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Simple Summary: This study aimed to improve animal activity recognition (AAR) using wearable
sensor data, which often faces challenges due to sensor variability and individual variability across
species. To address this problem, we adopted unsupervised domain adaptation (UDA) techniques
to improve the AAR performance. The main objective of UDA is to enable AAR models to perform
well on the newly enrolled unlabeled sensor datasets, even when they have different distributions
than the pre-trained labeled datasets. The experiments performed with the dog and horse movement
sensor datasets demonstrated that UDA significantly improved the classification performance by
mitigating sensor variability and individual characteristics such as size, gender, and species. These
findings highlight that UDA has practical applications in real-world scenarios where labeled data is
scarce in certain measurement environments.

Abstract: Animal activity recognition (AAR) using wearable sensor data has gained significant
attention due to its applications in monitoring and understanding animal behavior. However, two
major challenges hinder the development of robust AAR models: domain variability and the difficulty
of obtaining labeled datasets. To address this issue, this study intensively investigates the impact
of unsupervised domain adaptation (UDA) for AAR. We compared three distinct types of UDA
techniques: minimizing divergence-based, adversarial-based, and reconstruction-based approaches.
By leveraging UDA, AAR classifiers enable the model to learn domain-invariant features, allowing
classifiers trained on the source domain to perform well on the target domain without labels. We
evaluated the effectiveness of UDA techniques using dog movement sensor data and additional data
from horses. The application of UDA across sensor positions (neck and back), sizes (middle-sized
and large-sized), and gender (female and male) within the dog data, as well as across species (dog
and horses), exhibits significant improvements in the classification performance and reduced the
domain discrepancy. The results highlight the potential of UDA to mitigate the domain shift and
enhance AAR in various settings and for different animal species, providing valuable insights for
practical applications in real-world scenarios where labeled data is scarce.

Keywords: animal activity recognition; wearable devices; unsupervised domain adaptation
(UDA); deep adaptation network (DAN); domain adversarial neural network (DANN); deep
reconstruction-classification network (DRCN)

1. Introduction

Behavior recognition of animals has emerged as a promising method for estimating
their health status and monitoring abnormal behaviors. The widely-used types of sensors
in identifying animal behavior include cameras [1–3] and wearable devices [4–6]. Wearable
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devices, comprising accelerometers, gyroscopes, magnetometers, pressure sensors, and
global navigation satellite systems (GNSSs), have garnered increasing popularity in animal
monitoring applications. Wearables offer numerous advantages, such as their lightweight
nature, compact size, low power consumption, and ease of integration, making them
highly suitable for recognizing animal behaviors [7,8]. In this regard, wearable sensors
find applications in various contexts, including animal health and welfare [6,9], as well
as smart animal farming [10,11] for monitoring animal behavior. For instance, an ML-
based system was proposed to automatically classify behavioral patterns to estimate the
health status or to detect animal illness [6,9]. The abnormal behavior of animals was
identified as a means to enhance the economic efficiency of production and develop a smart
farming system [10,11]. Moreover, wearable sensors can be effectively combined with other
sensors, such as photoplethysmography, to measure cardiac diseases and other relevant
health metrics [12].

Despite the advantages of wearable sensors, animal activity recognition (AAR) using
inertial measurement units (IMUs), consisting of accelerometers and gyroscopes, encoun-
ters several obstacles such as different sensor positions, species variability, and annotation
scarcity. One of the challenges in Animal Activity Recognition (AAR) is the variability
introduced by different sensor positions. The back sensor is optimized for capturing larger
movements, whereas the neck sensor is designed to detect intricate movements [13,14].
This variability is further exacerbated by differences in experimental settings and label-
ing criteria, which can diverge significantly among researchers [13–15]. In recent years,
researchers have made efforts to tackle individual or sensor variability by leveraging state-
of-the-art machine learning techniques [16,17]. One approach is transfer learning, which
involves utilizing pre-trained knowledge constructed using one sensor for predicting AAR
with another sensor. For instance, Kleanthous et al. (2022) address sensor heterogeneity
and orientation placement in sheep activity recognition by utilizing convolutional neural
networks (CNN) combined with hand-crafted features [16]. This approach enhances model
generalization, especially concerning sensor orientation and position, and demonstrates
the potential of transfer learning for the reusability of pre-trained models on the unseen
data, achieving high accuracy rates across two different sensor types. While there have
been some investigations into this aspect, comprehensive research remains limited.

The diversity in animal behavior, influenced by factors such as species, breeds, and
sizes, presents a challenge in developing global models that can effectively generalize
across different individuals or species [18–22]. A study by Ferdinandy et al. (2020) high-
lighted this challenge, reporting that cross-size validation, which categorizes dogs into
small-sized (<10 kg), middle-sized (10–25 kg), and large-sized (>25 kg) groups, yielded
a lower classification performance compared to the within-size validation settings [15].
Furthermore, the cross-species validation conducted by predicting wolves’ activities using
an AAR model developed with the dog activity data underscores the variations. These
variations can arise due to behavioral differences between breeds and species, as well as
distinct body structures [15,18–20,22]. Despite the evident challenges, there remains a lack
of studies addressing these issues in AAR.

