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Simple Summary: During the brooding stage, the goslings are susceptible to various stresses, dam-
aging the thymus and decreasing immune function. Ferroptosis is cell death caused by iron-ion-
dependent lipid peroxidation, which has been reported to be closely related to organismal immunity.
The polysaccharide of Atractylodes macrocephala Koidz (PAMK) has antioxidation and immunomodu-
latory effects. Therefore, we used CTX to construct an immunosuppression model for goslings to
explore the mechanism by which PAMK alleviates cyclophosphamide (CTX)-induced ferroptosis
in thymocytes and to provide a basis for a more profound elucidation of the immunomodulatory
mechanism of PAMK. It was found that PAMK had a significant alleviating effect on CTX-induced
thymus damage and thymocyte ferroptosis in goslings. Therefore, PAMK can be used as a natural
alternative to antibiotics as a feed additive for immunomodulatory effects on goslings.

Abstract: The present study aimed to explore the mechanism by which PAMK alleviates cyclophos-
phamide (CTX)-induced ferroptosis in thymocytes. One-day-old goslings were divided into four
groups (10 goslings/group). The CON and CTX groups were fed a basic diet. The PAMK and
CTX + PAMK groups were fed the basic diet mixed with PAMK (400 mg/kg). Moreover, the CTX
and CTX + PAMK groups were given a daily injection of 40 mg/kg BW of CTX (at 19, 20, and 21 days
of age). On the other hand, the CON and PAMK groups were given 0.5 mL of sterilized saline into
the leg muscle (at 19, 20, and 21 days of age). The goslings were fed for 28 days. The ferroptosis
pathway was enriched in transcriptome sequencing. Compared to the CON group, the thymus in the
CTX group underwent injury, and the mitochondria of thymocytes showed features of ferroptosis.
PAMK treatment alleviated ferroptosis in thymocytes and thymus injury, and CTX-induced elevated
levels of oxidative stress and iron content restored GPX4 protein expression (p < 0.05) and inhib-
ited the CTX-induced activation of the ferroptosis pathway (p < 0.05). Conclusively, PAMK could
reduce thymus injury by alleviating CTX-induced thymocyte ferroptosis in gosling to alleviate the
immunosuppression caused by CTX in the organism.

Keywords: polysaccharide of Atractylodes macrocephala Koidz; cyclophosphamide; ferroptosis;
immunosuppression; thymus; gosling

1. Introduction

Ferroptosis is cell death caused by oxidative damage from iron-ion-dependent lipid
peroxidation, leading to iron metabolic dysfunction and massive lipid peroxidation [1].
Ferroptosis mainly involves the accumulation of reactive oxygen species (ROS) and intracel-
lular iron, which causes an imbalance in the balance of intracellular lipid ROS production
and degradation, ultimately causing oxidative stress. Many studies have shown that fer-
roptosis is strongly associated with the immunity of the body and that the activity of innate
and adaptive immune cells is regulated by ferroptosis [2–4].
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The thymus, as a central immune organ for T cell development and differentiation,
has a significant regulatory role in the immune function of the organism [5]. During the
brooding stage of goose, due to the imperfection of immune function and the influence of
the aquatic breeding environment, goslings are susceptible to various stresses, resulting
in damage to the thymus gland and a decrease in immune function, leading to increased
morbidity and mortality in goslings. Therefore, immunosuppression caused by these
stresses is a significant causal factor in the morbidity of goslings [6]. Although the arid
breeding mode can avoid the hazards caused by the bad environment of aquatic breeding,
at present, for the large-scale breeding of geese, the completely arid breeding method is
still in the exploratory stage. To simulate the process of immunosuppression due to stress
in goslings, we used CTX to construct a model of immunosuppressed goslings. CTX, a
widely used drug in the preparation of animal immunosuppression models, also leads
to oxidative stress, inflammation, and apoptosis [7]. Most studies have found that CTX
induces apoptosis [8,9]. Only one report has suggested that CTX induces ferroptosis in
tumor cells [10]. However, it is unclear whether CTX causes ferroptosis’s development in
avian species and what role ferroptosis plays in CTX-induced immunosuppression.

