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Abstract: The bacterial genus Pantoea has been widely evaluated as promising bacteria to increase
phosphorus (P) availability in soil. The aim of this study was to characterize the phosphate solubi-
lizing (PS) activity of a Pantoea agglomerans strain and to evaluate the impact of its application in a
semi-arid soil on phosphate availability and structure of the bacterial communities as a whole. An in-
cubation experiment under close-to-natural soil environmental conditions was conducted for 15 days
at 30 ◦C. High-throughput sequencing of the bacterial 16S rRNA gene was used to characterize and
to compare the bacterial community structure of P. agglomerans-inoculated soil with non-inoculated
control. Furthermore, a qPCR-based method was developed for detection and quantification of the
functional genes related to the expression of mineral phosphate solubilization (MPS) phenotype
in P. agglomerans. The results showed that in vitro solubilization of Ca3(PO4)2 by P. agglomerans
strain was very efficient (980 mg/L), and it was associated with a drop in pH due to the secretion of
gluconic acid; these changes were concomitant with the detection of gdh and pqqC genes. Moreover,
P. agglomerans inoculum application significantly increased the content of available P in semi-arid soil
by 69%. Metagenomic analyses showed that P. agglomerans treatment modified the overall edaphic
bacterial community, significantly impacting its structure and composition. In particular, during
P. agglomerans inoculation the relative abundance of bacteria belonging to Firmicutes (mainly Bacilli
class) significantly increased, whereas the abundance of Actinobacteria together with Acidobacteria
and Chloroflexi phyla decreased. Furthermore, genera known for their phosphate solubilizing activ-
ity, such as Aneurinibacillus, Lysinibacillus, Enterococcus, and Pontibacter, were exclusively detected
in P. agglomerans-treated soil. Pearson’s correlation analysis revealed that changes in soil bacterial
community composition were closely affected by soil characteristics, such as pH and available P. This
study explores the effect of the inoculation of P. agglomerans on the bacterial community structure
of a semi-arid soil. The effectiveness in improving the phosphate availability and modification in
soil bacterial community suggested that P. agglomerans represent a promising environmental-friendly
biofertilizer in arid and semi-arid ecosystems.

Keywords: available P; microbial inoculants; soil bacterial community composition; soil bacterial
community structure; high-throughput sequencing
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1. Introduction

Phosphorus (P) makes up 0.7% of the Earth’s lithosphere and represents the eleventh
most abundant element [1]. However, P is the most important key element next to nitrogen
that often limits plant productivity [2]. Indeed, only 0.1% of the total P exists in a soluble
form available for plant uptake [3] because of its complexation with cations like iron,
aluminum, and calcium which can be regarded as an unavailable form for plants uptake.

Chemical phosphate fertilizer has been used as a source of replenishing soil P. The
main source of manufacturing phosphate fertilizers is mined rock phosphate, which in turn
is non-renewable and may only last for 100–400 years [4,5]. In addition to resource issues,
chemical phosphate fertilizers represent the main cost of agricultural production and can
cause environmental complications, including reduction of crop yield, water quality, and
waterway eutrophication [4], along with changes in the edaphic microbial communities [6].
In addition, the repeated and injudicious applications of chemical P fertilizers may also lead
to soil quality deterioration, related to soil acidification and soil structural degradation [7].

Due to the detrimental effects that are associated with chemical P fertilizers, there
have been substantial efforts towards the search for environmentally compatible and
economically feasible alternative strategies for improving crop production in low or P-
deficient soils [8]. The use of phosphate-solubilizing bacteria (PSB)-based bio-fertilizers in
agricultural soils is considered an environment-friendly alternative to replace agrochemical-
based P fertilizers [2].

The use of PSB has been widely studied in recent years. In this way, many bacteria
classified as PSB strains are used as biofertilizer inoculants in agriculture to improve crop
P nutrition and increase crop yield, although with varied and inconsistent efficacy. PSB
are emerging as key factors for P dynamics in soils and offer cost-effective and sustainable
approach for smallholder farmers to overcome P limitations in soil [2].

The mineral phosphate solubilization (MPS) mechanism mediated by bacteria—mainly
Gram-negative species—implies the secretion of organic acids through direct oxidation of
glucose (DOPG; non-phosphorylating oxidation) into gluconic acid; gluconate is further
oxidized to 2-ketogluconic acid by gluconate dehydrogenase (GADH) [9]. Gluconate is
considered the key driver of phosphate solubilization (PS). The activity of glucose dehy-
drogenase (gdh) requires pyrroloquinoline quinone (PQQ) as cofactor, whose biosynthesis
involves a pqq operon consisting of at least six to seven genes [10,11]. Although pqq
genes are highly conserved in several bacterial species [12], the role of the protein PqqC
(pyrroloquinoline quinone synthase C) is the only one to have been dilucidated; meanwhile,
proposed functions have been assigned for most of the other genes [13]. The pqqC gene
catalyzes the final step of the PQQ biosynthesis, namely, cyclization and oxidation of the
intermediate 3a-(2-amino-2-carboxy-ethyl)-4,5-dioxo-4,5,6,7,8,9-hexahydroquinoline-7,9-
dicarboxylic acid to PQQ [14].

