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Simple Summary: Buffalo breeding in the Amazon biome can contribute significantly to local
community development and, thus, is considered an essential income source. However, in Amazon
regions, the inadequate breeding of these animals can lead to considerable negative consequences for
the environment. Therefore, it is crucial to develop methodologies to improve animal management
and grass yield. One of these methodologies is related to Precision Agriculture (PA), adapted
for pasture and animal monitoring. Along these lines, we seek to utilize geostatistical techniques
and remote sensing applications to better understand Buffalo grazing under a rotating system. In
particular, we analyze forage Dry and Green Matter, as well as pH in pasture soils, demonstrating the
obstacles against and advantages of the implementation of precise techniques for decision making
and increasing grass productivity. We describe ways in which geostatistical soil pH mapping can
be conducted, as well as the premises necessary to include remote sensing data in the analysis of
pasture variables. Implementing these results in buffalo management systems can contribute to
greater productivity and increasingly sustainable livestock.

Abstract: The mapping of pastures can serve to increase productivity and reduce deforestation, espe-
cially in Amazon Biome regions. Therefore, in this study, we aimed to explore precision agriculture
technologies for assessing the spatial variations of soil pH and biomass indicators (i.e., Dry Matter,
DM; and Green Matter, GM). An experiment was conducted in an area cultivated with Panicum maxi-
mum (Jacq.) cv. Mombaça in a rotational grazing system for dairy buffaloes in the eastern Amazon.
Biomass and soil samples were collected in a 10 m × 10 m grid, with a total of 196 georeferenced
points. The data were analyzed by semivariogram and then mapped by Kriging interpolation. In
addition, a variability analysis was performed, applying both the Normalized Difference Vegetation
Index (NDVI) and Normalized Difference Water Index (NDWI) derived from satellite remote sensing
data. The Kriging mapping between DM and pH at 0.30 m depth demonstrated the best correlation.
The vegetative index mapping showed that the NDVI presented a better performance in pastures
with DM production above 5.42 ton/ha−1. In contrast, DM and GM showed low correlations with
the NDWI. The possibility of applying a variable rate within the paddocks was evidenced through
geostatistical mapping of soil pH. With this study, we contribute to understanding the necessary
premises for utilizing remote sensing data for pasture variable analysis.

Keywords: spatial variability; buffalo farming; precision livestock
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1. Introduction

The Buffalo population in Brazil has been estimated to be 1.43 million animals, with
a higher concentration in the northern region (546,777 animals). Pará state leads the
production ranking in the north, being responsible for 39% of the national production of
dairy and beef animals [1].

Buffalo breeding is an effective economic activity in Brazil, due to the adaptation of
the species to several environments. In addition, buffalo farming has gained popularity
due to the peculiar physico-chemical characteristics of their milk and meat [2–4]. They are
commonly bred in extensive ecosystems consisting of native or cultivated pastures [5]

Pastures are forage resources, considered the main nutrient source in ruminant feeding
and serving as a subject when aiming to maximize productivity [6,7]. The most-used forage
grass in Northern Brazil pastures is Panicum maximum (Jacq.) cv. Mombaça, which stands
out for its ability to produce dry matter and leaves [8–10]. Leaf production corresponds to
the Green Matter (GM) component, and expressive development of this characteristic is
desirable in forage production. Leaf production represents the botanical attribute of greater
digestibility, and has a direct influence on animal performance [11]. The amount of GM
is positively correlated with forage consumption and can be used to characterize pasture
development [12–14]. Another important parameter for analyzing pasture development is
dry matter (DM), derived as the forage mass present instantly above ground level per unit
area without considering water content [15].

Grazing practices alter the forage structure and forage mass content [16]. Forage mass
plays a crucial role in understanding feeding patterns. Therefore, above-ground forage
mass parameters are often used as indicators of available forage quality and quantity for
the animal unit, providing information for farm management [17]. Traditional forage
mass analysis entails laborious and destructive actions [18,19]. These methods have low
sampling precision, as they are based on random sample means without considering the
spatial variation of biomass [20,21].

