, Coprobacillus,
Cyanobacteria, Facklamia,

Jeotgalicoccus, Sporosarcina,
Staphylococcus, Streptococcus

Animal
(mice) [26]

Boletus edulis, Boletus pinophilus,
Boletus aureus (Porcini),

Armillaria mellea
(Honey fungus), Lactarius

piperatus (blancaccio), Pleurotus
eryngii

(King oyster)

Bifidobacterium and
Lactobacillus

genera
- Human [27]

Cyclocybe cylindracea (poplar
mushroom), Hericium erinaceus,

Pleurotus eryngii, Pleurotus
ostreatus

(Oyster mushroom)

Bifidobacterium spp.
Faecalibacterium prausnitzii

(Ruminococcaceae),
Eubacterium

rectale/Roseburia spp.

- In vitro study using
human faeces [28]

Flammulina velutipes (Enoki),
Hypsizygus marmoreus, (White
beech mushroom), Lentinula

edodes (Shiitake), Grifola
frondosa, (Maitake)
Pleurotus eryngii

Allobaculum,
Bifidobacterium,

Ruminococcus, Lactobacillus,
Lactococcus, Streptococcus

Bacteroides, Prevotella,
Mucispirillum, Dorea,

Roseburia, Anaerotruncus,
Oscillospira, Escherichia and

Akkermansia

Animal
(mice) [29]

As a functional food, edible mushrooms are a natural source of valuable compounds,
modulating the microbiota pattern and metabolomic function. The use of mushroom
species in microbiota modulation has resulted from the need to find new molecules with
antimicrobial and anti-inflammatory activities. This need of the current biopharmaceutical
industry results from the increase in the amount of antibiotics administered, which has led
to the recurrent emergence of antibiotic resistance [30]. A related effect of this aspect is
urinary tract infections with Escherichia coli, controlled using cranberry extracts [31]. The
cranberry extract is the best known functional product for reducing and ameliorating the
effects of recurrent E. coli infections.

Pathogenic strains support an inflammatory process in the human colon that leads to
dysbiosis [32]. The impaired microbial balance increases oxidative stress by generating free
radicals, which impact gut physiology and contribute to diseases such as colon cancer [33].
These phenomena negatively influence the whole body through the risk of developing
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various infections by decreasing immune function. In all these aspects, mushrooms are a
functional product with multiple human body roles [34].

In addition to phenolic compounds, mushrooms also contain other functional com-
ponents, such as β-glucans. β-glucans are polysaccharides made up of β-D-glucose units,
which make up the cell-wall structure of mushrooms. These polymers are responsible for
modulating the immune response, regulating blood sugar and reducing dietary cholesterol
absorption [35]. β-glucans act as prebiotics and support the multiplication of favorable
strains of the genus Lactobacillus [36]. One of the benefits is the microbiota-mediated ac-
tivation of the immune system through T-cells and natural killer cells. Side effects are
also mentioned and include flatulence or temporary drops in blood sugar [37]. In vitro
studies have shown that β-glucans are recognized as receptors for immune system cells,
such as macrophages, neutrophils, monocytes. In vivo, it has been demonstrated that the
prebiotic effect is also generated by the polysaccharide structure that is not degraded by
transit through the stomach and small intestine [38]. The fermentative breakdown of the
molecule stimulates the nonspecific immune system, and this phenomenon is essential in
the protection against tumor cell proliferation [39].

The prebiotic effect of edible mushrooms (especially wild edible mushrooms) may
also be a modern strategy to prevent tumor cells’ proliferation by modulating the immune
system [40]. The process may be related to modulation of the microbiota and reducing
the proportion of bacteria that synthesize products with carcinogenic potential. Using a
functional formula that modulates the metabolomic pattern is an effective alternative in
the long-term protection of homeostasis [40,41]. For example, soluble dietary fibers from
Lentinula edodes (LESDF-3) improved intestinal fermentation and increased the concentra-
tion of SCFAs, mainly propionic and butyric acid, and the number of Bacteroides sp. [42].
Another in vitro study showed that the use of β-glucans, present in the species Pleurotus
ostreatus, Pleurotus eryngii, Hericium erinaceus, as a prebiotic, had a targeted action on the
elderly by increasing cell number of. Lactobacillus spp. strains’ presence, and stimulated the
synthesis of SCFAs, especially propionate and butyrate [28,43]. It can be considered that the
fungi exert a species-specific action and can be included, as an adjuvant, in the nutritional
plan of some target groups of the population. This aspect is influenced by many other exo-
and endogenous factors, but the positive effect is observed in maintaining homeostasis in
vulnerable groups of people.