Many different bacteria carry genes involved in the MPS mechanism, but little is
known about their ecology and activity in soils. An important group of bacteria belonging
to the Enterobacteriaceae family showed high P solubilization activity [15]. Among these,
members of the genus Pantoea have been extensively studied [15]. Pantoea comprises sev-
eral species that have showed prominent environmental versatility and adaptability, and
possess a variety of biodegradative capabilities [16–20]. Numerous studies demonstrated
that Pantoea possess genes involved in the expression of the MPS phenotype [20–22]. The
majority of these studies are usually based on artificial media amended with a source of in-
organic phosphate, such as Ca3(PO4)2 [17]. Compared to artificial media, the physiological
state and metabolism of a bacterium grown in natural soil could be different, influencing
the effectiveness of the PS observed in vitro. Moreover, PSB inoculated in natural soil
must interact and compete with the indigenous edaphic microbial community, possibly
impacting its structure and composition. To the best of our knowledge, there has been no
report to date on the effects of Pantoea addition on the soil microbial community. Here, we
investigate the effects of PSB application in natural arid soil on: (1) the availability of P
and (2) the diversity and composition of the indigenous edaphic bacterial community. We
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isolated our PSB strains (P. agglomerans V8R67) from the rhizosphere of date palm (Phoenix
dactylifera L.) cultivated in the arid oasis of Ksar Ghilane (Tunisia). We characterized the
MPS pathway by the detection of gdh and pqqC genes and by evaluating its activity in vitro.
Microcosm experiments were further conducted using agricultural soil with low available
P, inoculated and non-inoculated with P. agglomerans. The structure and composition of
the bacterial community exposed to P. agglomerans were evaluated by high-throughput
amplicon sequencing of the bacterial 16S rRNA gene; prevalence and expression of genes
gdh and pqqC were also evaluated by qPCR. This study will provide useful information
regarding the effect of biofertilizer inocula on the soil bacterial communities and possibly
on the multifunctionality of the soil ecosystem.

2. Materials and Methods
2.1. Phosphate-Solubilizing Strain Origin and Phylogenetic Identification

The strain used in this study (Pantoea agglomerans V8R67) was originally isolated
from the rhizospheric soil of date palm (Phoenix dactylifera L.) in an oasis in southern
Tunisia (Ksar Ghilane; N 32◦58′56.040′′ E 09◦38′11.287′′, alt. 6.0 m) and selected according
to its ability to solubilize P in vitro [23]. The gene-encoding bacterial 16S rRNA was
amplified from the strain by colony PCR using the bacterial universal primers 27F 5′-
AGRGTTTGATCMTGGCTCAG-3′ and 1492R 5′-GGTTACCTTGTTACGACTT-3′ [24]. PCR
reactions were carried out in 20 µL volume of reaction mixture, which included final
concentrations of 1× reaction buffer (Kapa), 1 mM MgCl2, 0.5 mM dNTPs, 0.5 mM of
each primer, 0.5 U/µL of Taq (Kapa), and 1 µL of template DNA (~100 ng). A PCR
reaction was performed by an initial step at 95 ◦C for 5 min in order to denature DNA,
followed by 35 cycles of 30 s denaturation at 94 ◦C, 30 s primer annealing at 55 ◦C, and 90 s
DNA chain extension at 72 ◦C. The PCR was completed by a final extension at 72 ◦C for
10 min. The PCR products were precipitated with polyethylene glycol (PEG) [25]. Both
strands were sequenced using the Big Dye Terminator v3.1 Cycle Sequencing Kit (Life
Technologies Corporation, Austin, TX, USA) in a 3500 Genetic Analyzer (Life Technologies,
Singapore). Sequence similarities were found by BLAST analysis [26] using the GenBank
DNA database.

2.2. Characterization of the In Vitro Mineral Phosphate Solubilization (MPS) Activity in
P. agglomerans V8R67

For the qualitative estimation of inorganic P solubilization, the strain was spot inoc-
ulated on National Botanical Research Institute’s Phosphate (NBRIP) [27] agar medium,
containing insoluble tricalcium phosphate Ca3(PO4)2 for 3 days. The P solubilization is
indicated by a clear zone around the colony. For quantitative estimation of inorganic P solu-
bilization, the strain was inoculated in 20 mL vials containing NBRIP media and incubated
at 30 ◦C for 6 days with shaking (250 rpm). Cell growth rate and medium acidification
were monitored during the incubation; un-inoculated NBRIP medium was used as nega-
tive control. The broths were centrifuged at 13,000 rpm for 10 min to remove suspended
particles of insoluble Ca3(PO4)2 and obtain a clear supernatant. Triplicate aliquots of the
supernatant (100 µL) were transferred into clean, dry, acid-washed test tubes. Soluble
phosphate in the culture broth was determined by using the vanadomolybdo phosphoric
acid colorimetric method [28]. Qualitative detection of organic acids was performed by
thin-layer chromatography (TLC) with the procedure described by Pérez et al. [29].

2.3. Detection of Genes Involved in the Expression of the MPS Phenotype in P. agglomerans V8R67

The presence of genes involved in the MPS phenotype was examined by using PCR in
P. agglomerans V8R67. One of the most important mechanisms of phosphate solubilization
by Pantoea spp. is the biosynthesis/secretion of gluconic acid that requires the enzyme
glucose dehydrogenase (gdh) and its cofactor pyrroloquinolinequinone (PQQ; biosynthetic
gene, pqqC) [22]. The gdh and pqqC genes were amplified using the primers listed in
Supplementary Table S1, starting from the DNA previously extracted from the strain.
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PCR reactions were carried out in 20 µL volume of reaction mixture, which included final
concentrations of 1× reaction buffer (Kapa), 1 mM MgCl2, 0.5 mM dNTPs, 0.5 mM of
each primer, 0.5 U/µL of Taq (Kapa) and 1 µL of template DNA. The temperature profile
for PCR-gdh and pqqC was: an initial cycle at 95 ◦C for 5 min, followed by 35 cycles at
94 ◦C for 30 s, at 57 ◦C for 30 s, at 72 ◦C for 2 min, and a final step of 72 ◦C for 10 min.
Sequence similarities were found by BLAST analysis [26] using the GenBank DNA database
(http://www.ncbi.nih.gov, accessed on 15 September 2019). Phylogenetic analysis of the
gdh and pqqC gene sequences were conducted with Molecular Evolutionary Genetics
Analysis (MEGA) software, version 5 [30]. Trees were constructed using neighbor-joining
method [31].