Consequently, farmers seek new technologies, better methods, and data to under-
stand the impact of pasture management practices on optimizing forage yield [22]. Non-
destructive, indirect methods have been systematically explored to measure grass yield
and variability in the production field [23,24]. Among these methods, remote sensing
technologies can provide vital information for forage mass estimation and pasture manage-
ment [25].

Imaging by remote sensors provides spatial, spectral, and temporal resolutions that
can facilitate new monitoring modes [26,27]. Combined with remote sensing information,
grass biomass and variability measurements within the production field through precision
agriculture technologies have been continuously explored [28,29]. These technologies
can provide short-term estimates of culture biophysical characteristics [30,31]. The use of
spectral information obtained from orbital images to detect changes in canopy structure is
a well-established technology [32].

Analyses based on geostatistical techniques have also been used to determine spatial
variability in the field [33], and are considered adequate for analyzing the spatial variability
in the physical and chemical properties of soil and plants [34–36].

The combination of remote sensing technologies and geostatistical techniques can
improve pasture system management. The spatial and temporal monitoring of pasture
biomass production by non-destructive methods allows for seasonal production curve
visualization, quality, and estimation of production level [37,38]. This information can de-
termine the feasibility of new techniques, allowing for optimization of animal management
practices in specific pastures for forage grass, such as those in the Amazon biome.

Field data from dry matter integrated with the data obtained by orbital sensors through
vegetation indices can possess an expressive degree of importance [22,39]. These indirect
biomass measurements provide information for pasture planning [40]. However, the meth-
ods used to estimate the forage mass and sample number influence the variability in the
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results [20]. Thus, it is necessary to consolidate an analysis methodology possessing accu-
racy and precision that is more assertive than the method used for forage mass evaluation.

This research was carried out to evaluate the application of techniques for obtaining
the spatial variation of Mombaça grass biomass utilizing remote sensing technologies and
geostatistical analyses. NDVI and NDWI vegetation indices and geostatistical methods
were explored to map the variation in biomass yield of Panicum maximum (Jacq.) cv. Mom-
baça in a pasture under a rotational grazing system with buffaloes in the eastern Amazon.

2. Materials and Methods
2.1. Area of Study

The experiment was carried out at Açaizal farm, located in Parauapebas municipality,
Pará, Brazil, following Universal Transverse Mercator (UTM) coordinates 623,667.46 E/
9,311,972.51 N, zone 22 S (Figure 1). According to the Köppen classification [41], the
regional climate is tropical monsoon climate (AW); that is, a rainy tropical region with rains
concentrated in the summer and a dry season in the winter.
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Figure 1. Location of the study area and experimental divisions.

The experimental area of size 17,150 m2 was subdivided into seven parts (each of
2450 m2). In these paddocks, soil samples were collected, in order to characterize forage
aerial parts and pH at different depths. (Figure 1). The soil was classified as Red–Yellow
Argisol with a sandy loam texture [42] (Table 1).

Table 1. Soil granulometric analysis at depths of 0.0–0.2 and 0.2–0.4 m.

Depth (m) Total Sand (g/kg) Total Clay (g/kg) Silt (g/kg)

0.0–0.2 676.85 173.30 149.84
0.2–0.4 656.05 150.50 135.82

The area consisted of a dairy buffalo production system under pasture cultivated with
Panicum maximum (Jacq.) cv. Mombaça. They were managed using a rotational stocking
grazing method, with an average stocking rate of 3 AU ha−1 (Animal Unit = animal of
450 kg live weight). This grazing method subdivides a pasture area into paddocks, which
are subjected to controlled grazing periods (occupation) and rest periods (fallow) [43]. Each
paddock in the experimental area was occupied by 24 h of grazing and 21 days of rest.
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2.2. Data Acquisition

The spatial characterization of Dry Matter (DM), Green Matter (GM), and soil pH
was performed by collecting data that were georeferenced using a GPS receiver. Sampling
was performed in each paddock, excluding 2.5 m from the fence border and 5 m from the
side border. In this way, a regular mesh spaced equidistantly at 10 m and with a sampling
density of 28 points in each paddock was generated, for a total of 196 points (Figure 1).

2.2.1. Soil pH

Soil samples were collected at 0–0.2 m, 0.2–0.3 m, and 0.3–0.4 m at the demonstrated
georeferenced points (Figure 1). Subsequently, they were sent to a soil analysis laboratory
to obtain the pH values in Potassium chloride (KCl), following the methodology proposed
by Teixeira et al. [44].