The beneficial effects of mushroom consumption are given by the diversity of bio-
active compounds, including polysaccharides, proteins, or secondary metabolites such
as polyphenols, alkaloids, steroids, and terpenes [44]. The two types of polysaccharides
present in fungi, homopolysaccharides, and heteropolysaccharides, can influence the
microbiota depending on their structure and implicitly on their degree of solubility. The
vast majority of polysaccharides in fungi are insoluble fibers (cellulose and lignin), and
only a small part, β-D-glucans (such as lentinan from Lentinus edodes, schizophyllan from
Schizophyllum commune or ganoderan from Ganoderma lucidum) are soluble compounds
and are mainly responsible of the biological activity of fungi [45,46]. In the large intestine,
various types of enzymes (hydrolases, esterases, lyases, transferases) are produced by
microorganisms to metabolize polysaccharides in fungi. These enzymes are secreted mainly
by Bacteroidetes but also by Firmicutes [47,48]. In support of these claims, numerous
studies show that polysaccharides in fungi influence the increase in the number of specific
bacterial strains and the decrease in others (Table 2).
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Table 2. Effect of polysaccharides from various mushrooms on gut microbiota.

Mushrooms
(Common Name) Bioactive Compounds Type of Study Gut Bacteria Effects References

Lentinula
edodes

(Shiitake)

Lentinula edodes soluble
dietary fiber fractions

(LESDF):
LESDF-1:

→6)-β-D-Glcp-(1→,→4)-
β-D-Glcp-(1→,→5)-β-D-

Arap-(1→,→4)-β-D-Xylp-
(1→,→4)-α-D-Manp,→3)-
α-L-Rhap-(1→,→6)-β-D-

Galp-(1→
LESDF-2:

→6)-β-D-Glcp-1→,→4)-α-
D-Glcp-(1→,β-DGlcp-
(1→,→5)-β-D-Arap-
(1→,→2)-α-L-Rhap-

(1→,→3,6)-α-D-Manp-
(1→,→6)-β-D-Galp-

(1→,→4)-β-D-Xylp-(1→
LESDF-3:

β-D-Arap-(1→,→3)-α-D-
Galp-(1→,→3,6)-α-D-

Manp-(1→,→4)-
β-D-Xylp-(1→, and
→2,4)-α-D-Glcp-(1→

Human gut
microbiota

in vitro
study

LEDS-2 increase microbial
communities LEDS-3 causes an

increase in the abundance of
Parasutterella, Bacteroides,

Parabacteroides and Lachnospira

[42,49,50]

Auricularia
auricula-judae (wood

ear)
Flammulina velutipes

(velvet shank)

Mushrooms dried powder
after in vitro digestion

with α-amylase, pepsin,
and pancreatin. The main
bioactive compounds are

carbohydrates and proteins.

Human gut
microbiota

in vitro study

They led to an increase in the
abundance of groups of

Actinobacteria, Bacteroidetes,
Proteobacteria and inhibited the

growth of Fusobacteria and
Firmicutes

[51]

Lentinus edodes
Pleurotus eryngii

(King Oyster)

Promoted the growth
of Bacteroidetes, Actinobacteria
and inhibited the development
of Proteobacteria, Fusobacteria,

and Firmicutes

Pleurotus osteratus
(Oyster mushroom)

Promoted the growth of
Actinobacteria, Bacteroidetes,

and Fusobacteria, inhibited the
growth of Proteobacteria and

Firmicutes.

Agaricus bispours
(champigno n)

Positively influences
Actinobacteria, Fusobacteria,

and Firmicutes and inhibit the
growth of Bacteroidetes and

Proteobacteria

Hericium erinaceus
(lion’s mane
mushroom)

Polysaccharides, alcoholic
extracts, and whole

extracts alcoholic extracts,
and whole extracts

Rats with
inflammatory
bowel disease

Reduce the amount of
lipopolysaccharide toxins,
increase the abundance of

Bifidobacterium;

[25,52]

Oudemansiella
radicata (Rooted

Collybia)
Polysaccharide extract

Human gut
microbiota

in vitro
study

Reduce the
Firmicutes/Bacteroidetes

ratio
Increase Bacteroides

abundance

[53]
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Table 2. Cont.