The scarcity of annotation is an additional constraint in AAR. In most studies and
public datasets, animal activities are annotated via the visual inspection of animal behaviors
in video recordings, often requiring substantial human resources and potentially raising pri-
vacy concerns [5,17,21,22]. Federated learning, as proposed by Mao et al. (2022), provides a
mechanism to update a global server model by aggregating only local parameters, elimi-
nating the need to collect the raw data from local devices [17]. However, this approach still
requires labeled data for each class to fine-tune the global model and customize individual
models. Acquiring sufficient data for deep learning models is time-consuming, particularly
given the unpredictable activities exhibited by animals, even those that are trained, such as
dogs [13–15]. Consequently, the data collection and labeling process demands substantial
domain knowledge, time, and resources, leading to limitations in the availability of large
labeled datasets for supervised learning approaches [22]. To address these limitations
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and reduce the dependency on the labeled data, the adoption of unsupervised methods,
such as domain adaptation methods, becomes more beneficial than traditional supervised
approaches in enhancing AAR.

Unsupervised domain adaptation (UDA), a form of transfer learning, is a technique
that reduces the variability between the labeled source data and the unlabeled target data
in an unsupervised manner [23]. In human activity recognition (HAR), extensive research
has been conducted to address the variability arising from diverse sensor placements by
employing UDA techniques. For instance, Khan et al. (2018) introduced the HDCNN
model, a transductive transfer learning approach tailored for convolutional neural net-
works, to facilitate HAR scalability without the need for extensive labeled data in the new
domains [24]. To mitigate the challenges posed by sensor position variability in HAR, their
approach demonstrated robustness in maintaining high accuracy across varying on-body
sensor placements without necessitating extensive labeled data in the new domains. In
addition, Sanabria et al. (2021) introduced ContrasGAN, an unsupervised domain adapta-
tion technique for HAR that employs bi-directional generative adversarial networks and
contrastive learning to address challenges in sensor data labeling [25]. The method was
evaluated under various conditions, including cross-sensor transfer learning, demonstrat-
ing its effectiveness in adapting activity models across different sensor positions with a
superior performance compared to the existing techniques. Meanwhile, Chang et al. (2020)
conducted an in-depth exploration of unsupervised domain adaptation techniques in the
context of sensor placement variability in HAR, highlighting the challenges in ensuring
robustness against real-world heterogeneities in the sensor data [26]. While numerous stud-
ies in HAR have utilized unsupervised methods to circumvent the annotation challenge,
AAR still faces this limitation, highlighting the imperative for further research in this area.

In this study, we employ unsupervised domain adaptation (UDA) techniques to ad-
dress the challenges of domain variability in AAR without necessitating additional labeled
data for new datasets. We employed three distinct types of UDA techniques, which have
been widely adopted in the previous HAR studies. We utilized two public AAR datasets
to explore the impact of UDA on domain variability between sensor positions, individual
characteristics, and species. For the sensor position, we conducted domain adaptation
between the neck and back sensors to reduce the sensor sensitivity depending on changes in
the sensor position. We hypothesized that the activity patterns of dogs vary depending on
the size (middle-sized and large-sized) and gender. Thus, to investigate the impact of these
attributes, we categorized dogs into two groups, and these were used as the source and
target domain, respectively. In the context of size, we segregated dogs into middle-sized
and large-sized groups based on their weight. For gender exploration, we divided the
dogs into male and female groups. Subsequently, we compared the classification results
of three UDA techniques with those obtained when no domain adaptation technique was
applied. In addition, we also evaluated inter-species variability by adapting the horse
activity domain to the dog activity domain. In summary, our contribution can be described
as follows:

1. UDA techniques demonstrate the potential to enhance the AAR performance by
mitigating data heterogeneity arising from variations in individual behaviors and
sensor locations.

2. UDA techniques exhibit versatility by being applicable to different mammal species,
demonstrating their adaptability and applicability in the field of AAR.

3. We present empirical evidence that the influence of minimizing divergence-based,
adversarial-based, and reconstruction-based UDA varies depending on the specific
domain under consideration.

2. Materials and Methods
2.1. Datasets and Preprocessing

The public dataset of movement sensor data collected from 45 middle- or large-sized
dogs was adopted for this study [13]. Their average age was 4.84 years (16–116 months) and
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the average weight was 24 kg (13–41 kg). The six-degree-of-freedom inertial measurement
unit (IMU) sensors consisting of a 3-axis accelerometer and a 3-axis gyroscope (ActiGraph
GT9X Link) were sampled at 100 Hz. The sensors were attached to the neck collar and
the back belt of the harness to measure the dog’s behavior. The trained dogs were asked
to perform three static tasks (sitting, standing, and lying down) and four dynamic tasks
(trotting, walking, playing, and sniffing). They annotated each behavior on the movement
sensor data by observing two videos recorded during the experiment. Only longer than
one-second unambiguous and voluntary behaviors were annotated for extracting distinct
canine behavioral patterns using movement sensors. In this study, we utilized six activity
classes (lying on the chest, sitting, standing, walking, trotting, and sniffing) that contain a
sufficient amount of data to build the AAR models. Consistent with the original study, each
of the six IMU signals (3-axis accelerometer and 3-axis gyroscope signals) were segmented
into two-second windows with a 50% overlap. Epochs shorter than 1 s and those with
multi-label annotations were excluded from our analysis. The demographics of dogs and
the amount of movement sensor data for each activity are described in Table 1.

Table 1. Description of canine movement dataset used for unsupervised domain adaptation.