2.4. Collection of Soil for Microcosm Test

Soil used for the preparation of microcosms was collected in an agricultural field
situated in Sidi Bouzid, region located in the west center of Tunisia (34.5775◦ N, 9.8419◦ E),
recently devoted to agriculture [32]. The soil was classified as semi-arid with low available
phosphate compared to other soil in Tunisia [33]. Soil samples were collected from the
top 20 cm of the soil profile following the procedures described by the International
Standardization Organization (ISO) for collection and handling of soil samples (ISO 10381-6,
2009). After sampling, soil was mixed thoroughly for the subsequent incubation experiment,
air-dried at room temperature, sieved (<2 mm), and stored at 4 ◦C for 1 week before starting
the experiment. An aliquot of the collected samples was dried at room temperature and
subjected to the physicochemical analyses as previously described by Moustarhfer et al. [34].
The properties of the soil are listed in Supplementary Table S2.

2.5. Soil Microcosm Setup

Soil microcosms were constructed in triplicate to evaluate the effects of P. agglomerans
V8R67 addition to soil on P availability and edaphic bacterial community. A total of
twelve pots were filled with 30 g of dry soil. Six of them were inoculated with 5 mL of
P. agglomerans suspension of bacterial cells prepared in sterile saline solution (0.85% NaCl)
at turbidity of 0.5 McFarland (~1.5 ×108 cells/mL); the remaining pots were inoculated
only with saline solution and used as controls. In addition, the same experimental design
was applied to another twelve pots with capacity of 100 mL, prepared with sterile soil
in order to prove that the increase in available phosphate level is due to the activity of
P. agglomerans. Sterilization was performed by autoclaving the soil at 121 ◦C for 30 min
for three cycles. One gram of soil was taken from 1 cm depth from each pot and the serial
dilution was applied plated on TSA medium to check the efficacy of sterilization. All the
microcosms were incubated for 15 days in an incubator with a 15/9 h day/night cycle at
30 ◦C temperature and 55% of relative humidity.

Samples of soils were collected from all the pots at the day of application (time 0, T0)
and 15 days later (time 15, T15) by using sterile tools, and stored at −80 ◦C until processed
for DNA and RNA extraction. The remaining soil was air-dried to determine the pH and
available P content. The pH (soil/water ratio 1:2.5) was determined using a pH meter [35].
Available P was extracted with a 0.5 M NaHCO3 solution, adjusted to pH 8.5 [36].

2.6. Quantification of Genes Involved in the Expression of the MPS Phenotype in P. agglomerans
V8R67 in Soil Microcosms

RNA was extracted from 0.5 g of soil by using Soil Total RNA Purification Kit (Nor-
gen) according to the manufacturer’s instructions and cDNA was synthesized by reverse
transcription using a PrimeScript first-strand cDNA synthesis kit (Takara). The absence
of DNA contamination in RNA extracts was tested by PCR before reverse transcription
amplification. We performed qPCR on the obtained cDNA to evaluate the expression and
quantification of P. agglomerans gdh and pqqC genes. The designed primers used for the
qPCR experiments are presented in Supplementary Table S1. Reactions were performed
using the KAPA SYBR FAST qPCR Kit (KAPA Biosystems, UK) in 10 µL (2 replicates for
each reaction) containing: 5 µL 2× KAPA SYBR FAST qPCR Master Mix Universal, 0.08 µL

http://www.ncbi.nih.gov
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from each primer (25 µM), 4.34 µL water, and 0.5 µL total cDNA (~100 ng). qPCR runs
were conducted in MJ Research Opticon 2 (MJ Research, Waltham, MA, USA) under the
following conditions: one cycle at 95 ◦C for 5 min as enzyme activation, followed by 35
cycles of denaturation at 95 ◦C for 30 s, annealing at 57 ◦C for 30 s, and extension at 72 ◦C
for 30 s. The reaction specificity was determined for each reaction by using a melting-curve
analysis of the PCR product. Amplifications were carried out in a 96-well plate and each
biological sample had a minimum of three replicates. Statistical significance was deter-
mined using the t-test. Internal standard curves were generated for each primer set by
cloning the amplicon of each gene into a pGEM-T Easy Vector (Promega, Madison, USA)
according to the manufacturer’s instructions. All assays were carried out in duplicate,
and replicates were averaged for each sample. Negative controls were included in all
amplification reactions.

2.7. Total Bacterial DNA Extraction, PCR Amplification and Purification

Total soil DNA was extracted from 0.25 g of microcosm soil samples using the Power
Soil DNA Isolation Kit (MOBIO Laboratories Inc., Carlsbad, CA, USA) according to the
manufacturer’s instructions. Total DNA concentration and quality (A260/A280) were
estimated using a Quawell Q5000 micro-volume UV-Vis spectrophotometer. The purified
DNA was stored at −20 ◦C for subsequent amplification by polymerase chain reaction
(PCR) and Illumina MiSeq sequencing. A fragment of approximately 460 bp belonging
to the V3-V4 region of the bacterial 16S rRNA gene was amplified by PCR using the
universal primer set U341FMiSeq 5′-CCTACGGGRSGCAGCAG-3′ and 805RMiSeq 5′-
GACTACHVGGGTATCTAATC C-3′ [36]. Amplification was performed using KAPA
HiFiHot-Start PCR Kit (Kapa Biosystems). Each 25 µL reaction contained 5 µL of KAPA
HiFi Fidelity Buffer (5×), 0.7 µL of dNTPs solution (10 mM each), 0.7 µL of each primer
solution (10 µM), 0.3 µL of KAPA HiFi Hot-Start DNA Polymerase solution (1 U/µL),
1 µL from the template DNA solution and 16.6 µL of sterile deionized water. The PCR
protocol included an initial denaturation step at 95 ◦C for 3 min, followed by 30 cycles
of denaturation at 98 ◦C for 20 s, annealing at 60 ◦C for 15 s, and extension at 72 ◦C for
45 s. The reaction was terminated with a final extension step at 72 ◦C for 1 min. For
each set of PCR reactions performed, the appropriate negative and positive controls were
also prepared. The approximately 550 bp amplification products (size increase due to
the incorporation of the 50-mer Illumina primers) were electrophoresed on a 1.5% w/v
agarose gel and visualized in Bio-Rad’s Gel Doc™ XR+ system. Positive PCR products
were purified with a 20% PEG, 2.5 M NaCl solution, centrifuged at 14,000× g for 20 min
and the precipitate was washed twice with 125 µL of a 70% v/v ethanol solution and
centrifuged at 14,000× g for 10 min as previously described [37]. The dried precipitates
were suspended in 15 µL of sterile deionized water and the concentration was measured
with a Quawell Q5000 micro-volume UV-Vis spectrophotometer.