Mushrooms
(Common Name) Bioactive Compounds Type of Study Gut Bacteria Effects References

Ophicordyceps sinensis
(Rooted Collybia)

Mushrooms dried powder
after in vitro digestion

with α-amylase, pepsin,
and pancreatin

Human gut
microbiota

in vitro
study

Increase abundance of
Bifidobacteriales, Selenomonadales [54]

Cordyceps
militaris

(Chinese caterpillar
fungus)

Increase the relative abundance
Bacteroidales.

Implicitly decreasing the ratio of
Firmicutes/Bacteroidetes ratio

Inonotus obliquus
(chaga)

Polysaccharides
Ethanolic extract

High-fat diet mice
(HFD-mice)

Increase Akkermansia
abundance and fatty acid

elongation
[55]

Phellinus linteus (black
hoof mushroom)

Polysaccharide total extract
(two fractions were

characterized,
PLPS-1: α-D-glucose

(1→4)-α-D-glucose (1→6)
units and

PLPS-2: α-(1→3)-
D-glucose and

α-(1→6)-D-glucose)

Sprague Dawley
rats

with Type 2
diabetes

Causes an increase in the
abundance of

Lachnospiraceae-NK4A1 36,
Blautia,

Ruminiclostridium-9, Eubacterium
xylanophilum, Anaerotruncus,

Oscillibacter
Lachnospiraceae-UCG-00 6,
Roseburia, Prevotella and

improves microbial
balance

[56,57]

Cordycepssinensis
(Cordyceps mushroom) Polysaccharide fraction HFD

mice

The relative abundances of
Actinobacteria (in particular

Olsenella bacteria) and
Acidobacterias were increased and
those of Bacteroidetes decreased.

At the genus/cluster level,
decreases of Barnesiella,
Prevotellaceae and the

Lachnospiraceae incertae sedis and
increases of Christensenella,

Clostridium_XVIII cluster and
Pseudomonas

[58]

Pleurotus
eryngii

Soluble polysaccharide
fraction HFD mice

Supplementation causes changes
only at the genus level, an

increase of Anaerostipes,
Clostridium, Lactococcus, and a

decrease of
Roseburia and Lactobacillus

[59]

3. Interaction of Microbiota with Herbal Teas

Due to the adverse side effects of drugs used in conventional medicine in the last
century, there has been an increased interest in finding alternative solutions for different
disorders prevention and treatment. Among the best-known alternatives are: probiotics,
prebiotics, phytochemicals, and nutraceuticals. Herbal teas and edible mushrooms have
a long history of use in certain health problems like heart diseases, diabetes, stomach
conditions, liver disease, etc. [60,61].

Herbal teas are one of the most consumed beverages worldwide, both as a daily ritual
and due to their numerous therapeutic properties [62]. Current global developments have
led to an increase in the products available on the market, many of which are known
only from the perspective of traditional medicine [63]. Interaction with the intestinal
environment and bioavailability of key compounds are central in evaluating herbal teas’
modulatory function. Bioavailability depends on the type of tea, hot or cold, or how these
drinks are consumed, both in volume and habit [5,64]. They contain functional compounds,
which through an in vivo study, have been shown to improve certain physiological func-
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tions such as increased resistance to oxidative stress and synthesis of SCFAs [65]. Some
examples of herbal tea and its beneficial effects are summarized in Table 3.

Table 3. Most common herbal teas and health effects.

Herbals Beneficial Effects Reference

Matricaria recutita
(Chamomile)

Anti-inflammatory, antispasmodic, antioxidative
activity, antiplatelet activity [66]

Mentha piperita
(Peppermint)

Antimicrobial and antiviral activity, analgesic and
anesthetic effects, immunomodulatory activity [67]

Cinnamomum zeylanicum
(Cinnamon)

Antimicrobials activity, anti-inflammatory, antiviral,
antioxidant, antitumoral activity, Cholesterol- and

Lipid-Lowering Properties
[68]

Petroselinum crispum
(Parsley)