Size Gender
Total

Middle-Sized Large-Sized Male Female

Demographics
of Dogs

Number of Dogs (Male) 23 (10) 22 (12) 22 23 45 (22)
Age (Months) 61.3 54.6 55.64 60.35 58
Weight (kg) 18.7 30.0 25 23.48 24.0

Amount of
Samples

Lying on chest 2327 1023 1418 1932 3350
Sitting 2273 255 1426 1102 2528

Standing 1443 638 1245 836 2081
Walking 2953 1931 2316 2568 4884
Trotting 3651 1737 2534 2854 5388
Sniffing 4926 3483 4190 4219 8409

Total 17,563 9067 13,129 13,511 26,640

Based on the experimental paradigm and the canine demographic of this dataset,
we devised three scenarios to evaluate the UDA: (1) between the neck and back sensors,
(2) between middle-sized and large-sized dogs, and (3) between male and female dogs. For
the division of middle-sized and large-sized dogs by weight, we employed weight as the
criterion, where dogs with a weight < 25 kg were categorized as middle-sized, and dogs
with a weight ≥ 25 kg were considered large-sized [27,28].

To evaluate the cross-species adaptability of our proposed approach, we further
utilized another animal movement database collected from horses [29]. This database
contains 6-axis IMU data with a sampling rate of 100 Hz, similar to the dog database.
In previous studies, although 17 different activities of 18 individual horses were labeled,
only six classes from six individual horses were used due to data scarcity [17,30]. For the
evaluation of UDA in this study, three classes (standing, walking, and trotting) from six
horses were selected, as these activities commonly appeared in both the dog and horse
databases. The total number of samples is 5374, 3353, and 27,210 for standing, walking,
and trotting, respectively.

2.2. Proposed Framework
2.2.1. Overview

To mitigate the heterogeneity between different domains in AAR, UDA adopts a
cooperative training approach that leverages both the labeled data from the source domain
and the unlabeled data from the target domain. For instance, if a dataset with labels is given,
it plays a role as the source domain, while a newly acquired dataset without labels becomes
the target domain. As depicted in Figure 1, UDA comprises residual networks (ResNet)
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and adversarial networks. The ResNet is widely recognized for its feature extraction
capabilities, excelling not only in image classification but also in time-series data analysis.
It is utilized for both the source and target domains, with their weights shared. Next,
UDA techniques are employed to extract domain-invariant features from both the source
and target domain. To examine the impact of UDA, the classification results of the target
dataset after the implementation of UDA techniques were compared with those without
UDA (source only). We employed three well-established UDA techniques that have been
widely adopted in previous studies. These techniques include the deep adaptation network
(DAN) for minimizing the divergence-based approach, the domain adversarial neural
network (DANN) for an adversarial-based approach, and deep reconstruction-classification
networks (DRCN) for a reconstruction-based approach.
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Figure 1. Overview of unsupervised domain adaptation framework (UDA). First, labeled source data
was utilized to train residual network (ResNet) for extracting features for animal activity recognition.
Then, unlabeled target data was used to predict animal activities using the model trained with source
data (source only). To investigate the impact of UDA techniques that mitigate domain shift issues,
the target data was evaluated after the implementation of three UDA techniques: deep adaptation
network (DAN), domain adversarial neural network (DANN), and deep reconstruction-classification
networks (DRCN).

2.2.2. Unsupervised Domain Adaptation

Domain adaptation aims to improve the machine learning performance by alleviating
the domain shift problem between the source and target domains, which exhibit signifi-
cantly different data distributions [31]. This approach proves valuable in real-world applica-
tions where sufficient labeled data is available in one domain, but only unlabeled data exists
in other domains. Given its nature as an unsupervised learning method, domain adaptation
is widely applied in computer vision [32,33] and natural language processing [34].

In activity recognition using wearable devices, domain specificity is highly influenced
due to sensor variability [26,35]. Furthermore, AAR faces significant challenges related to
domain shift problems, primarily caused by individual variability arising from factors such
as size, species, and measurement environments [8,16,19]. In addition, labeling animal
activities with real-time sensor data poses considerable difficulty. Thus, unsupervised
domain adaptation methods, where the label of the target domain is not required for
learning, offer a promising solution to address these limitations and enable effective AAR
in diverse settings.

Domain-Invariant Feature Learning (DIFL) is a widely employed domain adapta-
tion methodology that has been applied across various fields. The primary objective of
DIFL is to extract features that are both predictive and invariant to domain differences,
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utilizing methodologies such as minimizing divergence, adversarial learning, and recon-
struction [23]. In this study, to identify the most suitable domain adaptation approach
for AAR, we compared three types of DIFL methodologies: DAN for minimizing the
divergence-based approach, DANN for an adversarial-based approach, and DRCN for a
reconstruction-based approach.

Methods based on minimizing divergence aim to reduce the variance between the
source and target domains. The DAN [36] employs the multiple kernel variant of the maxi-
mum mean discrepancy (MK-MMD) to compute the variance between the two domains
(Figure 2A). By minimizing this variance while ensuring accurate class predictions in the
source domain, DAN explicitly reduces the domain differences, enhancing the transfer-
ability of features in task-specific layers. The MK-MMD, in this process, explicitly aligns
the hidden state representations from different domains [36]. The loss function for DAN is
given by:

LossDAN = CE( f (xs), ys) + λ∑n D( f n(xs), f n(xt)), (1)

where xs and xt are the inputs from the source and target domains, ys is the label of
source domains, f n are the hidden states of nth layer for the classifiers, CE is the cross-
entropy, respectively. The function D represents MK-MMD and the parameter λ is the
trade-off parameter.
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Figure 2. Model architecture of three different types of unsupervised domain adaptation. (A) Deep
adaptation network (DAN) is a minimizing divergence-based approach, (B) domain adversarial
neural network (DANN) is an adversarial-based approach, and (C) deep reconstruction-classification
networks (DRCN) are a reconstruction-based approach. FC: fully-connected layer, CE: cross entropy,
MK-MDD: multiple kernel variant of maximum mean discrepancy, GRL: gradient reversal layer, BCE:
binary cross entropy.

