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Simple Summary: It is well known that mammals can harbor various pathogens that can affect hu-
mans (known as zoonotic pathogens) including viruses, bacteria, fungi and parasites. Microsporidia
are a group of pathogens related to fungi and parasites of several animals that can cause diarrhea
or systemic infection in humans. Due to the limited knowledge about microsporidia infection in
hedgehogs worldwide, this study aimed to analyze the presence and identity of microsporidia in
a group of North African hedgehogs from the Canary Islands (Spain). Enterocytozoon bieneusi and
Encephalitozoon cuniculi, two zoonotic species of microsporidia, were identified. These results suggest
that microsporidia species with zoonotic risk circulate in the archipelago.

Abstract: Microsporidia are unicellular eukaryotic obligate intracellular parasites with a wide range of
hosts reported worldwide; however, little is known about the epidemiological data on microsporidia
infection in animals from the Canary Islands. Since data on microsporidia infection in hedgehog
species are scarce, the aim of this study was to analyze the presence and identity of microsporidia in a
group of North African hedgehogs (Atelerix algirus) using microscopic and molecular methods. From
December 2020 to September 2021, a total of 36 fecal samples were collected from naturally deceased
hedgehogs from Tenerife and Gran Canaria. All samples showed spore-compatible structures (100%;
36/36) under microscopic analysis, of which 61.1% (22/36) were amplified via the nested-polymerase
chain reaction (PCR) targeting the partial sequence of the 16S rRNA gene, the internal transcribed
spacer (ITS) region, and the partial sequence of the 5.8S rRNA gene. After Sanger sequencing and ITS
analysis, Enterocytozoon bieneusi was detected in 47.2% (17/36) of the samples, identifying two novel
genotypes (AAE1 and AAE2), followed by the detection of an undetermined species in 8.3% (3/36)
and Encephalitozoon cuniculi genotype I in 5.6% (2/36) of the samples. This study constitutes the first
report of microsporidia species in Atelerix algirus worldwide, highlighting the high prevalence of
zoonotic species.

Keywords: microsporidia; Enterocytozoon bieneusi; Encephalitozoon cuniculi; hedgehog; Atelerix algirus;
zoonotic; Canary Islands

1. Introduction

Microsporidia are unicellular eukaryotic obligate intracellular parasites, spore-forming,
and phylogenetically related to the fungi kingdom. Seventeen species have been described
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as human-pathogenic microsporidia, especially in immunocompromised individuals, of
which Enterocytozoon bieneusi and the genus Encephalitozoon are the most frequent [1].

Enterocytozoon bieneusi, with approximately 500 genotypes described based on the
sequence analysis of the internal transcribed spacer (ITS) of the rRNA gene, is clustered
within 11 phylogenetic groups. Group 1 and Group 2 are considered zoonotic, while
the remaining groups (3–11) are considered host-specific [2]. In Encephalitozoon cuniculi,
four genotypes (I–IV) based on the number of 5′-GTTT-3′ repeats in the ITS have been
described, all of which have confirmed zoonotic potential [3]. The number of genotypes
of Encephalitozoon hellem depends on the target for genotyping (ITS, the polar tube protein
locus, or other intergenic spacers), suggesting high intraspecies variability [4]. However,
there are no genetic differences within the ITS for genotyping the Encephalitozoon intestinalis
isolates [5].

Spore transmission can occur through ingestion of contaminated water and food,
inhalation of contaminated aerosols, contact with infected animals (zoonotic transmission)
or persons (anthroponotic transmission). Zoonotic transmission has been supported by the
identification of the same genotypes in humans and animals [6,7].

Microsporidia have been found in several hosts, including livestock, companion
and wildlife animals worldwide, but little is known about microsporidia infection in
hedgehogs [8]. To our knowledge, the detection of E. bieneusi has only been reported in an
undetermined species of hedgehog [9], in the Amur hedgehog (Erinaceus amurensis) [10]
and more recently in the African pygmy hedgehog (Atelerix albiventris) [11].