Antioxidant, hepatoprotective, anti-diabetic, analgesic,
immunosuppressant, anti-platelet, gastroprotective,

cytoprotective, laxative, estrogenic, diuretic,
hypotensive, antibacterial, and antifungal activities

[69]

Camellia sinensis
(Macha tea) Antimicrobial activity, anti-inflammatory [70]

Polyphenols are the main bioactive compounds in teas. Polyphenols with monomeric
and dimeric structures may be absorbed in the small intestine. However, most polyphe-
nols, including complex polyphenols, oligomeric, and polymeric structures, reach the
large intestine, metabolized by gut microbiota, or eliminated in the feces. Polyphenols
reaching the large intestine can influence the diversity of microorganisms and regulate
Firmicutes/Bacteroidetes ratio (Table 4).

In the large intestine, under the action of microbial enzymes, various reactions take
place (C-ring cleavage, decarboxylation, dehydroxylation, and demethylation). Com-
plex polyphenols are transformed into simpler compounds that are easily absorbed [71].
These reactions lead to the transformation of the initial polyphenols and the generation of
intermediary products [72].

Table 4. Tea bioactive compounds and their effects on gut microbiota.

Tea Bioactive Compounds Type of Study Gut Bacteria Effects References

Kudingcha (KDC) from
Ilex latifolia Thun

and Ilex kudingcha C.J.
Tseng

(large-leaved
Kudingcha)

Neochlorogenic acid,
chlorogenic acid,

cryptochlorogenic acid,
dicaffeoylquinic acids isomers,

quercetin with different
glycosides triterpenoid saponins,

polysaccharides,
monosaccharides, proteins,

simple organic acid.

HFD mice

Administration of KDC led
to a reduction in

abundance of
Erysipelotrichaceae. [73–75]

Fuzhuanbrick
Tea post-ferment ed tea

(dark tea leaves of
Camellia sinensis var.

sinensis and C. sinensis
var. assamica)

(border-selling tea or
border-tea)

Gallic acid, catechins, free amino
acids, alkaloids and volatile

components.

Administration of the tea
reduces the

Firmicutes/Bacteroidetes
ratio and has led to the

increased of relative
abundance in

Bifidobacteriaceae
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Table 4. Cont.

Tea Bioactive Compounds Type of Study Gut Bacteria Effects References

KDC and FBT

Led to an decreased of
Clostridium, Bilophila,

Oscillibacter, Lactonifactor,
Eisenbergiella, Olsenella,

Leuconostoc,
Pseudoflavonifractor
and Streptococcus.

Green tea
(Camellia sinensis)

Standardized green tea extract:
catechins (49.9%), including

epigallocatechin (9.7%),
epicatechin (5.4%),

epigallocatechin-gallate (28.4%),
and epicatechin-gallate (6.4%),
as well as caffeine (4.5%) and

theanine (0.4%). Other possible
biologically active compounds:
gallic acid, p-coumaric acid and

quinic acid derivatives,
caffeoylquinic acid isomers, and

caffeoyl, kaempferol
3-O-p-coumaroylglucoside and

kaempferol
3-O-p-

coumaroyldirhamnosylhexosi
de

Mice under UV
stress

7-day supplementation of
green tea extract

Firmicutes/Bacteroidetes
ratio and increased levels
of Lactobacillus spp. and

Bifidobacteriumspp.

[76,77]

Ligustrum
robustum
(Roxb.)
Blume

(bora-bora, Ceylon
privét, privet, tree

privet, troene)

Ligistrum robustum ethanol
extract (LRE)—glycosides

extract.
Ligupurpuroside, acteoside,

isoacteoside, ligupurpuroside A,
ligupurpuroside B,
ligupurpuroside C,

ligupurpuroside D, and
osmanthuside B

HFD mice

After 16 weeks of LRE
administration, the ratio of
Firmicutes/Bacteroidetes

ratio increased.
LRC contributed to growth
stimulation of belonging of
Streptococcus, Lactobacillus,

and Eubacterium
coprostanoligenes groups

and a Coriobacteriaceae_U
CG-002, and

Lachnospiraceae
groups.

[78]

Solidago virgaurea L.
(European goldenrod,

Woundwort)

Solidago v. Infusion extract
Mainly caffeoylquinic acid

derivatives (caffeic acid,
p-coumaric acid, chlorogenic

acid, neochlorogenic acid,
cryptochlorogenic acid)
flavonoids (quercetin

rhamnohexoside, rutin,
isoquercetin, kaempferol) and

some phenylpropanoids.