2.2.2. Forage Matter

Forage mass representative samples were obtained by cutting the forage according
to animal rotation, performed at the end of the rest period in each paddock and one day
before animal entry.

Samples were obtained to characterize the Dry Mass (DM) and Green Mass (GM) at
the georeferenced points (Figure 1). The samples were obtained by cutting the forage, using
wooden frames of 0.25 m2 systematically placed over sampling grid intersection points.
The forage mass was placed in identified and weighed plastic bags, thus obtaining the total
weight of fresh grass mass.

Green Matter (GM), expressed in ton/ha−1, was obtained according to the method-
ology adapted from Veras et al. [45]. The GM determination consisted of collecting sub-
samples of representative fresh grass mass at each sampling point. Then, for Dry Matter
(DM) determination, the GM sample was submitted to leaf blade morphological separation,
providing stem (stem + leaf) and dead material fractions. It was conditioned in a paper
bag, identified, and put into an oven with air circulation at a temperature of 65 ◦C until
a constant weight was reached, as described by Reis et al. [46]. After drying, the samples
were weighed and converted into DM grass availability (ton/ha−1).

2.3. Geostatistical Analysis

Field data collected were subjected to geostatistical analysis, in order to characterize
the spatial variation of the pH, DM, and GM variables, using the R Development Core
Team software [47]. Subsequently, these data were submitted to semivariance analysis, in
order to verify the existence of spatial dependence [48], as well as data interpolation by
ordinary Kriging to create spatial variability maps [49]. The semivariance calculation was
performed using Equation (1), as described by Matheron [50]:

γ̂(h) =
1

2N(h)

N(h)

∑
i=1

[Z(Xi)− Z(Xi + h)]2 (1)

where

γ̂(h) is the estimated semivariance at a distance h;
N(h) is the number of experimental data pairs separated by a distance h;
Z(Xi) is the value determined at sample point i;
Z(Xi + h) is the value measured at point i plus a distance h.

The parameters of nugget effect (C0), sill variance (C0 + C1), and range (a) were
obtained using the semivariogram equation, fitted according to graph behavior testing of
linear, spherical, exponential, and Gaussian models. The choice of model was based on the
highest coefficient of determination (R2) and lowest residual sum of squares (SQR) [51].

Data estimation confidence was assessed in terms of the Degree of Spatial Dependence
(DSD), determined by participation of spatial variance in the total sample variance [52].
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To assess the DSD, Cambardella et al. [53] developed a classification characterized by the
ratio between the nugget effect (C0) and the sill variance (C0 + C1). The confidence can
be considered weak with a DSD greater than 75%, moderate between 25% and 75%, and
strong for DSD less than 25% [53].

2.4. Kriging Maps

Semivariogram adjustment was used to identify the spatial variability of DM, GM,
and soil pH. These adjustments enabled the interpolation of data through ordinary Kriging
and map construction. In this step, soil pH maps were constructed at depths of 0–0.20 m,
0.2–0.30 m, and 0.3–0.40 m, as well as maps of Dry Mass (DM) and Green Mass (GM).

The maps were constructed using the QGis software. The sampled points were
interpolated to obtain an estimate (z*) consisting of a linear combination of neighboring
measurement values (X0), represented by Equation (2):

z∗(x 0) =
N

∑
i=1

λiz(xi), (2)

where
z* is the estimate;
x0 is a linear combination of neighboring measurement values;
N is the number of measured values involved in the z estimate (xi);
i is the weight associated with each measured value.
Kriging maps were prepared to compare spatial variation of pH at different soil depths,

DM, and GM.

2.5. Obtaining and Processing Orbital Data

Analyses using data from orbital sensors were conducted after selecting a set of
multi-spectral images from the SENTINEL 2B sensor, made available by the United States
Geological Survey (USGS). Data from this sensor were used due to it being freely available
and considering its resolution characteristics (i.e., spatial, spectral, and temporal). Images
from SENTINEL 2B have a spatial resolution of 10 m in the spectral bands, as shown in
Table 2. The set of images obtained were for 12/02/2017.