In the Canary Islands (13◦23′–18◦8′ W and 27◦37′–29◦24′ N), the only hedgehog
species recorded is the North African hedgehog (Atelerix algirus), an introduced species
from Northwest Africa. The distribution of this mammal in Spain includes the Iberian
Peninsula, the Balearic and Canary Islands, as well as Ceuta and Melilla. The introduction
of this species has been suggested as an anthroponotic introduction from Morocco to
Fuerteventura in 1892, and is currently present in Fuerteventura, Lanzarote, Gran Canaria,
and Tenerife. Nonetheless, isolated specimens are also known from La Gomera, El Hierro,
and La Palma [12,13].

Epidemiological data on microsporidia infection in the fauna of this archipelago are
scarce, and there are no data on A. algirus as a host for these parasites. Therefore, the
present study aimed to investigate the prevalence and identification of microsporidia in
fecal samples from hedgehogs on the Canary Islands.

2. Materials and Methods
2.1. Ethical Agreement

This study was carried out under the agreement of “Consejería de Transición Ecológica,
Lucha contra el Cambio Climático y Planificación Territorial” (Gobierno de Canarias) named
“Estudio de patógenos en aves migratorias y en especies exóticas en un escenario de cambio
climático”, available online in the Official Bulletin of the Canaries (BOC nº 248, 4 December
2020) [14].

2.2. Study Area, Sample Collection, and Preparation

From December 2020 to September 2021, a total of 36 fecal samples were collected
by dissecting naturally deceased hedgehogs (n = 33) donated by “La Tahonilla” Wildlife
Recovery Center in Tenerife, and found dead individuals (n = 3) collected by technical
personnel of “RedEXOS” in Gran Canaria (Figure 1). For each sampled animal, sex and
location were recorded whenever possible (Supplementary Material—Table S1).

All fecal samples were placed in tubes containing 2.5% (w/v) aqueous potassium
dichromate solution (K2Cr2O7) (Merck, Darmstadt, Germany) and stored at 4 ◦C until
further processing.
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Figure 1. Map of the sampled locations in Tenerife and Gran Canaria. The municipalities are shown 
in gray—1: Santa Cruz de Tenerife; 2: San Cristóbal de La Laguna; 3: Tacoronte; 4: El Sauzal; 5: El 
Rosario; 6: Arafo; 7: Güímar; 8: Granadilla de Abona; 9: San Miguel de Abona; 10: Arona; 11: Adeje; 
12: Icod de Los Vinos; 13: Las Palmas de Gran Canaria. The symbols indicate samples confirmed 
via nested-PCR. The original images were taken from Wikimedia Common 
(https://commons.wikimedia.org/w/index.php?title=File:Mapa_Canarias_municipios.svg&oldid=4
78721455, accessed on 2 March 2023; 
https://commons.wikimedia.org/wiki/File:Islas_Canarias_(real_location)_in_Spain.svg, accessed on 2 
March 2023) and Gobierno de Canarias 
(https://www3.gobiernodecanarias.org/medusa/mediateca/ecoescuela/?attachment_id=3333, ac-
cessed on 2 March 2023; 
https://www3.gobiernodecanarias.org/medusa/mediateca/ecoescuela/?attachment_id=3265, accessed 
on 2 March 2023), in which permission to copy, distribute, or adapt was established. Users: Júlio 
Reis (https://commons.wikimedia.org/wiki/User:Tintazul, accessed on 2 March 2023), TUBS 
(https://commons.wikimedia.org/wiki/User:TUBS, accessed on 2 March 2023), GRAFCAN 
(https://www.grafcan.es/, accessed on 2 March 2023), and IDE Canarias 
(http://www.idecanarias.es/, accessed on 2 March 2023) (Source: Gobierno de Canarias). 
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Figure 1. Map of the sampled locations in Tenerife and Gran Canaria. The municipalities are
shown in gray—1: Santa Cruz de Tenerife; 2: San Cristóbal de La Laguna; 3: Tacoronte; 4: El
Sauzal; 5: El Rosario; 6: Arafo; 7: Güímar; 8: Granadilla de Abona; 9: San Miguel de Abona;
10: Arona; 11: Adeje; 12: Icod de Los Vinos; 13: Las Palmas de Gran Canaria. The symbols
indicate samples confirmed via nested-PCR. The original images were taken from Wikimedia
Common (https://commons.wikimedia.org/w/index.php?title=File:Mapa_Canarias_municipios.
svg&oldid=478721455, accessed on 2 March 2023; https://commons.wikimedia.org/wiki/File:
Islas_Canarias_(real_location)_in_Spain.svg, accessed on 2 March 2023) and Gobierno de Canarias
(https://www3.gobiernodecanarias.org/medusa/mediateca/ecoescuela/?attachment_id=3333, ac-
cessed on 2 March 2023; https://www3.gobiernodecanarias.org/medusa/mediateca/ecoescuela/
?attachment_id=3265, accessed on 2 March 2023), in which permission to copy, distribute, or
adapt was established. Users: Júlio Reis (https://commons.wikimedia.org/wiki/User:Tintazul,
accessed on 2 March 2023), TUBS (https://commons.wikimedia.org/wiki/User:TUBS, accessed on
2 March 2023), GRAFCAN (https://www.grafcan.es/, accessed on 2 March 2023), and IDE Canarias
(http://www.idecanarias.es/, accessed on 2 March 2023) (Source: Gobierno de Canarias).