Next, the DANN [37] is an adversarial-based domain adaptation method renowned
for its superior performance across diverse domains and tasks, especially those involving
the time series data [38,39]. DANN employs a gradient reversal layer (GRL) to discern
whether the current data belongs to the source or target domain (Figure 2B). The feature
extractor is trained to ensure that this distinction is indistinguishable, thereby facilitating
the learning of domain-invariant features. The GRL negates the gradient of the domain
classifier during backpropagation, making it challenging to determine whether the training
data belongs to the source or target. The loss function for DANN is given by:

LossDANN = CE( f (xs), ys) + λ(BCE(g(xs), ds) + BCE(g(xt), dt)), (2)
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where functions f and g denote the class classifier and the domain classifier, while ds
and dt are the domain labels for the source and target domains, and BCE is the binary
cross-entropy respectively.

Last, reconstruction-based methods aim to achieve domain adaptation by learning
representations that can accurately classify the source domain and effectively reconstruct
the source or target domain. The DRCN [40] accomplishes this by classifying the source
domain while reconstructing the target domain (Figure 2C). The loss function for DRCN is
given by:

LossDRCN = CE( f (xs), ys) + λ(MSE(h(xt), xt)), (3)

where h is the decoder for reconstructing the target domain data and MSE denotes a mean
squared error.

For a comparative performance evaluation of the three DA techniques, we standard-
ized the hyperparameters. The hidden states of the fully connected layers for DAN, DANN,
and DRCN were consistently set to 128, 64, and the number of classes, respectively. The
reconstruction pipeline of DRCN was symmetrically constructed using transposed convo-
lution layers, which is consistent with the original paper [40].

2.2.3. Residual Neural Network (ResNet)

The results of a previous study [37] have shown that the classification performance
of domain adaptation highly depends on the performance of the feature extractor. We
propose a feature extractor based on ResNet [41,42] to achieve a good performance on
the time series data. ResNet was originally designed as an architecture for the image
classification task, and it has achieved a high performance in image classification by pre-
venting the gradient vanishing that occurs when layers are deeply stacked via residual
connections. However, previous research [42,43] has validated that ResNet-based archi-
tecture outperforms equally well on time series classification tasks, including wearable
sensor-based activity recognition applications. [44–46]. The HAR studies that adopt UDA
utilized CNNs as feature extractors because CNNs are computationally more efficient than
the recurrent neural networks [24,26]. This ensures the model’s capability not only within
our experimental setting but also in other real-world applications.

In the feature extractor, we implemented a residual block which set up the kernel size
{(1, 7), (1, 5), (1, 3)}, and applied batch normalization and Leaky ReLU as the activation
functions. We stacked three residual blocks with the number of kernels {64, 128, 128}. The
output of the last residual block is applied to the global average pooling to reduce the
dimension of the hidden state. In the label classifier, we used two fully connected layers on
the hidden state {128, 64} with batch normalization, leaky ReLU, and a dropout layer. The
hidden state of the final fully connected layer is the number of classes.

2.3. Experimental Setting

All experiments were conducted in the local environment, employing a 12th Gen
Intel® Core™ i5-12400F processor and an NVIDIA GeForce RTX 3070 Ti. To implement our
proposed model, PyTorch was utilized with Python 3.9, and for reproducibility, random
states were fixed. We employed the Adam optimizer with a learning rate of 0.00001 and a
weight decay of 0.0001 while setting the batch size to 256, dropout to 0.2, and λ to 1.0.

For training and evaluating each UDA model, the 2 s segments were partitioned into
training and test sets with an 8:2 ratio for each UDA model. Additionally, the training
set was further divided into training and validation sets with a ratio of 3:1. To assess the
entire dataset, the five-fold cross-validation procedure was performed by repeating this
procedure five times. In the within-setting and without-UDA setting, we selected the best
model based on its accuracy in the source validation set and evaluated its performance
on the target test set. In the domain adaptation setting, we reported the best performance
achieved on the target test set during 100 epochs.
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To compare the classification performance of each UDA method, AAR was evaluated
using accuracy, which measures the overall performance, and the F1 score, which considers
both precision and recall, as defined with the following equations:

Accuracy =
TP + TN

TP + FP + TN + FN
, (4)

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F1− score =
2× Recall× Precision

Recall + Precision
, (7)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives,
and false negatives, respectively.

3. Results
3.1. Classification Results

Using the dog movement dataset [13], we evaluated to test the hypothesis that UDA
can alleviate the domain shift problem caused by the sensor position (back (B) vs. neck
(N)) and canine characteristics (middle-sized (MS) vs. large-size (LS) and male (M) vs.
female (F)). Table 2 presents the classification performance of the unlabeled data in the
target domain using the trained source model with and without the domain adaptation
technique. The within-domain performance by predicting the source data are also presented
in Table A1 in Appendix A. The results show that applying domain adaptation to mitigate
the sensor variability improved the classification performance over not using UDA for
all three DIFL methods. Specifically, DAN exhibited the most significant enhancement in
the classification performance. When using back sensors as the source domain and neck
sensors as the target domain (B→N), both classification accuracy and the F1 score showed
enhancements of 16.62% (60.88%→77.50%) and 17.10% (45.85%→62.95%), respectively.
Similarly, in the N→B scenario, DAN improved the accuracy by 14.41% (65.74%→80.15%)
and the F1 score by 23.11% (46.44%→69.55%).