Human and swine
gut microbiota
in vitro study

In human and swine
cultures gut microbiota

takes place hydrolysis of
caffeoylquinic acid

derivatives and
deglycosylation of

flavonoids.

[79]
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Table 4. Cont.

Tea Bioactive Compounds Type of Study Gut Bacteria Effects References

Chrysanthem um
morifolium

(florist’s daisy and
hardy garden mum or

juhua)

Hot-water extract.
Chlorogenic acid, tuberonic acid

glucoside, diglucosylapigenin
isomer,

naringenin-6,8-di-C-glucoside
Isookanin-7-O-β-

diglucopyranoside,
Quercetin-3-O-galactoside,
diglucosyapigenin isomer,
luteolin-7-O-glucuronide,

luteolin-7-O-glucoside,
dicaffeoylquinic acid isomer,

apigenin-7-O-rutinoside,
apigenin-7-O-glucoside,
Kaempferol-3-O-acetyl-

glucoside, diosmetin
7-O-rutinoside, diosmetin

7-glucuronide,
acacetin-7-O-6”-

malonylgactoside, apigenin
7-O-acetylglucoside isomer,

apigenin 7-O-acetylglucoside
isomer, Ombuin-3β-rutinoside,

luteolin, apigenin
7-O-acetylglucoside isomer
acacetin-7-O-glucuronide,

acacetin, apigenina, diosmetin,
eupatorin, casticina.

Regular chow diet
fed C57BL/6J mice

study

Hot water extract
administration has shaped

gut microbiota by
increasing Bacteroidetes,

Firmicutes (Prevotella)
Bifidobacterium

6J mice with gut
Colonized by microbiota

coming from healthy
human volunteers.

[80]

Cyclocarya
paliurus

(Wheel Wingnut; sweet
tea tree)

Water extract of C. paliurus
leaves.

Cyclocarya paliurus flavonoids:
Kaempferol-3-O-β-glucuronide,

kaempferol-3-O-α-L-
rhamnopyranoside,

isoquercitrin, quercetin

Adult male C57BL

The administration of CPF
led to an increase of
microbial diversity,

reduction in the relative
abundance of

Faecalibacterium,
Mitsuokella, Ruminococcus,

Desulfovibrio and
Megamonas.

[81]

Edgeworthia
gardneri

(papertree, paperbush;
Argelee)

Water extract, phloroglucinol,
swainonine, trigonelline,
coumalic acid, Coumarin,

scopolamine, 7,8-Dihydroxy-4-
methylcoumarin, chlorogenic

acid, berberine, psoralen,
apigenin, caffeic acid,
γ-Terpinene, rutin,

4-methylumbelliferone,
scopoletin,

kaempferol-3-O-rutinoside,
α-Pinene, daidzein, bergapten,
glycitein, cytosine, α-Linolenic
acid, ferulic acid, palmitoleic

acid, linoleic acid, stearic acid,
trans-vaccenic acid, arachidonic

acid.

HFD mice

The microbial diversity
was improved.

The extract decreases the
number of Proteobacteria
and Deferribacteres and

reverses the levels of
Clostridiales,

Lachnospiraceae,S24–7,
Rikenellaceae, and Dorea in

diabetic mice.

[82]
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Table 4. Cont.

Tea Bioactive Compounds Type of Study Gut Bacteria Effects References

Salvia miltiorrhiza Bge
(red sage or Danshen)

Ethanolic extract, Danshensu,
protocatechualdehyden, caffeic

acid, rutin, isoquercitrin,
astragalin, rosmarinic acid,

lithospermic acid, salvianolic
acid B, salvianolic acid A, and

salvianolic acid C

C57BL/6J diabetic
mice

Decrease of Proteus hauseri
and Helicobacter

winghamensis abundance
and growth stimulation of
Anaerotruncus colihominis,
Mucispirillum schaedleri,
and Butyricimonas virosa.
The extract increases the

biodiversity and species of
the gut microbiota and

reduces the
Firmicutes/Bacteroidetes

ratio.