2.3. Staining Method

Fecal samples were stained with Weber’s chromotrope stain (chromotrope 2R [Sigma-
Aldrich, St. Louis, MO, USA], and Fast Green [Sigma-Aldrich, St. Louis, MO, USA] and
phosphotungstic acid [Sigma-Aldrich, St. Louis, MO, USA]) [15] and microscopically
screened for microsporidia spores at a magnification of 1000× under a Leica DM750
microscope model ICC50 HD (Leica Microsystems, Heerbrugg, Switzerland). Samples
with spore-compatible structures, ovoid and refractile structures stained pink-red, were
considered positive.
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2.4. DNA Extraction

The total DNA of each fecal sample was extracted using ~500 µL of the sample,
previously washed with sterile Phosphate-Buffered Saline (PBS) 1X at room temperature,
and centrifuged at 3500 rpm for 15 min to remove the potassium dichromate solution. A
commercial FastDNA ® Spin Kit for Soil (MP Biomedicals, Solon, OH, USA) was used
following the manufacturer’s instructions, and the homogenizer FastPrep-24TM 5G (MP
Biomedicals, Solon, OH, USA) was used as the spore disruptor.

2.5. Nested-PCR Amplification

Nested-PCR was carried out in an XP Cycler (Bioer Technology, Hangzhou, China)
targeting the partial sequence of the 16S rRNA gene, the complete internal transcribed
spacer region (ITS), and the partial sequence of the 5.8S rRNA gene [16].

The amplification reaction of both steps (25 µL) included 0.15 µL of Taq DNA poly-
merase (5 UI/ µL) (VWR International, Haasrode, Belgium), 2.5 µL of dNTPs mix (200 µM)
(Bioline, London, UK), 2.5 µL of 10× key buffer (15 mM Mg2+) (VWR International, Haas-
rode, Belgium), 1.25 µL of MgCl2 (25 mM) (VWR International, Haasrode, Belgium),
0.1 µL of each primer and 1 µL of DNA template (or 1 µL of primary PCR product). The
primers used were MSP-1, MSP-2A, and MSP2B for the first step and MSP-3, MSP-4A,
and MSP4B for the second step. The pairs of primers were used to identify E. bieneusi
(MSP1/MSP2B—MSP3/MSP4B) and Encephalitozoon spp. (MSP1/MSP2A—MSP3/MSP4A)
with the following conditions in each reaction: initial denaturation at 94 ◦C for 3 min,
35 cycles of denaturation at 94 ◦C for 45 s, annealing at 54 ◦C for 45 s, and extension at
72 ◦C for 1 min, and a final step at 72 ◦C for 7 min [17].

Ten microliters of each PCR product were examined via electrophoresis on 1.5% (w/v)
agarose gels (Fisher Bioreagents, Madrid, Spain) stained with REALSAFE Nucleic Acid
Staining Solution (20,000×, REAL, Durviz S.L., Valencia, Spain). An amplified DNA prod-
uct with sizes between 300 and 500 bp (expected size for Encephalitozoon spp. and E. bieneusi,
respectively) was considered positive and was sequenced using secondary primers.

2.6. Sequencing and Phylogenetic Analysis

All nested-PCR positive products were purified using ExoCleanUp FAST (VWR Inter-
national, Haasrode, Belgium) and sequenced using the Sanger method at the University of
La Laguna Sequencing Services (Servicio de Genómica—Servicios Generales de Apoyo a la
Investigación de la Universidad de La Laguna, Universidad de La Laguna, Spain).