PAMK is the main active component of the Chinese medicine Atractylodes macrocephala,
which has been recorded in the Chinese medical classic Shengnong’s herba. Studies have
shown that PAMK can promote the development of immune organs, regulate the prolifera-
tion and differentiation of immune cells, positively regulate the immune response capacity
of the body, and alleviate the immunosuppression and immune organ damage caused by
harmful stimuli, maintaining normal immune organ function and the homeostasis of the
immune system [11,12]. Our preliminary study found that PAMK could activate T lympho-
cytes in the thymus of goslings, maintain the balance of cytokine secretion in vivo, alleviate
immunosuppression caused by CTX [13,14], and also alleviate splenic immune dysfunction
in chickens caused by heat stress by enhancing mitochondrial function, inhibiting apoptosis,
and reducing oxidative stress [15].

In this study, we constructed a model of immunosuppressed goslings using CTX,
added PAMK for treatment. To explore the mechanism by which PAMK alleviates CTX-
induced thymus injury, we first conducted transcriptome sequencing of the thymus and
enriched the ferroptosis pathway. Based on transcriptome sequencing, we speculated that
PAMK could alleviate CTX-induced ferroptosis in the thymocytes of goslings. Therefore, we
observed the thymus histology and ultramicroscopic morphology and detected ferroptosis
marker GPX4 and thymus iron content, as well as oxidative stress levels and genes related
to the ferroptosis pathway. The mechanism of PAMK alleviating CTX-induced ferroptosis
in thymocytes was preliminarily explored to provide a basis for more in-depth elucidation
of the immunomodulatory mechanism of PAMK and a theoretical basis for the further
development of natural plant additives.

2. Materials and Methods
2.1. Animal Experiments

All goslings were purchased from Guangdong QingyuanJinyufeng Goose Co., Ltd.,
Qingyuan, China. Forty 1-day-old Magang goslings (half male and half female) were
randomly divided into four groups of 10 goslings each and pre-fed for 3 days. The CON
and CTX groups were fed a basic diet. The PAMK and CTX + PAMK groups were fed the
basic diet mixed with PAMK (400 mg/kg). At 19, 20, and 21 days of age, the CTX and
CTX + PAMK groups were given a daily injection of 40 mg/kg BW of CTX (Baster, Berlin,
Germany) into the leg muscle. On the other hand, the CON and PAMK groups were given
0.5 mL of sterilized saline into the leg muscle (Figure 1). The doses of CTX and PAMK were
determined based on previous studies [12]. All goslings were allowed to feed and drink
freely. Thymuses were collected at day 28 of age. Ethical approval for this experiment
was obtained from the Zhongkai University of Agricultural and Engineering under the
approved protocol NO. 20191201.
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Figure 1. Schematic outlines of the experimental approaches tested in goslings.

2.2. Transcriptome Sequencing

Transcriptome sequencing was performed by BGI Genomics Co., Ltd., (Wuhan, Chian).
Total RNA was extracted from the thymus using TRIzol reagent (15596026, Ambion, Austin,
TX, USA). High-quality RNA was used to construct sequencing libraries and analyze
the enrichment of differentially expressed genes (DEGs). First, data were filtered and
assembled using HISAT2 software, and the expression of genes and transcripts were
calculated using RSEM software. The interception criteria for DEGs were |logFC| ≥ 1
and adjusted p-value < 0.05. All DEGs were visualized as heat maps and volcano maps
using R packages: pheatmap and ggplot2, respectively. Gene ontology (GO) enrichment
analysis, including biological processes, cellular components, and molecular functions,
were performed using Blast2GO software to determine the biological roles of the DEGs.

2.3. Real-Time Quantitative PCR Assay

Total RNA was extracted from the thymus of goslings using TRIzol reagent accord-
ing to the manufacturer’s reagent instructions (15596026, Ambion, USA) and reverse-
transcribed using reverse-transcription reagent (RR036A, Takara, Dalian, China). Subse-
quently, cDNA templates from the samples were amplified with SYBR Green (A25742,
Applied Biosystems, Waltham, MA, USA). Primer sequences were designed according to
the NCBI database (Table 1). We used the ABI PRISM 7500 detection system (Applied
Biosystems, USA) to detect the relative mRNA expression of the genes. In this assay, β-
actin was used as an internal reference gene, and the mRNA expression of each gene was
calculated using the 2−∆∆ct relative quantification method.
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Table 1. Primer sequences for qPCR.