Table 2. Comparison of classification performance depending on the presence of domain adaptation.
The numbers in bold represent the highest classification performance achieved among classifier
without any domain adaptation technique and three classifiers employing various UDA methods.
DAN: Deep Adaptation Network, DANN: Domain-Adversarial Training of Neural Networks, DRCN:
Deep Reconstruction-Classification Networks, S: Source, T: Target, B: Back sensor, N: Neck sensor,
MS: Middle-sized, LS: Large-sized, M: Male, F: Female, D: Dog, H: Horse.

Adapted
Domain

Sensor
Positions S→T

Source Only DAN DANN DRCN

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Sensors
B→N 0.6088 0.4585 0.7750 0.6295 0.6961 0.5420 0.6947 0.5269
N→B 0.6574 0.4644 0.8015 0.6955 0.7640 0.6353 0.7616 0.6562

Size
Back

MS→LS 0.8771 0.7251 0.8532 0.7364 0.8788 0.7559 0.8890 0.7826
LS→MS 0.8392 0.7874 0.8032 0.7267 0.8433 0.7891 0.8387 0.7800

Neck
MS→LS 0.8496 0.6435 0.8352 0.6487 0.8476 0.6476 0.8592 0.6741
LS→MS 0.7655 0.6465 0.7621 0.6291 0.7627 0.6244 0.7531 0.6027

Gender
Back

M→F 0.8866 0.8122 0.9269 0.8805 0.9297 0.8887 0.9274 0.8845
F→M 0.8407 0.7547 0.8832 0.8271 0.9007 0.8570 0.8881 0.8376

Neck
M→F 0.7968 0.6419 0.8073 0.6623 0.8015 0.6438 0.8015 0.6505
F→M 0.7705 0.6219 0.8174 0.7012 0.8282 0.7190 0.8104 0.6828

Species Neck
D→H 0.6386 0.5033 0.7339 0.6234 0.7371 0.6578 0.6854 0.6467
H→D 0.7915 0.7613 0.7797 0.7951 0.8600 0.8558 0.8338 0.8260
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Figure 3 depicts the confusion matrix illustrating the classification results for six AAR
classes. The left insets (Figure 3A,C) show the classification results for the source only case,
while the right insets (Figure 3B,D) show the results after applying the domain adaptation
with DAN, which exhibited the highest classification performance. Across both sensors,
DAN enhanced the recall and precision for all six AAR classes, leading to significant
increases in the F1 score. The activity that was consistently well classified was sniffing,
regardless of the application of domain adaptation. On the other hand, static movements,
including lying on the chest, sitting, and standing, exhibited a poor classification perfor-
mance due to their similarity. Frequent misclassification between walking and trotting were
observed in the B→N scenario. The application of DAN mitigated the misclassification
issue occurring from the similarity between these activities. In the B→N scenario, recall and
precision for predicting the walking activity increased by 17.08% and 40.93%, respectively.
While the classification performance of the three static movements also improved after
applying DANN, the problem of misclassification among the static activities remained
a challenge.

Next, we experimented to verify the feasibility of domain adaptation between the
sizes and genders. The overall classification performance using the back sensor was higher
than when using the neck sensor, regardless of applying the domain adaptation. We found
that the application of domain adaptation led to improvements in the classification per-
formance in all cases. A greater improvement was observed when the domain adaptation
was performed concerning gender compared to size. In particular, when using the back
sensor, applying DANN for domain adaptation between males and females resulted in
an approximate 7.65% increase (81.22%→88.87%) in the F1 score for the M→F scenario
and a 10.23% increase (75.47%→85.70%) in the F1 score for the F→M scenario. Similarly,
when using the neck sensor, DANN demonstrated the most improved classification perfor-
mance, with a 9.71% increase (62.19%→71.90%) in the F1 score in the F→M scenario. In
the M→F scenario, however, DAN achieved the highest classification performance, but
the F1 score only exhibited slight improvements, surpassing source-only and DANN by
2.04% and 1.85%, respectively. Figure 4 illustrates that the classification performance for
each activity followed a similar trend as that of the sensor adaptation classifiers, with large
misclassifications between static activities.

Meanwhile, for both the back and neck sensors, there was no consistent result with
regard to the domain adaptation techniques. In the MS→LS scenario, DRCN exhibited
the best classification performance, resulting in a 5.75% increase and a 3.06% increase
in the F1 score when utilizing the back and neck sensors, respectively. However, in the
LS→MS scenario, most UDA techniques failed to achieve significant improvements in
the classification performance. Specifically, when utilizing the neck sensors, the highest
accuracy was observed when domain adaptation was not applied (source only).