The obtained sequence chromatograms were analyzed and aligned using the ClustalW
program included in MEGA X v10.2.6 (Molecular Evolutionary Genetic Analysis) software
(Hachioji, Japan) [18] and compared using the Basic Local Alignment Search Tool (BLAST)
in the GenBank database.

Phylogenetic trees were generated using the neighbor-joining method, and genetic
distances were calculated using the Kimura 2-parameter model [19,20] with 1000 bootstrap
replicates.

Nucleotide sequences were deposited in GenBank under the following accession
numbers for E. bieneusi (OQ646695–OQ646706; and OQ646730–OQ646734), E. cuniculi
(OQ646736 and OQ646737) and the undetermined species (OQ646735).

3. Results
3.1. Light Microscopy

Of the 36 hedgehogs, spore-compatible structures were found in 100% (36/36) of the
samples stained with Weber’s chromotrope stain.

3.2. Molecular Characterization

A total of 22 (61.1%) samples yielded fragments of the expected sizes (300–500 bp).
Sanger sequencing revealed the presence of E. bieneusi in 47.2% (17/36) and E. cuniculi
in 5.6% (2/36) of samples. In addition, three samples (8.3%; 3/36) were identified as
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undetermined species based on BLAST analysis because of the low homology observed
(less than 95%) or because they were not long enough for homology comparison with the
reference sequences in MEGA X.

3.2.1. Molecular Characterization of Enterocytozoon bieneusi

Genotyping was successful in 94.1% (16/17) of E. bieneusi-positive samples. One
sequence (5.9%) was not sufficiently long to be genotyped. Two novel genotypes were
identified, named AAE1 (n = 13) and AAE2 (n = 3).

The sequence of the ITS region of genotype AAE1 (242-bp) showed 99.18% homology
with genotypes isolated from several mammal species in China: HND-I in snub-nosed
monkeys (Rhinopithecus bieti) (MK965088.1) and sika deer (Cervus nippon) (KX383628.1);
and Type IV in raccoon dog (Nyctereutes procyonoides) (MN747469.1) and Père David’s deer
(Elaphurus davidianus) (KP057598.1).

The sequence of the ITS region of the genotype AAE2 (243-bp) showed 99.69% homol-
ogy with various isolates of WildBoar3 (syn. NCF2, NCF3, NCF4) in the silver fox (Vulpes
vulpes) and arctic fox (Vulpes lagopus) from China (MN029056.1), beech marten (Martes foina)
(MN218601.1) from Poland, European badger (Meles meles) (MG458713.1) from Spain, and
red fox (Vulpes vulpes) from Poland and Spain (MK256483.1 and MG458714.1, respectively).

The ITS region of genotype AAE1 was 242 bp in length, as a result of the deletion
of one nucleotide (position 53), differed by one single nucleotide polymorphism (SNP)
compared with genotype HND-I, two SNPs compared with genotype EA1, one SNP
and two nucleotide insertions compared with genotype EA2, two SNPs compared with
genotype EA3, one SNP compared with EA4, and two SNPs compared with genotype S9.
The positions of the SNPs and the insertions are listed in Table 1.

Table 1. Sequence differences in the internal transcribed spacer region of the rRNA gene of the novel
genotype AAE1 compared to the closest matched sequences.

Genotype (Host) Nucleotide Position (5′→ 3′) 1

31 32 51 52 53 86 131 155

AAE1 (Atelerix algirus) A T G T - G G A
HND-I (Rhinopithecus bieti) G T G T A G G A
EA1 (Erinaceus amurensis) G C G T A G G A
EA2 (Erinaceus amurensis) G T - - A G G A
EA3 (Erinaceus amurensis) G T G T A A G A
EA4 (Erinaceus amurensis) G T G T A G G G

S9 (Vulpes vulpes) G T G T A G A A
1 Nucleotide positions in the internal transcribed spacer region (ITS) of Enterocytozoon bieneusi (~243-bp). Hyphen
indicates a deletion in this position.

The ITS region of genotype AAE2, 243 bp in length, showed only one SNP at position
104 (G→ A) compared to genotype WildBoar3.