Gene Primer (5′ → 3′) Gen Bank Access

β-actin-F GCACCCAGCACGATGAAAAT
XM_013174886.1

β-actin-R GACAATGGAGGGTCCGGATT
GPX4-F TCGATGTGAATGGGGACGAC

XM_013200057.1GPX4-F GTCCTTCTCGATGACGTAGGG
ACSL4-F GCGGCTGAAACCCTCTTCTT

XM_013185083.1ACSL4-R GCCAACAGTGGACACAAGCTA
TFR1-F AGAATGGCTGGAGGGGTACT

XM_013195023.1TFR1-R TTCTCTCCAGCAGCGCATAC
FTH1-F ATGGTCATGGGCTTTCCCC

XM_013177583.1FTH1-R AATGAAGTCACACAGATGCGG
FPN1-F CTGGGGAGATCGTATGTGGC

XM_013178636.1FPN1-R AGGATGTCTGGGCCACTTTG
Hmox-1-F ATATGAGCACGGTCCAGCG

XM_013181078.2Hmox-1-R TCGTGACTATGAAGCCGAGC
COX-2-F TGTCCTTTCACTGCTTTCCAT

XM_013177944.1COX-2-R TTCCATTGCTGTGTTTGAGGT
TF-F ATTACTTCAGTGCGGGCTGT

XM_013186329.2TF-R CTCGACCAGACACCGGAAA
VDAC2-F GGAAGCTGCAACACGAAGAAC

XM_013176155.2VDAC2-R ACCAACCCAAACCCATATCCT
VDAC3-F CCAGTGGGGTGCTGGAATTTA

XM_013194404.2VDAC3-R TCCCAATGTGTTGTCCGTGT
STEAP3-F CCGTCAAGCAGTCCACCCT

XM_048079666.1STEAP3-R ACAGTACATGGGACGAGCAG
NRF2-F GGGATGCCCGGACATGAA

XM_013171581.2NRF2-R CGTCTAACTCCAGCTGAGCC

2.4. Western Blot Analysis

We collected thymus for protein extraction using RIPA lysis buffer (Beyotime, Shang-
hai, China) supplemented with protease inhibitors (Beyotime, Shanghai, China). The
protein from the thymus was separated by electrophoresis. Transfer the protein to the
PVDF membrane at 4 ◦C. After blocking with 5% skimmed milk at room temperature for 2 h,
the membranes were incubated with GPX4 primary antibody (ab40993, Abcam, Waltham,
MA, USA) and GAPDH primary antibody (60004-1-Ig, Proteintech, Wuhan, China) at 4 ◦C
overnight. After incubation with peroxidase-conjugated secondary antibodies (PR30011
and PR30012, Proteintech, Wuhan, China) for 1 h at room temperature. The signal was
detected on an ImageQuant LAS 500 (GE, Chicago, IL, USA) using the ECL Kit (Biosharp,
Hefei, China). GAPDH expression served as a loading control for quantification.

2.5. Thymus Histology

We cut the paraffin-fixed blocks into consecutive coronal sections 5–6 µm thick. For
routine histological examination, paraffin sections were stained with HE. The sections were
scanned with a section scanner (NanoZoomer S360, Hamamatsu Photonics, Hamamatsu,
Japan), and the HE-stained scanned sections were analyzed with CaseViewer. We observed
changes in HE-stained sections of the thymus, selected three sections from each group
with 10 randomly selected fields of view (200×), and measured the thickness of the thymic
cortex area in each field of view for statistical analysis.

2.6. Ultramicroscopic Morphology Observation

Each thymus was divided into 1 mm three pieces and then fixed with 2.5% glu-
taraldehyde at 4 ◦C. Ultrathin sections of 50–70 nm thickness were prepared and stained
with uranyl acetate (22400, EMS, Hatfield, PA, USA) and lead citrate (19314, TED PELLA,
Redding, CA, USA). Samples were observed with a transmission electron microscope
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(JEM-1400, JEOL, Mitaka-shi, Japan) and with a scanning electron microscope (Hitachi
S3000N, Tokyo, Japan). The ratio of dead cells to live cells was calculated at 3000×.

2.7. Immunofluorescence Staining

Thymus sections were dewaxed in xylene and hydrated with a gradient ethanol so-
lution. Antigen repair was performed on the sections using EDTA antigen repair buffer
(G5012, Servicebio, Wuhan, China). Endogenous peroxidase was blocked with a 3% hydro-
gen peroxide solution. The thymus sections were blocked in BSA (BS114, Bioshap, Hefei,
China) for 1 h and and incubated with the GPX4 primary antibody (ab40993, Abcam, USA)
at 4 ◦C overnight. The secondary antibody was used at a 1/1000 dilution for 1 h at room
temperature. DAPI was used to stain the cell nuclei. Images were acquired by a fluorescent
inverted microscope (Carl Zeiss, Jena, Germany). Anti-fluorescence quenching mounting
tablets (Servicebio, Wuhan, G1401) were used for mounting. Image J was used to calculate
the GPX4 fluorescence.