2.8. Indexing PCR and Purification

The purified PCR products were diluted to a final concentration of 10 ng/µL and
submitted to indexing PCR in order to incorporate the Illumina adapters (barcodes). During
indexing PCR, each sample was amplified with a unique combination of index primers.
Amplification was performed in 50 µL reactions using the KAPA HiFiHot-Start PCR
Kit. Each reaction contained 10 µL of KAPA HiFi Fidelity Buffer (5×), 1.5 µL of dNTPs
solution (10 mM each), 5 µL of the forward index primer (10 µM), 5 µL of the reverse
index primer (10 µM), 1 µL of KAPA HiFiHot-Start DNA Polymerase (1 U/µL), 2 µL from
the diluted PCR product (10 ng/µL), and 25.5 µL of sterile deionized water. The PCR
program comprised an initial denaturation step at 95 ◦C for 3 min, followed by 8 cycles
of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C for
30 s. The reaction was terminated with a final extension step at 72 ◦C for 5 min. The
resulting amplicons were purified using Macherey-Nagel’s NucleoMag® NGS Clean-up
and Size Selection kit (MACHEREY-NAGEL GmbH & Co, Düren, Germany) according
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to the manufacturer’s recommendations. Purified samples were suspended in 30 µL of
sterile deionized water and their concentration was measured with a Quawell Q5000 micro-
volume UV-Vis spectrophotometer (Quawell, San Jose, CA, USA). All samples were diluted
to a final concentration of 8 nM and mixed equimolarly.

2.9. Illumina Sequencing and Data Analysis

The library was sequenced on an Illumina MiSeq sequencing platform by Macrogen
(Korea). Sequencing reads were de-multiplexed and converted to FASTQ. The Illumina
adapters were removed using Illumina standard algorithms. Paired-end reads were assem-
bled, trimmed by length, and further corrected using the usearch -fastq_mergepairs option.
Analysis of reads was performed using usearch v.10 [38]. The quality of the assembled
sequences was further improved using the -fastq_filter, followed by finding unique read
sequences and abundances by using the -fastx_uniques option. Sequences were clustered
into operational taxonomic units (OTUs) using the -cluster_otus command [39]. Chimeras
were removed using the -unoise3 option [40]. Taxonomy was assigned using the SILVA
16S rRNA gene database (release 119) [41].

Alpha-diversity indices were calculated based on the rarefied OTUs table at a depth
of 11,910 sequences/sample (Supplementary Figure S1). Species richness was estimated
with Chao1 [42] and ACE indices [43], whereas species diversity was calculated with the
use of Shannon’s and Simpson’s reciprocal (1/D) indices. Alpha-diversity comparisons
were performed using analyses of variances (ANOVAs) in a factorial design followed
by the Tukey HSD test (p < 0.05). Between-sample (Beta-diversity) was calculated using
Bray–Curtis similarity [44] on square root transformed data, and principal coordinates
analysis (PCoA) [45] was performed on the resulting distance matrix. Shared and exclusive
OTUs (and their relative distribution) across treatments (soil inoculated with P. agglomerans
and related control) were calculated for each sampling time (time 0 and 15) in R using
the package Venn Diagram [46]; differential abundance of OTUs (2 fold-change) was also
evaluated to determine OTUs enriched/depleted across treatments at the two sampling
times by using package DEseq2 in R [47]. In addition, to identify indicator features in
P. agglomerans-treated and control sample soil, the linear discriminant analysis (LDA)
effect size (LEfSe) method was used [48]. The LDA was performed using a one-against-
all strategy, an alpha significance level of 0.05, and an effect-size threshold of 4 for all
distinctive taxa.

We performed a distance-based linear model permutation test to evaluate the influ-
ence of soil environmental factors (soil pH and available P) on the bacterial community
structure. The Bray–Curtis distance matrix was used as the resemblance measure in DistLM
procedures. The R2 was used as a selection criterion to permit the fitting of the explanatory
environmental variables in the model. Results were visualized with a distance-based
redundancy analysis (dbRDA). The analysis was performed using the PERMANOVA+
plugin utilized through PRIMER 6 [49,50]. In addition, the Minitab software was also used
to conduct the Pearson correlation analysis to identify correlations between environmental
factors and the relative abundances of abundant phyla results.