The novel genotypes clustered within Group 1 based on phylogenetic analysis (Figure 2).
Genotype AAE1 fell into an independent clade close to two clades, one of which was formed
by the genotypes isolated from the Amur hedgehog (E. amurensis) in China (EA1–EA4)
(bootstrap value of 100%). Genotype AAE2 clustered in a clade with the genotype Wild-
Boar3 (syn. NCF2, NCF3, NCF4), which have been previously detected in carnivores in
mainland Spain.

3.2.2. Molecular Characterization of Encephalitozoon cuniculi

Two of the thirty-six (5.6%) fecal samples were positive for E. cuniculi. Both sequences
showed >99% homology with E. cuniculi sequences deposited in GenBank (AB713183.1,
L13332.1, and OP555067.1). Phylogenetic analysis confirmed the identity of the isolates
as E. cuniculi (bootstrap 100%) (Figure 3) and were identified as genotype I based on ITS
sequence analysis.
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Figure 3. Phylogenetic relationships between partial sequences of the 16S rRNA gene, the complete
internal transcribed spacer region (ITS), and the partial sequence of the 5.8S rRNA gene of Encephali-
tozoon cuniculi obtained in this study and known genotype sequences deposited in GenBank. The tree
was constructed using the neighbor-joining method based on the genetic distance calculated using
the Kimura 2-parameter model. Representative sequences for each E. cuniculi genotype (I–IV) were
used. Accession numbers are shown in bold, and information concerning the host species and origin
are shown in parentheses. Enterocytozoon bieneusi (MK895034.1) was used as an outgroup. There were
a total of 211 positions in the final dataset.
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3.2.3. Geographical Distribution

Of the 16 genotyped E. bieneusi isolates, the most frequently detected was genotype
AAE1 (81.25%; 13/16). It showed a wide distribution, being detected in seven municipalities
in Tenerife and in the sampled municipality in Gran Canaria. In contrast, the genotype
AAE2 (18.75%; 3/16) was detected only in two northern municipalities of Tenerife Island,
El Sauzal, and Tacoronte.

Encephalitozoon cuniculi-positive hedgehogs were found in the northeastern zone of
Tenerife, specifically in Santa Cruz de Tenerife and El Rosario.

Undetermined species were detected in Adeje and San Cristóbal de La Laguna; no
other species were detected at these locations (Figure 1, Table 2).

Table 2. Geographical distribution of microsporidia species and genotypes identified in Atelerix
algirus on the Canary Islands.

Location Sample
Size (n)

Nested-PCR Confirmed
Samples (n)

E. bieneusi
Genotypes (n)

E. cuniculi
Genotypes (n)

Undetermined
Species

Adeje 1 1 - - 1

Arafo 1 - - - -

Arona 7 6
AAE1 (5)

Undetermined
genotype (1) *

- -

El Rosario 3 2 AAE1 (1) I (1) -

El Sauzal 1 1 AAE2 (1) - -

Granadilla de Abona 3 2 AAE1 (2) - -

Güímar 1 - - - -

Icod de Los Vinos 1 - - - -

Las Palmas de Gran Canaria 3 3 AAE1 (3) - -

San Cristóbal de La Laguna 7 2 - - 2

San Miguel de Abona 1 - - - -

Santa Cruz de Tenerife 5 3 AAE1 (2) I (1) -

Tacoronte 2 2 AAE2 (2) - -

TOTAL 36 22 17 2 3

* The sample was not successfully genotyped.

4. Discussion

The present study constitutes the first report of microsporidia in the North African
hedgehog (A. algirus), highlighting the presence of human-pathogenic microsporidia, E.
bieneusi and E. cuniculi.

In Spain, E. bieneusi has been reported as the most frequent etiological agent of intesti-
nal microsporidiosis in patients with human immunodeficiency virus (HIV) [21–29], as
well as in non-HIV patients [30–36], and in sporadic cases of extraintestinal microsporidio-
sis [21,22,28,30,34,35,37]. However, cases of Encephalitozoon spp. have rarely been identified
in Spain [29,32,38–42].

Data on microsporidia infection in patients from the Canary Islands are scarce, with
only two reports of E. bieneusi in immunocompetent patients from Tenerife [35] and trans-
plant recipients from Gran Canaria (genotype D) [36].