[83]

Hypericum attenuatum
Choisy

(St. John’s Wort)

Ethanolic extract, rutin,
Quercetin-3-O-β-D-glucuronide

Male KM diabetic
mice

The extract reverses
dysbiosis induced by

diabet, increases levels of
Clostridiaceae,

Erysipelotrichaceae and
Lactobacillaceae

[84]

Decaffeinated green tea
(GT) and black tea (BT)

Ethanolic extracts of green tea
(GTP) and black tea (BTP), gallic

acid, epigallocatechin gallate,
epicatechin gallate,

epigallocatechin, epicatechin

Male mouse C57BL

6J mice (strain JAX 000664),
low-fat/high sucros e diet

(LF/HSD), HFD/HSD,
HFD/HSD supplemented

with GTP and BTP.
HFD/HSD-GTP and BTP
diets lead to a significant

increase in the relative
proportion of

Parabacteroides, Bacteroides,
and Prevotella and an
increase of Roseburia,

Bryantella, Lactococcus,
Lactobacillus, Blautia,

Anaerostipes, Shuttleworthia,
and Acetitomaculum,

Collinsella.
GTP administration leads
to an increase cell number

of bacterial strains
belonging to Clostridium

and Coprococcus and a
decrease of Turicibacter and

Marvinbryantia.
BTP consumption was
increase in Oscillibacter,

Anaerotruncus, and
Pseudobutyrivibrio

[85]

In vitro and in vivo studies mostly on animal models highlighted the inter-relationships
between tea compounds and the GI microbiome. Data on the modulatory effect on GI
microbiota by teas have been reported in several studies:

• Ginseng decoction—increased Lactobacillus spp. and Bacteroides spp. [86];
• Corn-starch tea—increased levels of Coriobacteriaceae, Lactobacillaceae, Prevotel-

laceae and Bifidobacteriaceae, and decreased Bacteroidaceae, Ruminococcaceae, Heli-
cobacteraceae, and Enterobacteriaceae [87];

• Fuzhuan tea—an increase of Lactobacillus spp. [88];
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• Green tea systematically modulates microbiota structure, depending on the original
microbiota status and diet [85–89].

Morus alba leaf has been shown to stimulate Bacteroides and Prevotella in in vivo studies
of farm animal gut microbiota. However, green tea inhibited the presence of potentially
pathogenic strains [90]. This variation in microbial modulatory activity demonstrates the
need for in vitro studies to examine the microbial proliferative activity of individual teas
and their blends. Furthermore, this biological activity will be determined by the degree
of bioavailability. The study is aimed exclusively at a group of target animals that could
selectively consume this substrate. Another study with green tea showed a positive effect
on HFD induced obesity [91]. These aspects show that regular consumption of tea can
cause potentially ameliorate some of the effects of an HFD. What is unknown is the long-
term effect, as it cannot be concluded that occasional consumption can cause a permanent
change in the microbiota pattern. Inhibition of potentially pathogenic strains requires a
long-term study to evaluate several aspects of functional compounds’ interaction with the
microbiota [92].

An essential effect of green tea consumption has been demonstrated in vivo using
pathogen-free male C57BL/6J mice at the age of 6–8 weeks. This study showed that tea
consumption modifies microbiota and provides protection a HFD induced obesity. [91].
These data can be interpreted as a response that the microbiota has when drinking green
tea. Microbial modulation results from regular consumption, dependent on the constant
presence of biologically active compounds, such as catechins, epigallocatechin, or epicate-
chins [93]. The catabolism of these compounds was demonstrated by a previous in vitro
study in rat microbiota [94].

Another essential aspect in recent years is the recovery of food waste, such as coffee
or herbal tea [9,95]. The tea residues could be fermented, used as a feed additive for
Holstein heifers (cattle) by the rumen’s anaerobic component, and caused an increase in im-
munoglobulins’ concentration and the general antioxidant status. This is a significant study
that demonstrating beneficial effects throught the selective use of functional components,
similar to the prebiotic-like impact [91]. In this regard, tea saponins are mentioned to stim-
ulate the proportion of the genera Bacteroides, Lactobacillus, and Bifidobacterium strains. The
saponins present in ginseng tea improve the Firmicutes/Bacteroidetes ratio, leading to the
explanation of favorable effects on human health. The consumption of these plant species
is associated [60,96]. The modulating role has also been demonstrated for black tea extract,
which reduces physiological manifestations of colitis, regulates the TLR4/MyD88/NF-κB
pathway, and causes a selective modulation of the microbiota in chemical-induced colitis
in mice [97].