3. Results
3.1. Identification of PSB Pantoea Agglomerans V8R67 and Characterization of Its MPS Ability

Genotypic identification of the selected strain was performed by analysis of its nu-
cleotide sequences corresponding to the bacterial 16S rRNA gene. The strain was closely
related to P. agglomerans. The DNA sequence of the 16S rRNA gene of this strain showed
99.86% and 99.79% identity to the ones of P. agglomerans strain S20_PA1R (GenBank ac-
cession no. MK883101.1) and of P. brenneri strain IHBB 9376 (GenBank accession no.
KU921568.1), respectively. Cells of P. agglomerans V8R67 inoculated in NBRIP medium
containing Ca3(PO4)2 as the sole P source started to grow exponentially after an initial log
phase of about 3 days and reached the stationary phase after 4 days of growth (Figure 1a).
PS increased with the increase of culture time, reaching a maximum of 990 mg/L at 4 days
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of growth (Figure 1a); bacterial growth and PS were positively correlated (Pearson cor-
relation: R2 = 0.96, p < 0.0001; Figure 1b). The culture pH decreased from 7.8 to 4.65
during the period of the linear increase of PS (Figure 1a); such changes were related to
both bacterial growth and PS activity (R2 = 0.6188 and R2 = 0.7595, respectively; Figure 1c),
suggesting the involvement of organic acids secretion by P. agglomerans. This hypothesis
was confirmed by TLC analysis. Spot with pure gluconic acid was detected in our culture
supernatant, revealing that the solubilization of P mediated by P. agglomerans was caused
by the secretion of organic acids in the culture medium.
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Figure 1. (a) Growth of P. agglomerans in NBRIP medium containing 5 g/L tri-calcium phosphate [Ca3(PO4)2]. Changes in
soluble P, bacterial cell growth, and medium pH are reported; values of three independent readings are showed. (b) Relationship
between soluble-P and bacterial growth; Pearson correlation p-values and R2 are reported in the graph. (c) Relationship
between modification in pH and bacterial growth/soluble-P.

The ability of P. agglomerans V8R67 to produce gluconic acid was further evaluated
by amplifying the gdh and pqqC genes (Supplementary Figure S2). Amplification results
showed the presence of bands with the expected size for both the pqqC (600 bp) and gdh
(600 bp) genes. Partial sequencing of these PCR products confirmed that the two bands
obtained from V8R67 correspond to the pqqC and gdh homologs from P. agglomerans strain
C410P1 (CP016889) and P. agglomerans strain L15 (CP034148), respectively (Supplementary
Figure S3).

3.2. Effects of P. agglomerans V8R67 Inoculum Application on the Availability of P and Diversity
of Edaphic Bacterial Community

The addition of P. agglomerans V8R67 strain in the soil significantly (t-test student,
p < 0.05) increased available P in the soil at the beginning and after 15 days of incubation
(Figure 2a). This effect was observed in both sterile and non-sterile soils, with increase in
the available P reaching up to 69% and 73% compared to the respective controls at the end
of the incubation (Figure 2a). Notably, no significant differences were observed among
sterile and non-sterile soils treated with the strain at each time (0 and 15 days). Despite
the increase in soluble P in treated soils, the copy numbers of gdh and pqqC genes of active
P. agglomerans tended to decrease during the incubation time (15-days) in both sterile and
non-sterile soils, indicating a decline of the activity and cell quantity of the introduced
bacteria over time (Figure 2b).
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inoculated with P. agglomerans at 0 and 15 days; t-student test was performed to compare number of genes at 0 (T0) and
15 (T15) days for each gene (*, p < 0.05).

The PCoA analysis indicated that the first two principal coordinates accounted for
63% and 29.1% of the variation within the Bray–Curtis similarity matrix, respectively
(Figure 3a). The three replicates of each treatment were consistently located close to each
other in the ordination space of PCoA, indicating reduced dispersion. Notably, the bacterial
communities subjected to P. agglomerans treatment were separated from those of control
samples (Figure 3a), showing an average similarity of 2.7% and 16.6% at 0 and 15 days,
respectively (Figure 3b). In both controls and the P. agglomerans treatments, the incubation
time was a significant differentiation factor of the bacterial communities (p = 0.04 and
p = 0.004, respectively; Figure 3c); such separation was more evident and pronounced in
the inoculated soils.
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Figure 3. (a) Principal coordinate analysis (PCoA) of soil bacterial community structure of control and P. agglomerans-
inoculated soil collected at 0 days and 15 days. Variance explained by each PCoA axis is given in parentheses. (b,c)
Heatmaps showing the average values of similarity (%) and PERMANOVA p-values of pairwise comparisons across
samples categories, respectively. NC: control; IN: inoculated; 0: 0 day; 15: 15 days.
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The analysis of alpha-diversity revealed that the inoculation with our strain (time 0)
drastically reduced the diversity of bacterial communities in terms of number of OTUs (rich-
ness), and their diversity and distribution (Simpson and Shannon; Table 1; Supplementary
Figure S4). This effect was mitigated during the incubation time, and at 15 days, the in-
oculated soil samples exhibited similar species richness and diversity indices compared
to the control group (Table 1). However, as showed by the beta-diversity analysis, the
inoculum determined the differentiation of soil bacterial communities that present up to
45% of specific-OTUs and have 55% of OTUs in common with the control (Supplementary
Figure S4).

Table 1. Alpha-diversity indices (richness and diversity indices) of soil samples calculated from the
bacterial 16S rRNA gene sequence data. OTUs were clustered at 97% similarity level. Comparison of
richness (number of OTUs observed) and diversity indices (Chao 1, ACE, Simpson, and Shannon)
between control and P. agglomerans inoculated soil samples at time 0 and 15 days. The values are the
mean± SE, n = 3. For each diversity index, ANOVAs followed by the Tukey HSD test was performed;
different letters in the same column indicate significant differences (p < 0.05).