Regarding the zoonotic role of microsporidia, several animal hosts have been de-
scribed as reservoirs of this group of parasites. To date, E. bieneusi is the most com-
mon species in Spain and has been detected in pet dogs [43–46], wild animals (lago-
morphs, rodents, carnivores, and ungulates) [43,47–52], animals in urban environments
(pigeons and cats) [46,53,54], farm animals (goats, rabbits, pigs, ostriches, cattle, and
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deer) [43–45,51,52,55,56] and animals in zoos (chimpanzees) [57]. In studies wherein geno-
typing was performed, most of the detected genotypes clustered within Group 1, suggesting
zoonotic potential. Encephalitozoon intestinalis is the second most frequent species in animals.
It has been reported in domestic cats [45], wildlife rabbits and hares [47,58], pigeons from
parks [53], and farmed pigs and ostriches [45], whereas there are only a few reports of E.
hellem [53,59] and E. cuniculi [50,60,61].

The prevalence obtained using the microscopic method in this study (100%; 36/36)
differed from that obtained using nested-PCR (61.1%; 22/36), as reported in other stud-
ies [46,50]. This difference can be explained by the spontaneous extrusion of spores or
low parasitic load, as suggested in the studies conducted by Izquierdo et al. [50] and Haro
et al. [53], respectively.

The overall prevalence obtained in animals using the molecular methods in studies
conducted in Spain with similar sample sizes ranged from 43.8% (14/32) in domestic dogs
in Madrid [45], to 55.6% (15/27) in farmed pigs in Extremadura and Castile and León, [45]
and 65.4% (17/26) in Iberian lynx in Andalusia [50], with E. bieneusi being most commonly
detected in fecal samples in the latter studies. However, E. bieneusi was detected in 7 of the
14 PCR-positive dog samples and in 7 of the 15 PCR-positive pig samples compared to the
17 of the 22 nested-PCR-positive samples detected in this study.

In the case of the Iberian lynx, the results were in agreement with the positive samples
obtained in this study for E. bieneusi (76.5%; 13/17 in lynxes vs. 77.3%; 17/22 in hedgehogs)
and E. cuniculi (11.8%; 2/17 in lynxes vs. 9.1%; 2/22 in hedgehogs).

Considering the host species, the 47.2% (17/36) prevalence of E. bieneusi reported
in A. algirus fecal samples is higher than that reported in a study conducted in China,
which reported a prevalence of 9.8% (4/41) in E. amurensis intestine samples [10], but lower
than the 70.0% (266/380) reported in fecal samples from farmed and pet A. albiventris,
also conducted in China. The highest genetic diversity was recorded in A. albiventris with
one known genotype, SCR05 (88.3%; 235/266) and 10 novel genotypes, GDH01 (3.4%;
9/266), GDH02 (0.8%; 3/266), and GDH03– GDH10 (one sample each) [11], followed by E.
amurensis with four novel genotypes, EA1, EA2, EA3, and EA4 (one sample each) [10]. The
population of A. algirus on the Canary Islands showed low genetic diversity and two novel
genotypes, AAE1 and AAE2.

To the best of our knowledge, this is the first study to detect E. cuniculi in hedgehogs.
The prevalence obtained (5.6%; 2/36) was similar to that recently reported in fecal samples
from European rabbits in Tenerife (4.0%; 2/50) [61]. Genotype I of E. cuniculi has been
the only genotype detected in animal hosts in Spain to date [60,61], and the species is
less frequent in this country, with a few cases in humans [40–42]. However, molecular
detection in water sources, in addition to serological analysis of domestic and wild animals,
demonstrates the presence of this parasite in the environment [50,61,62].

Considering that the diet of hedgehogs is mainly based on Coleoptera [63] and numer-
ous species of microsporidia have been described as insect parasites [64], the undetermined
species detected in fecal samples of hedgehogs are suspected to be microsporidia species
infecting invertebrate hosts. Other studies have also detected undetermined species using
molecular methods [45,61,62].

The remaining human-pathogenic Encephalitozoon species, E. intestinalis and E. hellem
were not detected in this study. A low prevalence of E. intestinalis has been reported in
animals in Spain [45,47,53,58] and E. hellem in mammals worldwide [65].