Table 2. Sentinel 2B sensor’s spectral and spatial resolutions characteristics.

# Band
Description

Central
Wavelength (nm)

Bandwidth
(nm)

Spatial
Resolution (m)

1 Aerosols 442.2 21 60
2 Blue 492.1 66 10
3 Green 559.0 36 10
4 Red 664.9 31 10
5 Red-edge 1 703.8 16 20
6 Red-edge 2 739.1 15 20
7 Red-edge 3 779.7 20 20
8 Near infra-red 832.9 106 10
8a Red-edge 4 864.0 22 20
9 Water vapor 943.2 21 60
10 Cirrus 1376.9 30 60
11 SWIR 1 1610.4 94 20
12 SWIR 2 2185.7 185 20
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Initially, the images were selected with respect to image quality criteria (clouds and
noise). Then, they were submitted to processing based on the Geographic Information
System (GIS) QGIS software version 3.6. Raw image data processing comprised the first
steps of obtaining multi-spectral data, conducting atmospheric corrections, and geolocation.

The calculations applied to obtain vegetative indices are influenced by the effects of
reflectance scattering from the atmosphere; thus, in these cases, atmospheric correction
should be carried out [54]. A modification (Dark Object Subtraction; DOS) was applied us-
ing a plugin in the QGIS 3.6 software, in order to correct this interference. After processing,
the images were cropped to the area of interest for the calculation of vegetative indices.

The vegetative indices applied were the NDVI (Normalized Difference Vegetation
Index) proposed by Rouse et al. [55] (Equation (3)) and the NDWI (Normalized Difference
Water Index) presented by Gao [56] (Equation (4)):

NDVI :
ρNIR− ρRED
ρNIR + ρRED

(3)

where

NDVI is the Normalized Difference Vegetation Index;
ρNIR denotes the Near-Infrared Band;
ρRED denotes the Red Band.

NDWI :
ρNIR− ρSWIR1
ρNIR + ρSWIR1

(4)

where

NDWI is the Normalized Difference Water Index;
ρNIR denotes the Near-Infrared Band;
ρSWIR1 denotes the Shortwave Infrared Band.

Vegetative indices are often used to describe plant development, vigor, and biomass [57].
Thus, the vegetative indices were applied to characterize the biomass in each grazing pad-
dock before cutting. In addition, the correlations between the vegetative indices and matter
variables (i.e., DM and GM) was assessed.

2.6. Regression Analysis

The pH, DM, GM, NDVI, and NDWI data were subjected to regression analysis, in
order to evaluate the variables as a function of the other variables. In particular, regression
analyses were performed between soil pH data at each depth (0–0.20 m, 0–0.30 m and
0–0.40 m) with DM and GM values, as well as between NDVI and NDWI with the forage
variables DM and GM.

3. Results
3.1. Geostatistical Parameters

Geostatistical analyses make it possible to verify several characteristics of a data set [58].
Table 3 presents semivariogram adjustment parameters for soil pH in the soil layers 0–0.2 m,
0.2–0.3 m, and 0.3–0.4 m. All the fitted models showed strong DSD (DSD < 25%) [53],
indicating the reliability of the semivariograms in explaining the variations in experimental
data [59].



Animals 2022, 12, 2374 7 of 17

Table 3. Semivariogram models and parameters adjusted to values obtained from soil pH at soil
depths of 0–0.2 m, 0.2–0.3 m, and 0.3–0.4 m.

Depths (m) Model a a′ C0 + C1 C0 R2 RSS DSD

0–0.2 Sph 83.90 83.90 0.404 0.194 0.92 1.62 Strong
0.2–0.3 Gaus 110 256.91 0.705 0.220 0.98 1.93 Strong
0.3–0.4 Gaus 235.69 298 0.851 0.149 0.98 1.60 Strong

Models: Sph, spherical model; Gaus, Gaussian model; a, range (m); a′, practical range; (C0 + C1), sill variance; C0,
nugget effect, R2, coefficient of determination; RSS, residual sum of squares; DSD, degree of spatial dependence.

The pH at a depth of 0–0.2 m showed the smallest range (83.9 m), and fit the spherical
model (Table 3). At depths of 0.2–0.3 m and 0.3–0.4 m (Table 3), the practical ranges were
256.91 and 298 m, respectively, better fitting the Gaussian model. Table 3 indicates the
increase in range as the soil layer deepened.