2.8. ROS Assay

The content of fresh thymus intracellular ROS was measured using the ROS detection
kit (Beyotime, Shanghai, China). Fresh thymus from goslings was collected and ground
on a 70 µm cell sieve to filter the cells and into PBS. Centrifugation was performed at
1600 rpm for 5 min, and the supernatant was discarded. Add 200 µL DCFH-DA staining
solution, adjust the concentration of cells to 5 × 106 cells/mL, mix well, and incubate for
15 min away from light. The cells were washed with PBS, centrifuged at 1600 rpm for
5 min, discarded the supernatant, and resuspended in 300 µL PBS. The resuspended cells
were detected using a flowmeter (BD Biosciences, San Jose, CA, USA).

2.9. Glutatione (GSH), Malonedialdehyde (MDA), and Tissue Fe Level Assays

GSH (A006-2-1), MDA (A003-1-2), and tissue Fe (A039-2-1) level assays were per-
formed using the kit (Nanjing Jiancheng Institute of Biological Engineering, Nanjing,
China) according to the manufacturer’s instructions.

2.10. Statistical Analysis

The experimental data were analyzed by one-way ANOVA using GraphPad Prism 7.0.
The differences between the four groups were compared by Tukey’s multiple comparison
method, and p < 0.05 were considered as statistically significant.

3. Results
3.1. Transcriptome Analysis Reveals PAMK Might Regulate Ferroptosis Pathway

To clarify the mechanism of action of CTX on thymus injury and PAMK on thymus
protection, we first performed RNA sequencing of CTX and the thymus of CTX and PAMK
co-treated goslings to systematically investigate the biological process of the effect of
PAMK and CTX. Figure 2A is a heatmap of DEGs clustering relationship between CTX and
PAMK + CTX groups, and Figure 2B shows the volcano map with 335 upregulated genes
and 440 downregulated genes. In the GO enrichment analysis, there is an enrichment of
DEGS in cellular process, immune system process, and antioxidant activity (Figure 2C),
which is what we focus on. Among them, ferroptosis involves not only cell process but
also antioxidant activity. In Figure 2D, the enrichment of DEGs in the ferroptosis signaling
pathway is depicted, mainly involving the cystine/glutamate antiporter system (system
xc-), arachidonic acid (AA) metabolism pathway, and the iron transport and metabolism
pathway. The PAMK + CTX group showed higher gene expression of SLC7A11, GSS, and
Ferroportin (FPN1) and lower gene expression of ACSL4, TF, STAEP3, VDAC2, and VDAC3
than the CTX group, demonstrating that PAMK and CTX might involve regulating cellular
ferroptosis in the thymus of goslings, while PAMK might inhibit ferroptosis.
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heatmap of DEGs clustering relationship between CTX and PAMK + CTX groups; CTX indicates the
CTX group; PC indicates PAMK + CTX group; (B) GO enrichment analysis of DEGs; (C) volcano plots
visualizing DEGs with a cut-off criterion of excluding genes with 0 expression (red dots represent
upregulated genes; blue dots represent downregulated genes); (D) Ferroptosis signaling pathways
and associated genes (red indicates upregulated genes; blue indicates downregulated genes). n = 4.
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3.2. PAMK Alleviates CTX-Induced Thymus Injury, Cell Death, and Mitochondrial Damage

The above results suggest that CTX leads to the activation of the ferroptosis pathway
and that PAMK has an inhibitory effect on this pathway. Therefore, we observed the
microstructure of the thymus to analyze whether the activation of the ferroptosis pathway
caused thymus injury. HE staining results (Figure 3E,F) showed that thymocytes in the
CON group were neatly arranged, with normal morphology, clear cortex and medullary
demarcation, and thick cortex (Figure 3H); the morphology and arrangement of cells in the
PAMK group were not significantly different from those in the CON group. The cells in
the PAMK + CTX group were more closely arranged than those in the CTX group, and the
cortex and medullary boundaries were clear. For the quantification of the mean thickness
of the thymic cortex, it was significantly lower in the CTX group compared to the CON
group and significantly increased in the PAMK + CTX group compared to the CTX group.