Considering the high prevalence of E. bieneusi genotypes with zoonotic potential,
veterinary control measures should be implemented to detect this pathogen, given that
hedgehogs have been kept as pets on the Canary Islands [66] and could pose a risk to
children who are most susceptible to microsporidiosis [67]. Despite the limited number
of E. cuniculi cases detected in this study, the zoonotic risk should not be underestimated
because symptomatic cases have been documented in humans [9].
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5. Conclusions

This study constitutes the first report of microsporidia in fecal samples of the North
African hedgehog (A. algirus). The overall prevalence of nested-PCR-confirmed samples
was 61.1% (22/36), with E. bieneusi being the most common species, followed by the
undetermined species and E. cuniculi. Two novel genotypes of E. bieneusi were identified,
named AAE1 and AAE2, both clustered within Group 1, and the E. cuniculi isolates were
identified as genotype I.

The results obtained in this study provide new data on the epidemiology of mi-
crosporidia on the Canary Islands (Spain), suggesting that zoonotic genotypes of human-
pathogenic microsporidia circulate in the fauna of the islands, posing a risk to public and
veterinary health.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Author Contributions: Conceptualization, P.F. and N.A.-A.; methodology, E.B.-G.; formal analysis,
E.B.-G.; investigation, E.B.-G.; resources, P.F.; data curation, E.B.-G., P.F. and N.A.-A.; writing—original
draft preparation, E.B.-G. and P.F.; writing—review and editing, N.A.-A.; supervision, P.F.; project
administration, P.F.; funding acquisition, P.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by ProID2021010013 Consejería de Economía, Industria, Com-
ercio y Conocimiento (Gobierno de Canarias) and Fondos FEDER-FSE Canarias 2014–2020, “Pro-
grama de Apoyo a la Investigación María del Carmen Betencourt y Molina”; and by “Consejería
de Transición Ecológica, Lucha contra el Cambio Climático y Planificación Territorial (Gobierno
de Canarias)—Universidad de La Laguna agreement”. E.B.-G. was granted an FPI predoctoral
scholarship by “Agencia Canaria de Investigación, Innovación y Sociedad de la Información de
la Consejería de Economía, Conocimiento y Empleo” and “Fondo Social Europeo (FSE) Programa
Operativo Integrado de Canarias 2014–2020, Eje 3 Tema Prioritario 74 (85%)” (TESIS2021010056).

Institutional Review Board Statement: We consider that the Ethical Declaration is not necessary
since in this study only dead or naturally deceased hedgehogs were used.

Informed Consent Statement: The head of the Wildlife Recovery Center has signed the consent form.

Data Availability Statement: Not applicable.

Acknowledgments: We wish to thank the staff of “La Tahonilla” Wildlife Recovery Center and
“RedEXOS” for providing the animals.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Han, B.; Pan, G.; Weiss, L.M. Microsporidiosis in Humans. Clin. Microbiol. Rev. 2021, 34, e0001020. [CrossRef] [PubMed]
2. Li, W.; Feng, Y.; Santin, M. Host Specificity of Enterocytozoon bieneusi and Public Health Implications. Trends Parasitol. 2019, 35,

436–451. [CrossRef] [PubMed]
3. Santaniello, A.; Cimmino, I.; Dipineto, L.; Agognon, A.L.; Beguinot, F.; Formisano, P.; Fioretti, A.; Menna, L.C.; Oriente, F.

Zoonotic Risk of Encephalitozoon cuniculi in Animal-Assisted Interventions: Laboratory Strategies for the Diagnosis of Infections
in Humans and Animals. Int. J. Environ. Res. Public Health 2021, 18, 9333. [CrossRef]

4. Haro, M.; Del Águila, C.; Fenoy, S.; Henriques-Gil, N. Intraspecies genotype variability of the microsporidian parasite Encephalito-
zoon hellem. J. Clin. Microbiol. 2003, 41, 4166–4171. [CrossRef] [PubMed]

5. Graczyk, T.K.; Bosco-Nizeyi, J.; da Silva, A.J.; Moura, I.N.; Pieniazek, N.J.; Cranfield, M.R.; Lindquist, H.D. A single genotype
of Encephalitozoon intestinalis infects free-ranging gorillas and people sharing their habitats in Uganda. Parasitol. Res. 2002, 88,
926–931. [CrossRef] [PubMed]