The GM value adjustments were obtained according to the model and parameters
characteristics presented in Table 4. The spherical model best fit the data set, having the
smallest residual sum of square (RSS) and the highest coefficient of determination (R2).

Table 4. Model and semivariogram parameters, adjusted to obtain values from dry and green matter
(ton/ha−1).

Model a a′ C0 + C1 C0 R2 RSS DSD

DM Sph 13.6 13 26,240,000 530,000 0.926 1.22 Strong
GM Lin 47.34 47.34 130.288 97.377 0.4 1.23 Weak

Models: Sph, spherical model; Lin, linear model; a, range (m); a’, practical range (m); (C0 + C1), sill variance; C0,
nugget effect, R2, coefficient of determination; RSS, residual sum of squares; DSD, degree of spatial dependence.

The existence of spatial dependence for DM data can be observed in Table 4, confirming
the application of geostatistics to spatial behavior phenomena [60]. DM showed a spatial
dependence interval of 13.6 m (Table 4). Thus, there was greater spatial dependence on the
distance in the sample grid (10 m × 10 m). The GM showed a weak spatial dependence,
adjusted by a linear model with a range of 47.34 m.

3.2. Kriging Mapping

Soil nutrient availability for plants depends on adequate pH values (see, e.g.,
Neina et al. [61]). Figure 2 shows the spatial variability maps, obtained by Kriging in-
terpolation, for pH values at soil depths of 0–0.2 m, 0.2–0.3 m, and 0.3–0.4 m, as well as DM
and GM (in ton/ha−1), in the seven paddocks.
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The lowest soil pH values (4.4) were observed in paddocks six and seven, at depths of
0.2–0.3 and 0.3–0.4 m. Paddock one presented pH values between 5 and 5.6 for all evaluated
depths. Paddock four also gave similar results to paddock one, albeit only in the soil layer
0–0.2 m, while the deeper layers (0.2–0.3 m and 0.3–0.4 m) presented a pH reduction, with
values ranging from 4.55 to 5.15. Paddock 2 showed a more acidic soil pH (4.85) in the first
layer (0–0.2 m), and higher values in the deeper layers (>0.2 m), where the pH ranged from
5 to 5.57.

The spatial distribution of soil pH (Figure 2a–c) showed lower soil acidity areas, with
pH values from 5 to 5.63, grouped in the western side of the map. In addition, areas with
soil pH values ranging from 4.4 to 4.85 were mostly on the east side of the map.

The maps in Figure 2b,c represent the 0.2–0.3 m and 0.3–0.4 m soil layers, respectively,
which presented similar patterns between layers and paddocks. Analyzing the 0.2–0.3 m
soil depth (Figure 2b), the third paddock presented a circular area, similar to the 0–0.20 m
layer, in the light and dark orange color scales, representing soil pH between 4.55 and 4.7,
respectively. At the deepest layer of 0.3–0.4 m (Figure 2c), the pH ranged from 4.85 to 5.15.

Figure 2d shows the spatial variation of DM. Colors in green are the highest amounts
of pasture DM, between 9 and 12 ton/ha−1, which were observed at the map edges
(north and south), located at the paddocks entrances. Paddocks 1 and 6 (Figure 2d)
presented more significant regions with light green tones (9–10.5 ton/ha−1), surrounded
by dark green areas (representing 12 ton/ha−1). Lower yields were observed in paddock 3
(Figure 2d), with DM yield between 6 and 4.5 ton/ha−1. Under more critical conditions,
paddock 7 showed lower yields, compared to the others (3 ton/ha−1), in the central area.
Paddock 6 (Figure 2d) presented pasture regions with green spots with a better production
(10 ton/ha−1), compared to the lower (south) paddock part, where the yield decreased
from 7.5 to 4.5 ton/ha−1. Paddock 5 (Figure 2d) showed greater spatial variability in DM
yield, ranging from 4.5 to 9 ton/ha−1.