To investigate the potential of domain adaptation in mitigating domain shifts between
species, we incorporated the movement sensor data collected from horses in addition to the
dog dataset. Since the animal activity classes differed between the horse and dog datasets,
we focused on the three common classes: standing, walking, and trotting. Additionally, as
horse activities were only measured on the neck, we performed the comparison using the
neck sensor data. In both scenarios involving the use of horse data as the target domain
(D→H) and the source domain (H→D), DANN consistently resulted in the most substantial
improvements in the classification performance. In the D→H scenario, the application
of DANN resulted in an F1 score increase of 15.45% (50.33%→65.78%). Similarly, when
employing DANN for H→D, it led to an enhanced performance, showing an F1 score
increase of 9.45% (76.13%→85.58%). Notably, despite the application of domain adaptation
techniques, the classification performance for the walking activity was lower in the D→H
scenario compared to that in the H→D scenario (Figure 5). These results demonstrate
that when predicting the dog movement data using the classification model’s trained
horse movement data (H→D), the classification performance was higher compared to the
D→H scenario.
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Figure 3. Confusion matrix of AAR classification depending on domain adaptation between neck
and back sensors. The left insets (A,B) represent classification results without applying domain
adaptation (source-only) in the neck→back scenario and the back→neck scenario, respectively. The
right insets (C,D) represent classification results after applying deep adaptation network (DAN)
in the neck→back scenario and the back→neck scenario, respectively. The deeper blue signifies a
greater number of true positives, indicating higher classification performance for each class.
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Figure 4. Confusion matrix of AAR classification depending on domain adaptation for gender. The
left insets (A,B) represent classification results in the female→male scenario with back sensors, where
domain adaptation was not applied (source-only). The right insets (C,D) represent classification
results in the female→male scenario with neck sensors, where domain adversarial neural network
(DANN) was employed. The deeper blue signifies a greater number of true positives, indicating
higher classification performance for each class.
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Figure 5. Confusion matrix of AAR classification depending on domain adaptation for species. The
left insets (A,B) represent classification results in the dog→horse scenario and the horse→dog
scenario, respectively, without the application of domain adaptation (source-only). The right
insets (C,D) represent classification results in the dog→horse scenario and the horse→dog scenario,
respectively, after the application of domain adversarial neural network (DANN). The deeper blue
signifies a greater number of true positives, indicating higher classification performance for each class.

3.2. Latent Space Analysis

The influence of domain adaptation on the classification performance was further
examined qualitatively using t-distributed stochastic neighbor embedding (t-SNE), a widely
adopted nonlinear dimensionality reduction technique for visualizing high-dimensional
data in a low-dimensional space [47]. It constructs a joint probability distribution of
high-dimensional vectors, assigning higher probabilities to similar vectors and lower prob-
abilities to dissimilar vectors. Subsequently, it establishes a similar probability distribution
in the low-dimensional map by minimizing the Kullback–Leibler divergence between the
joint probability distributions of the low-dimensional and high-dimensional space. To
reduce the high-dimensional latent vectors, which were used for predicting the activity
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labels, into a two-dimensional space, the principal component analysis (PCA) was applied
to the latent vectors just before the softmax layer.

Figure 6 demonstrates the t-SNE visualization of feature vectors from both the source
domain (represented as circles) and the target domain (represented as triangles). In the
scenario where the back sensors were used to train the AAR classifier and the neck sensors
were used for prediction (B→N), the features of the back and neck sensors were noticeably
separated for both the walking (represented with purple color) and trotting class (repre-
sented with blue color), as shown in the left inset of Figure 6A. On the other hand, the
application of DAN aligned the domain-shifted features of these classes, resulting in a
16.87% improvement in the F1 score, as shown in the right inset of Figure 6B. Additionally,
a considerable number of neck sensor features in the standing class (represented as green
triangle) were separated from the cluster of back sensor features (represented as green
circle) without employing any domain adaptation techniques. The domain-shift problems
between the source and target domain were mitigated after the implementation of DAN,
leading to an improved classification performance. Nevertheless, there remains a consider-
able number of misclassifications between the standing and other static classes, namely,
lying on the chest and sitting.
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Domain adaptation with respect to the size did not result in a significant improvement
of the classification performance since non-static activities including walking, trotting,
and sniffing were well-classified even before the implementation of domain adaptation
techniques. As shown in Figure 6B, the DRCN, which increased the F1 score by 1.34%, did
not resolve the misclassification issue between static activities. This is primarily due to
the low classification performance between static movements of the source model. In the
scenario of adapting the female domain to the male domain, DANN, which led to a 9.73%
improvement in the F1 score, alleviated the domain-shift issue within the static activity
classes. In Figure 6C, the t-SNE visualization demonstrates this issue, where certain portions
of lying on the chest (red triangle), standing (green triangle), and sitting (orange triangle)
classes in the target domain were initially mapped closely to the sniffing (yellow circle)
or walking activity (purple circle) classes in the source domain prior to the application
of domain adaptation. Applying DANN provides a better feature representation of these
classes by aligning the target domain data with the source domain data, resulting in an
enhanced classification performance.

In the scenario of AAR classification across species, domain-shift problems became
more conspicuous. In the left inset of Figure 7A, before the implementation of domain
adaption techniques, it was observed that features in the source domain, depicted as circles,
were positioned at the upper portion, while those in the target domain, depicted as triangles,
were positioned at the lower portion. Additionally, the standing and walking samples in the
target domain exhibited a noticeable segregation in both Figure 7A,B. These observations
could be associated with a poor classification performance, as a majority of samples from
the standing and trotting classes were misclassified as a walking class. As shown in the
right insets of Figure 7, the application of DANN mitigates the segregation within the same
classes by aligning the target domain with the source domain, increasing the F1 score by
13.87% and 9.27% for the dog→horse and horse→dog scenarios, respectively.
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Animals 2023, 13, 3276 15 of 20

4. Discussion

This study aims to explore the influence of addressing domain variability, commonly
encountered in AAR, by leveraging three types of UDA techniques, without the need for
additional labeled data in novel datasets. As a result, the domain adaptation techniques
demonstrated its potential to enhance the AAR performance by mitigating data hetero-
geneity arising from variations in individual behaviors and sensor locations. When dealing
with newly enrolled individuals or species for efficient AAR, the importance of global
models becomes evident. For instance, canine behaviors may differ based on factors such
as weight, gender, and age [18–20]. UDA techniques prove to be particularly valuable in
real-world applications where manual labeling is challenging, as it does not require any
labels in novel datasets, simplifying the training of personalized classifiers. The findings of
this study demonstrate the versatility and adaptability of UDA in the field of AAR, as it
can be applied to diverse individuals and species.