6. Didier, E.S.; Stovall, M.E.; Green, L.C.; Brindley, P.J.; Sestak, K.; Didier, P.J. Epidemiology of microsporidiosis: Sources and modes
of transmission. Vet. Parasitol. 2004, 126, 145–166. [CrossRef] [PubMed]

7. Stentiford, G.D.; Becnel, J.J.; Weiss, L.M.; Keeling, P.J.; Didier, E.S.; Williams, B.A.P.; Bjornson, S.; Kent, M.L.; Freeman, M.A.;
Brown, M.J.F.; et al. Microsporidia—Emergent Pathogens in the Global Food Chain. Trends Parasitol. 2016, 32, 336–348. [CrossRef]

https://www.mdpi.com/article/10.3390/ani13111756/s1
https://www.mdpi.com/article/10.3390/ani13111756/s1
https://doi.org/10.1128/CMR.00010-20
https://www.ncbi.nlm.nih.gov/pubmed/34190570
https://doi.org/10.1016/j.pt.2019.04.004
https://www.ncbi.nlm.nih.gov/pubmed/31076351
https://doi.org/10.3390/ijerph18179333
https://doi.org/10.1128/JCM.41.9.4166-4171.2003
https://www.ncbi.nlm.nih.gov/pubmed/12958242
https://doi.org/10.1007/s00436-002-0693-5
https://www.ncbi.nlm.nih.gov/pubmed/12209334
https://doi.org/10.1016/j.vetpar.2004.09.006
https://www.ncbi.nlm.nih.gov/pubmed/15567583
https://doi.org/10.1016/j.pt.2015.12.004


Animals 2023, 13, 1756 10 of 12

8. Koehler, A.V.; Zhang, Y.; Gasser, R.B. A Perspective on the Molecular Identification, Classification, and Epidemiology of
Enterocytozoon bieneusi of Animals. Exp. Suppl. 2022, 114, 389–415.

9. Mathis, A.; Weber, R.; Deplazes, P. Zoonotic potential of the microsporidia. Clin. Microbiol. Rev. 2005, 18, 423–425. [CrossRef]
10. Gong, X.Q.; Xiao, X.; Gu, X.L.; Han, H.J.; Yu, X.J. Detection of Intestinal Parasites and Genetic Characterization of Enterocytozoon

bieneusi in Hedgehogs from China. Vector Borne Zoonotic Dis. 2021, 21, 63–66. [CrossRef]
11. Meng, X.; Chu, W.; Tang, Y.; Wang, W.; Chen, Y.; Li, N.; Feng, Y.; Xiao, L.; Guo, Y. High zoonotic potential and heavy environmental

burden of Cryptosporidium spp. and Enterocytozoon bieneusi in farmed and pet African pygmy hedgehogs (Atelerix albiventris). One
Health 2023, 16, 100532. [CrossRef]

12. Banco de Datos de Biodiversidad de Canarias (EXOS). Available online: https://www.biodiversidadcanarias.es/exos/especie/
V00149 (accessed on 22 March 2023).

13. Khaldi, M.; Ribas, A.; Barech, G.; Hugot, J.P.; Benyettou, M.; Albane, L.; Arrizabalaga, A.; Nicolas, V. Molecular evidence supports
recent anthropogenic introduction of the Algerian hedgehog Atelerix algirus in Spain, Balearic and Canary islands from North
Africa. Mammalia 2016, 80, 313–320. [CrossRef]

14. Boletín Oficial de Canarias (BOC). Available online: http://www.gobiernodecanarias.org/boc/2020/248/016.html (accessed on
22 March 2023).

15. Weber, R.; Bryan, R.T.; Owen, R.L.; Wilcox, C.M.; Gorelkin, L.; Visvesvara, G.S. Improved light-microscopical detection of
microsporidia spores in stool and duodenal aspirates. The Enteric Opportunistic Infections Working Group. N. Engl. J. Med. 1992,
326, 161–166. [CrossRef] [PubMed]

16. Katzwinkel-Wladarsch, S.; Lieb, M.; Helse, W.; Löscher, T.; Rinder, H. Direct amplification and species determination of
microsporidian DNA from stool specimens. Trop. Med. Int. Health 1996, 1, 373–378. [CrossRef]
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