The GM map (Figure 2e) showed that paddocks 1 and 4 had higher forage yields, with
values between 21 and 33 ton/ha−1, represented by shades of green. Meanwhile, paddocks
3 and 7 presented lower forage yields, with a production of 12 to 21 ton/ha−1, represented
by the colors in shades of beige and orange. A similar forage distribution spatial pattern
can be observed when comparing the DM (Figure 2e) and GM (Figure 2f) maps.

Comparing the soil pH maps (Figure 2a–c) and DM map (Figure 2d), it can be observed
that paddocks 3 and 7 showed lower DM values (Figure 2b). Soil pH showed values of
4.85 and 4.4 in all layers (Figure 2a–c). In the western region of the DM map (Figure 2d),
represented by paddock 1, the yield was higher than in the other paddocks. In addition,
the soil pH map at depths of 0–0.2 m, 0.2–0.3 m, and 0.3–0.4 m (Figure 2a–c) presented
better results, with values above 5.15.

The correlation graphs between the pH variables at different depths (0–0.2 m, 0.2–0.3 m,
0.3–0.4 m), and the DM and GM of the forage are shown in Figure 2f–k. The best correlations
between DM and pH were found in the soil layers of 0.2–0.3 m and 0.3–0.4 m (Figure 2g,h).
The correlation presented in Figure 2f between forage DM and pH at a depth of 0.2–0.3 m
showed the highest R2 value, equal to 0.31. GM and pH showed a lower relationship, with
R2 = 0.014, 0.36, 0.05 at depths of 0–0.2 m, 0.2–0.3 m, and 0.3–0.4 m, respectively.

3.3. Remote Sensing Mapping

The DM and GM maps of forage were used to analyze the possible relationship
between them and the NDVI and NDWI spatial patterns. Evidence of spectral variations can
contribute to identification of areas for different management forms. Thus, to identify forage
stresses and provide a means of investigating the spatial variability in DM production,
maps of NDVI and NDWI were constructed. The pasture regions subjected to spatial data
analysis by the application of vegetative indices are shown in Figure 3.
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The vegetative index, DM, and GM map combinations indicated considerable spatial
variations in the NDVI values. The sampling sites in the vegetation area with the lowest
forage mass, represented by red colors (Figure 3a–d), were the same paddocks with the
lowest soil pH values (4.55 and 4.4) at all soil depths (Figure 3a–c); therefore, a more acidic
soil was seen to be less favorable for forage development.

The vegetative index relationships (Figure 3a,b) indicated a unit reduction in NDVI
and NDWI values with decreasing DM (Figure 3c) and GM (Figure 3d) of 5.42 ton/ha−1

and 0.87 ton/ha−1, respectively. This indicates that DM production contributed to the
variability in the vegetation index values.

The regression graphs (Figure 3e–h) between vegetation indices and forage mass
variables showed a more significant correlation of NDVI with DM and GM (R2 = 0.30, 0.37,
respectively). Meanwhile, the NDWI presented an R2 of 0.18 for DM and 0.27 for GM.

4. Discussion
4.1. Geostatistical Analysis

The geostatistical parameters of pH, DM, and GM (Tables 3 and 4) all showed hetero-
geneous spatial distributions. The GM was adjusted to the linear model, which has no sill
variance and indicated the significant heterogeneity of this variable. The spherical model
was fitted to the DM data (Table 4). This model has also been used, by Cavallini et al. [62],
to evaluate DM in a Brachiaria pasture. Semivariogram adjustment to the spherical model
for soil pH in the 0–0.20 m layer (Table 4) was similar to that in the studies developed by
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Grego et al. [63], Bernardi et al. [64], and Bernardi et al. [65] when evaluating the spatial
variability of soil properties under pastures. Souza et al. [59] and Trangmar et al. [66] have
explained that the spherical model better describes the semivariogram behavior when
applied to soil attributes commonly used in soil chemical attribute studies.

A strong degree of spatial dependence, as classified by Cambardella et al. [53], was
observed for all variables (see Tables 3 and 4); therefore, the spatial distribution was not
random [67]. The ranges (a) for pH (Table 3) and DM (Table 4) indicated that it was higher
for soil pH. According to Ferraz et al. [36], the range can be understood as the limiting
distance at which a sampled point correlates with other points nearby. Therefore, range
values can be used to define sample densities for future studies [42].