As hypothesized, variations in canine characteristics can influence activity classifica-
tion, attributed to the differences in sensor locations, velocities, behavioral patterns, and
anatomical structures [13,15,18–20]. We found that UDA effectively performed across all
domains, encompassing sensor locations, gender, and size (Table 2). We examined the
impact of canine characteristics on the success of domain adaptation by assessing the
domain adaptation performance that appears differently.

UDA had a significant impact on reducing sensor variability, particularly when em-
ploying DAN, which is a minimizing divergence-based UDA technique. In the field of
human activity recognition, domain adaptation techniques have been employed to apply
pre-trained classifiers from one wearable device (e.g., smartphone) to predict activities
using other wearable devices (e.g., smartwatches) [24–26]. Specifically, in a comparative
study examining the influence of various UDA approaches on sensor heterogeneity in
HAR, Chang et al. (2020) reported that feature matching, a minimizing divergence-based
approach, exhibited a more significant enhancement of the classification performance com-
pared to confusion maximization, an adversarial-based approach [26]. Similarly, we found
the most significant improvement in the classification performance within the DAN results
compared to DANN and DRCN in the context of domain adaptation between the back and
neck sensors.

Our results imply that UDA can be leveraged in AAR when novel wearable devices
are introduced in different environments. This versatility is crucial in real-world scenarios,
as AAR has garnered increased attention due to concerns for animal welfare and the need
to enhance livestock productivity, while lots of commercial wearable devices have been
developed. Moreover, these sensors can be attached to various body parts depending on the
purpose of the measurement, environmental conditions, and animal characteristics. Neck
sensors are widely used in AAR due to their ease of attachment to animals [4–10,13–17].
However, neck sensors have shown a lower classification performance due to orientation
shifts caused by the tightness of sensors [13,14,48]. Our findings in Figures 3 and 4 are
consistent with previous studies, which also reported lower classification results when
predicting animal activities with the neck sensor data. One of the primary reasons for
the decreased performance with the neck sensors in our study lies in the misclassifica-
tion between static behaviors, namely standing, sitting, and lying on the chest. These
behaviors share high interactivity similarity as they provide limited information, which
is primarily related to sensor position, and possibly minor details regarding velocity and
acceleration. The individual variability in the sensor position, which is attributed to size
and anatomical structure differences, could exacerbate these errors. On the other hand, the
back sensor proves to be more suitable for capturing these static behaviors because of its
stability, but the neck sensor remains crucial since it is commonly used in practical AAR
applications. For example, for capturing various activities of animals, the movement of
the neck becomes more important, particularly concerning behaviors such as eating and
drinking behavior [13].
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In the domain adaptation concerning gender and size, we observed a more pronounced
influence of domain adaptation in cases involving gender compared to those involving
size. Previous studies have reported behavioral differences between male and female dogs
linked to factors such as aggressiveness, sociability, and anatomical structure [18]. However,
there was no study on AAR related to this aspect of our knowledge. Given that there exists
numerous studies utilizing the IMU sensor data for gender classification in human activity
recognition [49,50], our finding presents a novel perspective by examining the differences
in activity patterns between male and female dogs. In contrast to the results observed in
sensor adaptation, DANN resulted in the most significant improvement when compared to
DAN and DRCN.

On the other hand, the canine size was not notably affected by the use of UDA. In
general, dog breeds can be categorized into small-sized, medium-sized, and large-sized
based on their weights, although there are controversies regarding the global standard.
This categorization of dogs remains relevant due to its impact on behavior recognition. For
example, some studies have indicated that large-sized dogs exhibit distinct behavior pat-
terns attributed to factors such as aggressiveness and sociability [18,19]. Although DRCN
demonstrated an improved classification performance in the middle-sized→large-sized
scenario, the enhancement was not significant compared to the source-only cases and other
UDA techniques. Furthermore, in the large-sized→middle-sized scenario, the classifica-
tion performance of the source-only case, without any application of UDA techniques,
surpassed that of the use of UDA techniques. This result can be attributed to the database
being collected from only middle-sized and large-sized dogs, aiming to achieve a more
homologous dataset with reduced variability. However, the use of domain adaptation
would be more valuable when collecting movement datasets of small-sized dogs, as it
would help bridge the gap caused by the differences in size and the behavioral patterns
between small-sized and large-sized dogs. Ferdinandy et al. (2020) reported that individual
variability depending on the size (small-sized, medium-sized, and large-sized) significantly
influences the AAR performance [15]. Considering their work on cross-species using the
movement sensor data of wolves, it would be appropriate to apply and evaluate our ap-
proach. Unfortunately, while they publicly provided the dataset, we could not train UDA
models using this data due to the data scarcity and class imbalance. Another publicly avail-
able dataset was provided by Marcato et al. (2023), where they evaluated the inter-breed
AAR model by collecting data from Labrador Retrievers, Golden Retrievers, and their
crosses [14]. However, the performance of intra-breed and inter-breed classification did not
show significant differences since these breeds had similar sizes and traits. Furthermore,
we could not apply UDA techniques concerning age, despite its potential high influence
on behavioral patterns, as the database only provides data from adult dogs. For example,
puppy and juvenile canine behavior can differ according to their development stages, while
senior canine behavior can differ due to aging [51,52].