Time Treatment Chao1 ACE Simpson Shannon

0 day NC 53 ± 0.57 ac 53 ± 0.57 ac 0.87± 0.00 ac 4.32 ± 0.07 ac
IN 9.66 ± 0.66 ab 9.66 ± 0.66 ab 0.55 ± 0.02 ab 1.59 ± 0.06 ab

15 days NC 55 ± 1 b 55 ± 1 b 0.90 ± 0.02 b 4.41 ± 0.24 b
IN 56.66 ± 1.20 c 56.66 ± 1.20 c 0.89 ± 0.02 c 4.14 ± 0.16 c

3.3. P. agglomerans Treatment Influences the Relative Abundance of Specific Taxa

The analysis of the bacterial community revealed the presence of seven phyla (Figure 4a,
Supplementary Table S3): Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, Chlo-
roflexi, Bacteroidetes, and Gemmatimonadetes. P. agglomerans application promoted the
presence of Firmicutes and Bacteroidetes which increased from 2.9% to 61.99% and from
1.64% to 5.19%, respectively, compared to the control (p < 0.05). By contrast, the phyla
Chloroflexi and Actinobacteria significantly decreased in P. agglomerans-treated soil com-
pared to non-treated soils, from 6.73% to 0.45% and from 32.26% to 1.65%, respectively
(p < 0.05). Additionally, the treatment induced the loss of Acidobacteria, while the Gemma-
timonadetes phylum was not affected. We also evaluated the treatment effect at the class
and genus levels (Figure 4b,c and Supplementary Tables S3 and S4). While the relative
abundance of Alphaproteobacteria, Rubrobacteria, and Actinobacteria classes decreased signifi-
cantly in P. agglomerans-treated samples, Bacilli, Gammaproteobacteria, and Bacteroidia had
an opposite trend; notably, Clostridia were detected exclusively in P. agglomerans-treated
samples, and Blastocatellia (Subgroup 4 and 6) in control samples. At the genus level
(Figure 4c, Supplementary Table S4 and Figure S4), Bacillus formed the most abundant
group in P. agglomerans-treated soil after 15 days of incubation, accounting for approxi-
mately 23.8% of the relative abundance, followed by the genus Clostridium (9%). In the case
of the control, Arthrobacter and Sphingomonas genera were the most abundant; accounting
for 23.4% and 18% of the bacterial community, respectively. Analysis at the genus level also
reveals a number of other distinctions between the control and the P. agglomerans treated
samples. For instance, the abundance of Pontibacter, Lysobacter, and Domibacillus were in-
creased in P. agglomerans-treated soils compared to the control, while the relative abundance
of Microvirga, Rhizobium, and Rubrobacter were decreased in P. agglomerans-treated soils
compared to the control. The genera of Ensifer, Blastococcus, and Sphingomonas were only
detected in control samples. These changes are also accompanied by the proliferation of a
wide range of soil PSB genera in the soil of P. agglomerans treatment microcosms, including
Lysinibacillus (8.74%), Aneurinibacillus (3.15%), Enterobacter (3.15%), Acinetobacter (4.69%),
and Enterococcus (5.06%) (Supplementary Table S4). It is also notable that the relative
abundance of P. agglomerans decreased by 89.01% after 15 days of incubation.
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Figure 4. Percentage of relative abundance of bacterial (a) phyla, (b) classes, and (c) genera in control (NC) and P. agglomerans
inoculated (IN) soils samples at 0 and 15 days. Relative abundance of genera is reported as log-transformed. For each
treatment values are expressed as the average of the three replicates.

We also quantified the number of OTUs that were enriched in the treatment and
control soils at the two incubation times (p-adjusted < 0.01 and 2-fold changes in relative
abundance; Figure 5). Only a small number of OTUs differentially accumulated in the
inoculated soil (n = 6) when time 0 was considered; on the contrary, control confirmed
the presence of a more diverse bacterial community with 47 enriched OTUs (Figure 5a).
At the end of incubation (15 days), the number of enriched OTUs also increased in the
inoculated soils (n = 26), confirming the bacterial community diversification mediated by
P. agglomerans inoculation (Figure 5b). It is important to note that such changes in relative
abundance could be the result of decreases/increases in several community members
rather than changes in absolute abundance of specific bacterial OTUs.

Finally, we determined the bacterial discriminants for the P. agglomerans-treated and
control soils by using LEfSe analysis; at 15 days, a total of 24 and 37 bacterial discriminants
were detected in P. agglomerans-treated and control soils, respectively (Figure 6): mem-
bers of Bacilli (including Bacillus, Aneurinibacillus, Lysinibacillus, and Enterococcus genera),
Clostridia (Clostridium genus), Bacteroidia (Pontibacter genus), and genus DSSF69 within
the Sphingomonadaceae family were the bacterial discriminants of PSB treatment, while
Actinobacteria (including Arthrobacter, Blastococcus, Verrucosispora, and Rubrobacter genera),
Acidobacteria, and Chloroflexi were enriched in the control soil group.
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3.4. Relationships between the Soil Bacterial Community and the Critical Soil Factors

Analysis of DistLM indicated that the two abiotic variables measured (available P and
pH) were significantly (p = 0.011 and p = 0.008, respectively) associated with the variation in
bacterial community composition at the OTU level. The marginal and sequential stepwise
tests in the DistLM analysis report the proportion of the variation explained by each variable
(Table 2). The dbRDA plot showed that the first two axes of dbRDA components explain
36.1% of the total variation in the composition of the bacterial community by soil properties
(Supplementary Figure S5). The first axis separated soil with P. agglomerans treatment at
15 days from the other soil samples. This indicated that the alteration of soil properties
induced by the P. agglomerans application drove the soil bacterial community structure.

Table 2. Result of distance-based linear model (DistLM) analyses showing the influence of envi-
ronmental parameters on bacterial soil community structure based on Bray–Curtis similarity of
square-root-transformed abundance.

Marginal Tests

Variable SS (trace) F P Prop.

AP 10037 4.6681 0.011 0.31825
pH 10137 4.7367 0.008 0.32142

Sequential Tests

Variable R2 SS (trace) F P Prop. Cumul Res.df

AP 0.31825 10037 4.6681 0.012 0.31825 0.31825 10
pH 0.36913 1604.8 0.72588 0.435 0.32142 0.36913 9

SS: sum of squares; F: pseudo-F; P: p value; Prop: proportion of explanation; Cumul: cumulative proportion of
explanation; Res.df: residual degree of freedom; AP: available phosphate.