4.2. Kriging Mapping

In paddocks 5, 6, and 7 (Figure 2a), the soil pH values varied between 4.4 and 4.8,
indicating acidic soil in the 0–0.2 m layer. The ideal pH for crops ranges between 5.3 and
6.6; below this range, lime application is required [68]. The research of Grego et al. [63],
in which the spatial distribution of pasture soil attributes was analyzed, showed that the
soil layer of 0.2 m typically presents pH values in the range of 4.0–5.6. In the deeper soil
layers of 0.2–0.3 m and 0.3–0.4 m (Figure 2b,c), a pH value of the soil ranging between
4.4 and 4.7 was observed in paddocks 4–7, characterizing the soil in these layers as being
more acidic. In acidic soils, plants can be affected by aluminum (Al) toxicity and reduced
nutrient availability, leading to undesirable reductions in pasture growth [69,70].

In a similar study, Oliveira et al. [68] observed pH values between 4.0 and 5.0 and
a relationship with dry matter accumulation. Serrano et al. [71] mapped soil attributes
in a pasture, and indicated a pH between 5.49 and 8.02 under pasture cultivation. Some
authors have explained these variations as being attributable to extrinsic factors, such
as fertilization and correction reflected in soil chemical characteristics. Pasture soils are
sensitive to additional nitrogen (N) deposition, resulting in a loss of nitrate and depletion
of base cations, leading to elevated soil acidity [72,73]. As there were added chemical
fertilizers in the studied pasture, the soil pH variation (Figure 2a–c) may be related to the
residual nitrogen fertilization effect, which was carried out periodically in the pasture,
influencing the formation of areas with high concentrations of fertilizer, inducing changes
in soil pH and DM.

Additionally, the pH changes (Figure 2a–c) may be related to the trampling effect
caused by the movement of animals inside the paddocks. According to Campbell et al. [74],
a buffalo moves up to 10 km daily, driven by the abundance and distribution of forage. In
addition, they may habitually revisit grazed areas, resulting in extensive use. Villalobos-
Barquero et al. [75] explained that the animal’s naturally excessive weight causes com-
paction in the soil layers, derived from the impacts of hooves. Compaction is characterized
by increased soil mechanical resistance to penetration (RP), making it difficult for nutrients
to percolate into the soil and causing acidity [76]. In addition, increased RP influences mass
production in forage [63].

The spatial vegetation heterogeneity shown on the map (Figure 2d), therefore, may
have been influenced by factors such as fertilization, trampling, and selective grazing [77].
Buffalo management in limited spaces can cause some negative characteristics in the
breeding environment, as a result of their hooves (e.g., running over, channeling, and soil
compaction) [74]. Pastures are typically subject to stressful conditions, resulting in altered
forage growth patterns [78]. Additionally, soil fertility factors and moisture gradients also
result in spatial vegetation variations [79,80].

Mombaça grass has a high productive response to nitrogen fertilization [10]. Nitrogen
fertilizer application may cause nitrogen supply accumulation in the soil in small pasture
areas, altering the DM accumulation rate. The discontinuous productivity of forage within
a paddock leads to an irregular supply of forage, interfering with buffalo milk production.
According to Silva et al. [81], animal feed is associated with herd production and adequate
feeding of buffaloes, and may interfere with production requirements by decreasing daily
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milk production. Lima et al. [82] stated that keeping lactating buffalo herds in areas with
limited access to quality forage could affect their milk production and quality.

Precision livestock systems are being implemented in modern agricultural systems,
and have been gradually adopted in extensive agriculture [83]. In precision livestock,
fertilizer application at a variable rate is carried out systematically, as a uniform application
can result in abrupt variations in fertilization in certain areas [84].

The mapping of pasture and soil variables in rotated paddocks represents an initial
advance for biomass variation identification within the paddock, in addition to allowing for
the identification of areas with high soil acidity. From this mapping, inputs and variable rate
applications can become a reality. In addition, paddock stocking and rotation strategies can
be traced by following the pH and DM parameters. According to Bernardi et al. [64], DM
production maps can be used to avoid over- or under-grazing, allowing for the estimation
of stocking and production rates within the area.