The relationship between microbiota and obesity is currently being studied extensively.
Herbal teas are a group of products widely used in reducing obesity. Many formulas whose
action is based on a diuretic effect only apparently solve the issue of weight gain caused by
water accumulation [98]. Although water accumulation is a secondary cause of obesity, the
anti-adipogenic effect is necessary to consider that a plant used to make tea is beneficial
against obesity. In vitro study on mouse 3T3-L1 preadipocytes showed that hot water ex-
tract of Chrysanthemum morifolium Ramat flowers inhibited lipid accumulation. The activity
of glycerol-3-phosphate dehydrogenase has led to an adipogenesis/lipogenesis-related
gene expression and activation of the AMPK/SIRT1 pathway [99]. The lipid-lowering effect
and cytotoxicities on human HepG-2 hepatocellular carcinoma cells have been demon-
strated for ten novel dammarane-type saponins from a functional herbal tea made from
Gynostemma pentaphyllum [100]. However, no direct link has been identified between the
antilipidemic effect and the composition of these extracts. It is assumed that other mech-
anisms mediate the therapeutic effect. In this sense, the microbiota is expected to play a
significant role because it interacts with saponins these molecules after consumption [101].
In vivo, the mechanism of action differs by being carried out by intermediate compounds,
resulting from microbiota-mediated biotransformations. Microbiome dysbiosis can disturb
the biotransformation process and determine the accumulation of adipocytes [102]. In vitro
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studies using newly isolated compounds on cell line models data on cell line efficiency
tended to capitalize on this source of functional compounds in identifying alternative
mechanisms for modulating human physiological functions in chronic obesity.

Moreover, Diez-Sainz et al. hypothesize that specific gut microbes could control in-
testinal permeability by increasing/decreasing bioavailability and bioefficiency of plant
bioactive compounds and their concentration in blood circulation for potential biologi-
cal actions [103]. Supportive data showed that microbiota dysbiosis could disrupt the
intestinal barrier and promote or help the progression of diverse pathologies (Figure 1).
Changes in gut microbiota composition promote variability in the uptake of plant bioactive
molecules [104,105].

Figure 1. The action of herbal teas and mushrooms consumption effects on gut microbiota bioactivities. The figure was
drawn using bioRender Premium Edition (https://app.biorender.com/; accessed on 10 May 2021).

The large majority of the scientific data reported show the beneficial effects of tea ad-
ministration and mushroom consumption on the gut microbiota. Less data regarding their
possible adverse effects were published: the presence of toxic compounds like aristocholic
acid, which can have a negative impact on gut microbiota homeostasis [106]. Increasing cell
number of some microbial strains like Lactobacillus spp. may sometimes induce interleukin
1 β, which may be implicated in aggravation of the inflammatory response [107]. Con-
sumption of 400 mL of liquid green tea (LGT) for ten days by human volunteers led to an
elevation of Firmicutes, reduction of Bacteroidetes, and elevation of the ratio of Firmicutes
to Bacteroidetes in microbiota from feces. The consumption of LGT favored the increase
of the number of bacteria such as Lachnospiraceae, Ruminococcaceae, and Bifidobacteriaceae.
Those are responsible for the synthesis of SCFAs. These changes persisted even one week
after LGT administration [108].

4. Effect of Plant miRNAs on Gut Microbiota Modulation with Impact on the
Human Health

MicroRNAs (miRNAs) are a class of small intracellular single-stranded and non-
coding RNAs from 18–25 nucleotides that play essential roles in gene expression, individu-
ally or in combination with other miRNAs. Thousands of miRNAs have been discovered in
prokaryotes and eukaryotes, with more than 2500 miRNAs identified in humans [109]. In
both plant and animal cells, microRNAs regulate gene expression at the posttranscriptional
and posttranslational levels, mainly targeting messenger RNAs (mRNAs), resulting in
mRNAs translation repression, degradation, or both. Thus, microRNAs regulate more than

https://app.biorender.com/
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60% of human protein-coding genes and play a crucial role in various biological processes.
Simultaneously, deregulation of miRNAs disturbs key molecular events that are associated
with different pathologies [110]. Interactive analysis showed that certain miRNAs species,
such as miRNA-155, miRNA-168, miRNA-854 family, may be expressed in both plant
and animal cells while miRNA-21, miRNA-146a, and miRNA-155 are coexisted in the gut
microbiome and foods. Thus, dietary miRNAs may potentially contribute to cross-kingdom
communication and modulate molecular mechanisms associated with human health and
disease [111,112].