Pearson’s correlation coefficient analysis (Table 3) was further used to evaluate the
relationships between abundant phyla (relative abundance > 1%) and soil environmental
factors. It was found that the relative abundance of Firmicutes and Bacteriodetes was
significantly and positively correlated with available P (r = 0.906, p = 0.001, and r = 0.799,
p = 0.002, respectively) and negatively correlated with pH (r = −0.91, p = 0.001, and
r = −0.653, p = 0.021, respectively). In contrast, the relative abundance of Acidobacteria,
Actinobacteria, and Chloroflexi showed a significantly negative relationship with available
P (r = −0.606, p = 0.037; r = −0.594, p = 0.041; r = −0.599, p = 0.039, respectively).

Table 3. Pearson’s correlation coefficients between soil environmental variable and abundant phyla
(relative abundance>1%); AP: available phosphate.

Phylum pH AP

Acidobacteria 0.545 −0.606 *
Actinobacteria 0.574 −0.594 *
Bacteroidetes −0.653 * 0.799 **
Chloroflexi 0.552 −0.599 *
Firmicutes −0.910 * 0.906 **

Gemmatimonadetes −0.279 0.103
Proteobacteria 0.385 −0.356

Significant correlation: **, p < 0.01 and *, p < 0.05.

4. Discussion

Among a collection of plant growth-promoting rhizobacteria isolated from the rhi-
zospheric soil of date palm (Phoenix dactylifera L.) located in the south of Tunisia, a strain
identified as P. agglomerans V8R67 was able to develop clear phosphate solubilization zones
greater than 10 mm on NBRIP agar containing Ca3(PO4)2. This result was in accordance
with previous studies showing that members of the Pantoea genus display high MPS ac-
tivities [15,20,29,51]. In the present work, we aimed to study the effects of the external
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application of P. agglomerans on the availability of phosphate and bacterial community of
soil using high-throughput sequencing technologies. Since it has been proven that more
than 99% of bacteria in a variety of environmental samples have been shown to be uncul-
turable [52], we have adopted a culture-independent method, in which the total bacterial
DNA was extracted from P. agglomerans-treated and control samples and the amplified
bacterial 16S rRNA genes were sequenced.

We found that the relative abundance of the genus Pantoea significantly decreased
after 15 days despite its external addition to soil samples. In general, our results are in
agreement with observations from the literature that demonstrate log order scale decreases
in the population size of introduced bacteria after inoculation [53]. This can be attributed
to the starvation of laboratory-grown cells when introduced into the soil, and to predation
and competition with the indigenous microflora [54].

Although its lower relative abundance at the end of the incubation period, results
from this study demonstrated that P. agglomerans inoculation was an effective approach
to promote the content of available P in the soil. The increase of available P following the
P. agglomerans addition may have arisen from a combination of different mechanisms. For
instance, the analyses of supernatants of growth of P. agglomerans showed the production
of gluconic acid, directly implicated in pH drop and increase of available P. The presence of
organic acid in the supernatant provided the first indication that the possible mechanism of
phosphate solubilization by P. agglomerans is through the production of organic acids in the
medium. Therefore, the gdh gene encoding the enzyme glucose dehydrogenase responsible
for gluconic acid production and the pqqC gene, which catalyzes the final step of the PQQ
biosynthesis, were identified in P. agglomerans using specific designed primers. Therefore,
it was hypothesized that the capacity of P. agglomerans in mineral phosphate-solubilizing
activity is related to the production of gluconic acid. These findings are also supported
by other studies which showed that P solubilization activity seems to directly correlate to
gluconic acid produced in the periplasmic space of Gram-negative bacteria [55].

Our study demonstrated the effect of P. agglomerans inoculum addition on changing
soil factors, including available P and pH, but also on inducing modification in the structure
and composition of the overall edaphic bacterial community. The abundance of the genus
Bacillus, known as the most important PSB [55], increased in P. agglomerans-treated soils
compared to the control. In addition, the Clostridia class was exclusively present in P. ag-
glomerans-treated soil which also contains genera known for their P solubilization activity.
The current findings are similar to those reported in field experiments based on 31P nuclear
magnetic resonance (NMR), demonstrating an increase of available P and of phosphate
solubilizing microorganisms with the application of functional PSB inoculants [56].

Soil microbial diversity and richness are considered critical soil features related to
the durability of soil management activity [57,58]. The latter is usually reduced by agri-
cultural perturbations, such as chemical P fertilizers [59]. However, alpha diversity of
the bacterial community in soil treated with P. agglomerans was relatively similar to the
control after 15 days of incubation. Moreover, the assessment of beta-diversity confirmed
that P. agglomerans treatment does significantly affect the structure and composition of
edaphic bacterial communities. In particular, differential relative abundance of certain taxa
was observed; Firmicutes was the most abundant taxon in P. agglomerans treatment, with
endospore-forming bacteria of Bacilli and Clostridiales [60] as dominant subgroups. Due
to their spore formation capability, many diverse species of Bacilli and Clostridia have an
advantage over other groups of microbes, in that they survive in extreme habitats for years
and start to grow by using organic materials as growth substrates [61,62]. These findings
were consistent with the previous study conducted by Mowlick et al. [62] which showed
that members of the Firmicutes (from both Clostridia and Bacilli classes) became dominant
in the edaphic bacterial community during biological soil disinfestation, suggesting their
adaptation and resistance to the extreme conditions. Indeed, besides their ability to produce
antagonistic compounds, these bacterial groups possess the capacity to metabolize more
recalcitrant substrates, such as cellulose and lignin, which may give them an advantage
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in growth when sources of more easily degradable nutrients are exhausted [62,63]. By
considering these characteristics of these dominant classes, we can explain the reduced
presence of other groups of bacteria.