The most significant similarity between the spatial standards and the variables was
between pH 5.63 and DM 9–12 ton/ha−1. According to Bailey et al. [85], soils with a pH
value of 6.0 in cultivated pastures contribute to expressive biomass development.

Soil pH is the parameter most likely to affect vegetative growth [86]. When measuring
the proportion of DM variance explained by soil pH, it was found that the coefficient of
determination (R2) showed negative values for all soil layers. In addition, pH correlations
with dry mass indicated that the considered model does not explain the variation in the DM
variable. In this case, pasture nutrition responds not only to soil acidity, but also to other
factors such as nutritional balance and physical characteristics. Research carried out by
You et al. [73] showed that the forage mass response ratio was not significantly correlated
with changes in soil pH, indicating that an increase in forage mass cannot be directly related
to soil pH.

The geostatistical mappings in this study can be used to adjust the animal stocking rate,
according to the forage restrictions in each paddock. The advantages of this methodology
include identifying areas for the variable management of paddocks [65].

4.3. Remote Sensing Mapping

According to the coefficient of determination (R2), the NDWI variation showed a
low correlation with the GM and DM data, indicating that the NDWI explains 18% of the
DM and 27% of the GM variation, respectively. This index was used in the study of Tong
et al. [87], where it showed a good correlation with superior forage biomass characteristics.
The low NDWI ratio in this study may be related to the formation of pastures in the soil.
Vegetative indices provide valuable spatial and temporal information on a large scale
regarding yield-limiting factors and crop response, but some indices can be influenced by
soil moisture conditions and rangeland uniformity [88].

It was observed from the regression graphs (Figure 3e,g) that the NDVI performed
better compared with the NDWI (Figure 3a,b, respectively). The biophysical relationship
between spectral refraction of vegetation indices and DM is not direct. DM is a qualitative
parameter; therefore, it is related to several factors [85]. The changes in DM cannot be
directly observed through changes in reflectance, as it influences the GM, which is a
quantitative parameter that involves the amount of fresh forage mass with water in the cell.
Vegetation index maps are efficient for investigating the spatial variability in pasture GM
production. Thus, remote sensing data can be used to predict GM yield, instead of having
to cut forage samples and weigh the mass at each sampling point.

The advent of hyperspectral sensors in satellite platforms has raised new expectations
for improving pasture productivity estimates [24]. The enhanced spectral wave range
in sensors could lead to innovations in the sector, providing variations not observable
by multi-spectral sensors. Campbell et al. [74] used the NDVI to provide a measure of
vegetative vigor in buffalo activity spaces, as a parameter for determining the quantity
and quality of forage available. They demonstrated that it could be used to measure
temporal variations in forage availability reliably. A study by Tong et al. [87] showed the
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high potential of combining hyperspectral vegetation indices for the estimation of pasture
biomass.

Wang et al. [28] estimated the pasture green mass using optical remote sensing data.
Wagle et al. (2020) used a vegetation index derived from satellite imagery at different
spatial and temporal resolutions in order to examine pasture heterogeneity within and
between paddocks, and verified its consistency for the detection of vegetation phenology.
Webb et al. [86] observed that crops stabilized above a soil pH of approximately 6, and there
was little discernible difference in NDVI. This result is relevant for identifying management
zones with pH > 6.

5. Conclusions

A precision agriculture approach based on geostatistics and vegetation index analysis
tools allowed for the prediction of spatial variability for dry matter (DM) in paddocks for
buffaloes cultivated with Panicum maximum (Jacq.) cv. Mombaça. Kriging maps showed that
areas with pH below 4 present lower forage production. Vegetation indices made it possible
to identify pasture areas with lower vigor and, consequently, lower forage production.
Therefore, this technology could identify field areas with soil pH below 4, potentially
reducing time and cost. These are significant resources for agricultural producers, allowing
for timely remediation of areas with low pH content. By applying the approaches proposed
in this article, it was possible to spatially characterize the forage productivity within a
pasture system in which buffalos are rotated.

The quantification of GM and DM proved efficient in evidencing the spatial variation of
forage production. In addition, they can be used as predictor variables to assess the spatial
variability of the NDVI. These results demonstrate the high potential of multi-spectral data
in terms of estimating the vigor of Mombaça grass pastures at the canopy level.
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