Animals 2022, 12, x 7 of 16 
 

3.2. PAMK Alleviates CTX-Induced Thymus Injury, Cell Death, and Mitochondrial Damage 
The above results suggest that CTX leads to the activation of the ferroptosis pathway 

and that PAMK has an inhibitory effect on this pathway. Therefore, we observed the mi-
crostructure of the thymus to analyze whether the activation of the ferroptosis pathway 
caused thymus injury. HE staining results (Figure 3E,F) showed that thymocytes in the 
CON group were neatly arranged, with normal morphology, clear cortex and medullary 
demarcation, and thick cortex (Figure 3H); the morphology and arrangement of cells in 
the PAMK group were not significantly different from those in the CON group. The cells 
in the PAMK + CTX group were more closely arranged than those in the CTX group, and 
the cortex and medullary boundaries were clear. For the quantification of the mean thick-
ness of the thymic cortex, it was significantly lower in the CTX group compared to the 
CON group and significantly increased in the PAMK + CTX group compared to the CTX 
group. 

 
Figure 3. Effects of PAMK on histology and the ultramicroscopic morphology of thymus treated 
with CTX. (A) Transmission electron microscopy (TEM; 3000×) of the thymus. The red arrows indi-
cate cell cavity; the yellow arrows indicate apoptotic cells; the green arrows indicate the apoptosis 
body. (B) Transmission electron microscopy (TEM; 10,000×) of the thymus. (C) Transmission elec-
tron microscopy (TEM; 30,000×) of the thymus. (D) Scanning electron microscopy (SEM; 5000×) of 
the thymus. (E) HE staining of the thymus (200×). (F) HE staining of the thymus (600×); red circles 
indicate the thymic medulla; yellow circles indicate the thymic cortex. (G) Ratio of dead cells to live 

Figure 3. Effects of PAMK on histology and the ultramicroscopic morphology of thymus treated with
CTX. (A) Transmission electron microscopy (TEM; 3000×) of the thymus. The red arrows indicate
cell cavity; the yellow arrows indicate apoptotic cells; the green arrows indicate the apoptosis body.
(B) Transmission electron microscopy (TEM; 10,000×) of the thymus. (C) Transmission electron mi-
croscopy (TEM; 30,000×) of the thymus. (D) Scanning electron microscopy (SEM; 5000×) of the thymus.
(E) HE staining of the thymus (200×). (F) HE staining of the thymus (600×); red circles indicate the
thymic medulla; yellow circles indicate the thymic cortex. (G) Ratio of dead cells to live cells in a single
field of view at SEM (3000×); (H) Quantification of the mean thickness of the thymic cortex. Data are
expressed as min to max, n = 3. Different letters indicate p < 0.05, significantly different.
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In scanning electronic microscopy (Figure 3D), CTX caused lymphocyte atrophy and
increased connective tissue, while PAMK restored cell morphology and reduced connective
tissue proliferation. In transmission electron microscopy (Figure 3A–C), the cell morphology
and chromatin distribution were normal in the CON and PAMK groups. The CTX group
showed chromatin borders, the disappearance of nuclei, irregular cell morphology with
cavities and apoptotic bodies, and an increased number of dead cells (Figure 3G). It is
noteworthy that the mitochondria in the CTX group became smaller and wrinkled, that their
number decreased, and that the mitochondrial cristae disappeared, which are characteristic
of ferroptosis. Cell morphology in the PAMK + CTX group was more regular; mitochondrial
cristae increased, and the mitochondrial morphology approached normal. It proved that
apoptosis and ferroptosis might be involved in CTX-induced thymus injury in goslings
and that PAMK could alleviate this phenomenon.