In recent years, many efforts to develop miRNAs-based therapeutics to treat human
diseases were performed. Targeting natural compounds from plants, such as flavonoids,
terpenoids, alkaloids that modulate human miRNAs, is an important strategy in cancer
treatment [113,114]. Another approach is based on the increasing evidence that plant
miRNAs might act as new bioactive compounds that directly or thoroughly the gut micro-
biota modulates health-associated miRNAs levels. However, there is a controversy if the
exogenous plant miRNAs can penetrate the human bloodstream and reach a circulating
level that allows them to act as bioactive ingredients [102], influence gut microbiome and
positively affects the host health, acting as a cross-kingdom gene expression regulator
raises attention. This hypothesis is based on the following rationale. First, the influence
of plant-derived diet and medicinal plants on microbiota composition, which has been
extensively investigated [103,115]. Second, gut microbiota and endogenous/exogenous
miRNAs bidirectional interaction have been reported, as they can influence each other and
regulate the host pathology [110,112]. Gut microbiota has been found to miRNA-regulate
the host gene expression via the production of metabolites, such as lipopolysaccharide,
butyrate and amyloids, and other signaling molecules. On the other hand, the host shapes
and controls the gut microbiome by miRNAs secreted by the epithelial cells into the gut
lumen, then found in fecal content, specifically targeting bacterial genes [110,112,116].

However, how edible plant or herbal medicine miRNAs could shape gut microbiota
composition by modulating microbe genes that affect growth is poorly understood. It
has recently been suggested that diet plant-derived miRNA-146a directly modulates the
structure and composition of the gut microbial communities within 1–2 weeks. Still, the
changes in microbial community structure were modest [117]. Another way plant-derived
miRNAs could modulate gut microbiota with physiological consequences on the host is
via extracellular vesicles, exosomes, and exosome-like nanoparticles (ELNs). Exosomes
are one of the natural carriers of miRNAs that protects their integrity and stability and
play essential roles in cell-to-cell communications. Teng et al. proved that ginger-derived
ELNs could be selectively taken up by Lactobacillus rhamnosus. The diverse miRNAs carried
inside that target bacterial genes could regulate the composition, metabolites, growth, and
localization of the gut microbiota, finally improving colitis in mice [118]. This pioneering
study established a direct causal relationship between plant miRNAs and gut microbiota.
It proposed a therapeutically approaches based on manipulation of the microbiome with
plant miRNAs for treatment of dysbiosis-related disease. Similar research provides strong
evidence that dietary milk exosomes change the gut bacterial community’s composition in
mice [119].

Medicinal herbal teas and mushrooms have been used to treat diseases for centuries.
They contain thousands of miRNAs that might act as hidden bioactive ingredients in-
volved in their therapeutic effects [120,121]. Medicinal plant-derived miRNAs’ stability
during harsh conditions of preparation and storage is crucial for their therapeutic potential.
It has recently been confirmed that some miRNAs survived during the herb preparation
process [122]. However, the knowledge of plant medicinal-derived miRNAs in regulating
human health via microbiome is at a very early, exploratory stage. Plant medicinal-
derived miRNAs-based therapeutics is a new concept with a wide range of practical
applications for human health and two important advantages, lower side effects and price.
Still, more research must be done to obtain high-efficiency therapies to prevent or treat
human diseases [123].
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5. Conclusions

The way in which the bio-active compounds influence the gut microbiota in teas and
mushrooms depends on a multitude of factors starting with their frequency of consumption,
the compounds concentration, the pattern of the bioactive compounds and the health of the
organism. Edible mushrooms and herbal teas exert beneficial effects on human health both
directly and indirectly by the modulation of GI microbiome. It is not very clear whether
plant medicinal-derived miRNAs affect the gut microbiota modulation process. Still, it is
thought that they may affect the plasticity of the human microbiome. Effect on cytotoxicity
induced by oxidative stress or gut microbial populations is still a new direction that could
imply mushrooms or herbal teas as functional products.
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