The responding microbes selected under LEfSe analysis further demonstrated that
the taxa with abundant advantages in the P. agglomerans-treated soils were mainly related
to phosphate solubilization bacteria including the genus Bacillus, Lysinibacillus, Aneurini-
bacillus, Enterococcus, and Clostridium [55,60,64–66]. The widely studied Bacillus genus
represents one of the most diverse genera in the Bacilli class [67]. Several Bacillus strains
are widely used in agriculture as plant growth-promoting and disease-suppressing agents,
and a number of these strains have already been commercially developed as biological
fungicides, nematicides, and insecticides [55]. Clostridium genus also is reported as an
effective PSB [64]. Lysinibacillus is one of the important bacterial genera which has been
known to produce secondary metabolites that can promote plant growth and enhance
soil fertility [65,68]. It was also reported that Aneurinibacillus possessed multiple plant
growth-promoting traits like production of phosphate solubilization, nitrogen fixation,
indole-3-acetic acid, siderophores, HCN (hydrogen cyanide) production, and antifungal
activity. Thus can be used as an effective PGP inoculant to improve crop productivity [69].

The phylum of Bacteroidetes, which was also increased in P. agglomerans-treated
samples, was previously reported to perform functions similar to those of Clostridiales, such
as decomposing complex plant material and producing short-chain fatty acids [70]. Within
the phylum Bacteroidetes, Pontibacter, which was also identified as indicator phylum for
P. agglomerans-treated soils, was reported as a potential biofertilizer to enhance soil fertility
and promote plant growth [71].

It is well known that environmental factors can shape the microbial community struc-
ture [72]. Among these factors, pH and P have often been reported to be important drivers of
soil bacterial community composition [73,74]. In this study, results showed that the microbial
population distribution was highly related to the soil properties, which were mediated by the
indirect effect of P. agglomerans inoculation. This hypothesis was confirmed by the significant
correlations between the bacterial communities and soil properties measured. Our hypothesis
is also supported by the multivariate analyses. The structure of bacterial communities was
closely correlated with the soil pH and the content of available P, as has also been reported in
several previous studies [75–77]. It was found that the relative abundance of the abundant
phyla Firmicutes and Bacteroidetes showed a positive or negative correlation with available
P and pH, respectively.

This finding may explain the relative abundance of both genera of Bacillus and Clostrid-
ium [13], which are significantly increased after 15 days in P. agglomerans-treated soils. The
observed negative correlation of the genus Clostridium with pH was in accordance with
previous reports [78]. In addition, the relative abundance of Chloroflexi, Acidobacteria, and
Actinobacteria was negatively correlated with soil available P. Similarly, Zhao et al. [79]
reported that the relative abundance of Chloroflexi was negatively correlated with soil
available P. In the current soil microcosm, the decline of soil pH might be associated with
organic acids produced during P. agglomerans metabolism. PSB have been shown to en-
hance the solubilization of P compounds with limited solubility through the release of
organic acids and phosphatase enzymes [80].

Phosphorus is an essential element for all forms of life and a constituent of nucleic
acids [81]. Hence, the content and availability of P might influence microbial diversity by
changing the presence of specific microorganisms in soil [82]. As shown in our study, the
increase in P availability after the addition of P. agglomerans resulted in a greatly increased
abundance of PSB. Furthermore, some genera were found only in P. agglomerans-treated
samples such as Aneurinibacillus, Lysinibacillus, Enterococcus, Clostridium, and Pontibacter.
The increase in the abundance of inorganic PSB communities has also been reported fol-
lowing soil inoculation with the PSB Pseudomonas putida [83]. Hence, the above soil factors
seemed to be of major importance in influencing the composition of soil communities,
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indicating that the increase in the abundance of PSB genera was controlled predominantly
by abiotic mechanisms related to P. agglomerans addition.

It is also known that PSB can convert insoluble P to forms of soluble P in the rhizo-
sphere. The P-solubilizing activity via the microbial biochemical activity has been found
to produce and release metabolites (e.g.,citrate, malate, oxalate, and gluconate) that can
acidify the microbial cells and their environment, and to produce phosphatases [84,85]. It
has been shown that bacterial strains can improve P uptake by increasing P influx into
the root of crops in P deficiency conditions [85]. There are few studies on P chemistry and
P-containing minerals in the rhizosphere of important crops like sugarcane in P deficiency
conditions and on the effects of PSB thereon [86,87]. For this reason, and for future experi-
ments, understanding the chemical behavior of P in soils under crop cultivation is essential
for appropriate P management in sustainable agricultural production. In particular, future
crop experiments will enable us to better understand the plant–P-solubilizing bacteria
interaction under low P availability. In this way, variations in root morphological traits
along with associated rhizosphere modifications and aboveground physiological parame-
ters related to P use efficiency could be examined. The P. agglomerans in the P-solubilizing
capacity on the rhizosphere P availability, root morphological traits will be studied and will
assist us to better understand the highly intricate root-P-solubilizing bacteria interactions
under low available P forms. Such experiments will also enable us to characterize the effect
that P-solubilizing bacteria have on root biophysical traits.

5. Conclusions

We demonstrated the direct evidence of the effect of Pantoea strain application on
the soil microbial community. Despite the decrease of P. agglomerans at the end of the
incubation period, the results from this study clearly demonstrate that the addition of this
PSB could be a potential technological option for increasing the available P. These changes
are also accompanied by the emergence and the increase of a wide range of several soil
PSB genera as the indirect effect of P. agglomerans inoculation. Since PSB are one of the
crucial determinants of plant health, the changes in native PSB communities resulting from
inoculant addition will be crucial in the development of effective microbial inoculants that
are favorable in enhancing soil properties. Such an approach will allow the development of
inoculants better adapted to local conditions in order to increase their reliability, consistency,
and efficacy. The use of microbial inoculant will reduce fertilizer and pesticide application
rates and promote sustainable approaches in agriculture.

Since this study is a short-term experiment without plants, long-term microcosms and
field studies of the effect of P. agglomerans application on the composition of the bacterial
community as well as on the physicochemical parameters of the soil in field should be
carried out before recommending soil management with this bacterium.
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