3.3. PAMK Alleviated the Decline of GPX4 in the Thymus

To further clarify the involvement of ferroptosis in CTX-induced thymus injury, we
detected the protein expression of GPX4 in thymus by immunofluorescence (Figure 4).
The results showed that the protein level of GPX4 was significantly downregulated in the
thymus after CTX injection. There were no significant differences in the protein levels
of GPX4 in the thymus of the CON, PAMK, and PAMK + CTX groups. This indicates
that CTX stimulation led to a significant decrease in the protein level of GPX4 in the
thymus of the goslings, resulting in a weakening of the GPX4 catalytic peroxidation of
lipid substrates, the accumulation of lipid ROS, and, eventually, ferroptosis, while PAMK
could alleviate ferroptosis by increasing the protein expression of GPX4. Furthermore,
immunofluorescence pictures showed that GPX4 expression was mainly concentrated in
the thymus corpuscles and that the thymic corpuscle was also decreased in the presence of
immunosuppression.
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3.4. PAMK Alleviated CTX-Induced Elevated Levels of Oxidative Stress and Iron in the Thymus

The occurrence of ferroptosis is closely related to the level of antioxidants and iron
ions. Therefore, after confirming the occurrence of ferroptosis, we measured ROS, MDA,
GSH, and Fe content (Figure 5). Compared to the CON group, ROS levels and the content
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of MDA and iron were significantly increased (p < 0.05), and the content of GSH was
significantly decreased (p < 0.05) in the CTX group. In the PAMK + CTX group, the content
of GSH was significantly increased (p < 0.05), and ROS levels were significantly decreased
(p < 0.05), compared to the CTX group. As for the content of MDA and iron, although
there was no significant difference in the PAMK + CTX group compared to the CTX group
(p > 0.05), the trend was opposite to that of the CTX group. This suggests that ferroptosis
may be involved in CTX-induced thymus injury in goslings by increasing levels of oxidative
stress and iron in the thymus, which can be alleviated by PAMK.
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Figure 5. Effects of PAMK on levels of oxidative stress and iron content in thymus treated with CTX.
(A) DCFH-DA staining to detect lipid ROS in the thymus. Mean fluorescence intensity was measured
by flow cytometry; (B) ROS level; (C) GSH content; (D) MDA content; (E) iron content. Data are
expressed as min to max, n = 10. Different letters indicate p < 0.05, significantly different.

3.5. PAMK Blocked the CTX-Induced Activation of Ferroptosis Pathway in the Thymus

Finally, we analyzed the specific changes in the ferroptosis pathway. We examined
the relative mRNA expression of ferroptosis pathway genes and the protein expression of
GPX4, a marker protein of ferroptosis (Figure 6). Among the genes involved in promoting
ferroptosis, the mRNA expression of ACSL4, COX-2, TFR1, VCAD2/3, TF, STEAP3, and
NRF2 was significantly higher in the CTX group compared with the CON group (p < 0.05),
except for Hmox-1. The mRNA expression of the above genes was significantly lower in
the PAMK + CTX group than in the CTX group (p < 0.05), except for the NRF2.CON group
(p < 0.05). CTX stimulation did not cause a significant decrease in the mRNA of GPX4 but
could cause a significant decrease in the protein expression of GPX4 (p < 0.05). Although
the change in FPN1 mRNA expression between the CTX and PAMK + CTX groups was
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insignificant, the expression in the PAMK + CTX group returned to a level similar to
that of the CON group. The above results suggest that PAMK can alleviate CTX-induced
ferroptosis in thymocytes by blocking the activation of the ferroptosis pathway.
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Figure 6. Effects of PAMK on the expression of thymus ferroptosis pathway gene treated with CTX.
Relative mRNA expression of (A) GPX4; (B) SLC7A11; (C) ACSL4; (D) COX-2; (E) TFR1; (F) FPN1;
(G) Hmox-1; (H) VDAC2; (I) VDAC3; (J) TF; (K) STEAP3;(L) NRF2. Protein expression of (M) GPX4.
Data are expressed as min to max, n = 10. Different letters indicate p < 0.05, significantly different.

4. Discussion

Ferroptosis is a new form of programmed cell death with iron-dependent properties,
whose main features include lipid reactive oxygen species accumulation, iron ion accu-
mulation, and lipid peroxidation. The metabolites of CTX after hepatic biotransformation
exert a suppressive effect on the immune function of the body [16], bringing a series of
impairments in immune function and oxidative damage to the body [17,18]. It has been
shown that CTX can induce ferroptosis through the NRF2/HMOX-1 pathway [10]. Drugs
that also have immunosuppressive effects, such as dexamethasone, partially involve fer-
roptosis in the T-cell ablation induced in zebrafish [19]. Based on the above studies, we
speculate that ferroptosis may be involved in CTX-induced thymus injury in goslings,
leading to immunosuppression in the gosling organism. Many studies have found that
herbal medicines can alleviate cellular damage and metabolic disorders caused by other dis-
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eases by inhibiting ferroptosis [20–22]. As an immunomodulator, PAMK can improve the
immunity of the organism, reduce stress damage, and effectively protect the goslings from
epidemics [23,24]. Therefore, we performed the transcriptome sequencing of the thymus
of goslings in the CTX and PAMK + CTX groups, and among the differentially expressed
genes, we enriched the ferroptosis pathway. Meanwhile, PAMK alleviated CTX-induced
ferroptosis in thymocytes through the regulation of genes related to system xc-, the AA
metabolism pathway, and the iron transport and metabolism pathways.

Studies on the cytotoxicity of CTX have mainly focused on apoptosis [7,25]. However,
many studies have found that ferroptosis and apoptosis are closely linked, that apoptosis
can be converted into ferroptosis under certain conditions, and that ferroptosis promotes
cell sensitivity to apoptosis [26,27]. Hu et al. found that apoptosis, pyroptosis, and ferropto-
sis together induced an immunosuppressive hepatocellular carcinoma microenvironment
and γδ T-cell imbalance [28]. Our HE, TEM, and SEM results showed that CTX causes thy-
mus injury, which is mainly manifested by the indistinct cortex and medullary demarcation
of the thymus and reduced cortical thickness. Thymocytes were disordered in arrangement
and underwent apoptosis. These findings are consistent with previous studies [29,30].
Ferroptosis is morphologically manifested mainly by mitochondrial atrophy, the reduction
or disappearance of mitochondrial cristae, increased mitochondrial membrane density, and
the rupture of the outer mitochondrial membrane [31]. Our electron microscopic results
clearly showed that the mitochondria of cells in the CTX group exhibited ferroptosis. All
of these conditions were alleviated after the addition of PAMK. The above indicates the
involvement of not only apoptosis but also ferroptosis in thymus injury caused by CTX.
PAMK may alleviate CTX-induced thymus injury by reducing apoptosis and ferroptosis in
thymocytes, and this study focused on ferroptosis.

When ROS accumulates in excess in cells, membrane polyunsaturated fatty acids
are easily oxidized by ROS and produce MDA, for example, causing ferroptosis [32].
GPX4 usually catalyzes the removal of lipid peroxides such as ROS, and this process
requires glutathione (GSH) as a cofactor [33]. Matsushita et al. found that GPX4 deficiency-
induced T cell death was caused by a lipid peroxidation-mediated pathway that involves
ferroptosis [34]. Our results showed that CTX significantly decreased the protein levels of
GPX4, suggesting that CTX is involved in stimulating ferroptosis in the thymus. In contrast,
the co-treatment of PAMK and CTX restored the protein expression of GPX4 to a normal
level, suggesting that PAMK can effectively alleviate the thymus ferroptosis involved in
CTX. Surprisingly, we found that GPX4 is predominantly expressed in the thymic corpuscle.
In the presence of immunosuppression, the number of thymic corpuscles decreases, and the
thymus lacking the thymic corpuscle cannot cultivate T cells [35]. Therefore, we speculate
that GPX4 may have an essential role in T cell development and differentiation. In our
study, we found that CTX treatment resulted in the accumulation of ROS, increased MDA
content, the depletion of GSH, and the inactivation of GPX4, which led to a decrease in the
antioxidant capacity of the organism and resulted in the development of ferroptosis. PAMK
could alleviate ferroptosis in thymocytes by increasing the protein level and antioxidant
capacity of thymus GPX4 in gosling.

Iron homeostasis has been shown to play a critical role in the innate immunity of the
organism [36,37]. Host cells can use iron to produce ROS to clear microbes and promote
cell survival [38]. However, the excessive accumulation of free iron in cells can promote the
excessive accumulation of ROS through the Fenton reaction, leading to the ferroptosis of
cells [39]. Meanwhile, intracellular iron accumulation will, in turn, promote intracellular
microbial infection [40]. Our study found that CTX stimulation caused a significant increase
in iron content in the thymus of gosling, leading to an imbalance in iron homeostasis; co-
treatment of PAMK with CTX resulted in a decrease in iron content in the thymus. Our
study found that CTX stimulation caused a significant increase in iron content in the thymus
of goslings, leading to an imbalance in iron homeostasis; the co-treatment of PAMK with
CTX resulted in a decrease in iron content in the thymus. This demonstrates that PAMK can
alleviate CTX-induced thymocyte ferroptosis in the thymus by reducing the iron content of
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the thymus, thereby reducing ROS production, and can restore the immune function of the
organism by regulating iron homeostasis.

GPX4 plays a very central role in inhibiting ferroptosis, but we found that CTX does
not inhibit GPX4 transcription but rather GPX4 protein expression, which is consistent
with previous studies [41]. The new study found that GPX4 can form non-covalent bonds
with CTX, demonstrating that CTX is a potential ferroptosis inducer [42]. Therefore, it
is inevitable that CTX can inactivate the GPX4 protein by target binding to it, leading to
a reduction in the antioxidant capacity of the body, allowing an excessive accumulation
of ROS and leading to ferroptosis. Based on our previous study [24] and transcriptome
sequencing enriched for differentially expressed genes in the ferroptosis pathway, we also
examined the mRNA expression of SLC7A11, VDAC2/3, AA metabolism, NRF2/HMOX-1
axis, and genes related to iron transport metabolism. Wang et al. found that the genetic
deletion or mutation of SLC7A11 inhibited GSH synthesis, leading to increased tissue lipid
peroxidation and ferroptosis [43], which is similar to our findings. The mRNA expression of
SLC7A11 in the thymus is decreased by CTX, which affects GSH synthesis and contributes
to GPX4 inactivation. As a critical enzyme in AA production, cyclooxygenase 2 (COX-2) is
involved in mediating ferroptosis [44]. COX-2 expression is, in turn, regulated by Acyl-CoA
synthase long-chain family member 4 (ACSL4) [45]. In the present study, PAMK was
found to inhibit the CTX-induced overexpression of the ACSL4/COX-2 axis. Previous
studies demonstrated that NRF2-derived HMOX-1 could neutralize accumulated ROS
when HMOX-1 expression is moderately activated; however, the overactivation of HMOX-
1 increases iron pools, leading to ROS overload and subsequent oxidative cell death [46,47].
We found that PAMK alleviated the CTX-induced overexpression of HMOX-1 but did not
have an inhibitory effect on the overexpression of NRF2. Excess intracellular iron underlies
ferroptosis, and iron binds to transferrin (TF) in the form of Fe3+ and then enters the cell via
transferrin receptor 1 (TFR1) [48,49]. FPN1 is the only known ferric ion efflux protein and is
involved in the regulation of ferroptosis. Zhang et al. found that FPN1 affects macrophage
iron release and plays a vital role in regulating the innate immune response [50]. The
present study shows that PAMK can reduce excess iron in the thymus by regulating genes
involved in iron transport and metabolism, thereby alleviating ferroptosis. It has been
shown that the activation of voltage-dependent anion channel 2/3 (VDAC2/3) blocks
mitochondrial depolarization, promotes ROS release, and induces ferroptosis [51,52]. We
found that PAMK could inhibit the CTX-induced overexpression of VDAC2/3, thereby
suppressing ROS release. The above studies suggest that PAMK affects cellular ferroptosis
in the gosling thymus by regulating the expression of several ferroptosis-related genes.

5. Conclusions

In conclusion, PAMK could reduce thymus injury by alleviating CTX-induced thy-
mocyte ferroptosis in gosling to alleviate the immunosuppression caused by CTX in the
organism. Meanwhile, PAMK could co-mitigate ferroptosis in thymocytes by regulating the
expression of critical genes of ferroptosis, restoring GPX4 protein expression, improving
antioxidant capacity, and reducing iron overaccumulation (Figure 7).
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Abbreviations

PAMK polysaccharide of Atractylodes macrocephala koidz
CTX cyclophosphamide
ROS reactive oxygen species
GSH glutatione
MDA malonedialdehyde
SEM scanning electronic microscope
TEM transmission electron microscope
HE hematoxylin-eosin
PBS phosphate buffer saline
BSA bovine serum albumin
DAPI 4′,6-diamidino-2-phenylindole
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AA arachidonic acid
GPX4 glutathione peroxidase 4
ACSL4 Acyl-CoA synthetase long chain family member 4
TFR1 transferrin receptor 1
FPN1 ferroportin 1
FTH1 ferritin heavy chain 1
Hmox-1 heme oxygenase 1
COX-2 cyclooxygenase 2
TF transferrin
VDAC2/3 voltage dependent anion channel 2/3
STEAP3 six-transmembrane epithelial antigen of prostate 3
NRF2 nuclear factor erythroid2-related factor 2
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