The domain adaptation between the horse activity dataset and the dog activity dataset
demonstrated that UDA can alleviate the domain-shift issue in inter-species AAR. Specifi-
cally, DANN exhibited the most significant enhancement in the classification performance,
increasing the F1 score by 15.45% in the dog→horse scenario and 9.45% in the horse→dog
scenario, respectively. Interestingly, similar to the results in gender adaptation, DANN,
an adversarial-based UDA, outperformed DAN, a minimizing divergence-based one that
showed the most substantial impact on sensor adaptation. In the HAR study conducted
by Chang et al. (2020), adversarial-based UDA outperformed other UDA techniques in
specific experimental settings, such as UDA between the foot and wrist wearable sensors,
while a minimizing divergence-based UDA exhibited the most pronounced impact in the
majority of sensor adaptation scenarios [26]. The authors suggest a plausible interpretation
that adversarial-based UDA techniques are effective when dealing with big domain shift
issues. Similarly, in our study, which involves big domain shifts between horse and dog
datasets, encompassing interspecies differences and varying experimental settings, we
found that DANN was more effective in alleviating these shifts compared to DAN.
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Although the domain shift issues involving sensor positions, canine characteristics,
and interspecies variability were mitigated with the adoption of domain adaptation tech-
niques, there are some challenges in the application of UDA in AAR: the low classification
performance of static movements. As shown in Figure 6, the static movements including
lying on the chest, sitting, and standing were indistinguishable with t-SNE visualization.
Although the implementation of UDA techniques lessened this issue by mapping the
target domain to the source domain, it could not resolve the misclassification between
static movements.

It is important to note that the success of the domain adaptation technique heavily
relies on the performance of the feature extractor in the source domain. Since the main
idea behind this technique involves adversarial learning to confuse the models between
the source and target domain in an unsupervised manner, it does not inherently extract
novel information from the novel datasets. This limitation has been observed in previous
studies that exhibited considerable performance differences between using AlexNet and
ResNet as feature extractors in CDAN [37]. This highlights the significance of utilizing a fea-
ture extractor capable of effectively distinguishing static movements. While conventional
knowledge-based feature extraction methods, including temporal and statistical features,
have provided good results, they often depend on researcher-defined features, making
them less suitable for generalized models. In the context of AAR, where diverse domains
are encountered, automatic feature extraction is more suitable for adapting to novel and
unsupervised datasets. Therefore, we opted for an end-to-end model for our framework
because it allows for adaptive feature extraction from novel measurement settings, facili-
tating the ease of implementation and flexibility. For this study, we employed ResNet, a
type of CNN that is well-suited for time series data and is commonly used as a standard
model, as our feature extractor [42]. However, it is essential to further improve the feature
extractor in UDA to construct a robust model. Another possible solution for improving the
classification performance of static movements is to build multimodal models combined
with different sensors. For instance, computer vision techniques can be fusioned because
the postures of animals can be more distinguishable with camera-based modality compared
to wearable devices [22,53].

Data scarcity remains a significant factor limiting the use of deep learning methods in
AAR. In the domain adaptation regarding canine size and species, a lower classification
performance was observed when the number of samples in the source domain was limited.
Specifically, the large-sized dog group, which exhibited no influence of any UDA techniques,
had a substantially smaller number of samples for the static movements (lying on the
chest, sitting, and standing) compared to those in the middle-sized dog group (Table 1).
Similarly, when dog activities is considered the source model, which contained fewer
samples compared to horse activities, a notable amount of misclassification persisted
within the walking class, even with the implementation of DANN (Figure 5). Therefore, it is
necessary to acquire large datasets encompassing broader ranges of activities, populations,
and species with a sufficient number of samples to enable the development of a more
generalized model.

With the advancement of digital technology and the growth of the pet market, wear-
able devices have emerged to enhance productivity and animal welfare. Therefore, it is
anticipated that more public datasets will become available, encompassing various species
and sensors in diverse environments. In this context, UDA would prove more beneficial in
constructing a generalized AAR model and facilitating a better understanding of behavioral
patterns to enhance animal welfare and productivity. In future studies, it is essential to
conduct empirical studies that assess the practical applicability of UDA in online prediction
for diverse livestock using a source model constructed from labeled offline datasets.

5. Conclusions

This study explored the effectiveness of unsupervised domain adaptation in mitigat-
ing the domain shift problem in animal activity recognition using wearable sensor data.



Animals 2023, 13, 3276 18 of 20

Through extensive experiments with movement sensor datasets of dogs and horses, we
demonstrated that UDA aligns domain-invariant features of the target domain with those of
the source domain, leading to an improved classification performance. The results showed
that applying UDA not only enhanced the classification performance within the same
species but also across different species. Notably, DAN exhibited the most pronounced
effect in mitigating sensor variability, whereas DANN had the most significant impact in
interspecies domain adaptation. In conclusion, UDA proves to be effective in effectively
addressing sensor variability and individual characteristics, making it a promising solution
for the real-world application of AAR in diverse settings with the limited availability of
labeled data.
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Appendix A

Since the data in the source domain were also partitioned into a training set and test set
with a ratio of 8:2, the model trained on the labeled data of the source domain is evaluated
with the test data in the source domain which were excluded during the training process.
Thus, we name this evaluation a within-domain classification.

Table A1. Classification performance of within-domain classification by evaluating the source
classifier with the source data.

Domain Sensor
Positions Source

Within-Domain Classification

Accuracy Precision Recall F1 Score

Sensors
Back 0.9794 0.9670 0.9663 0.9666
Neck 0.9272 0.8767 0.8709 0.8734

Size
Back

Middle-sized 0.9778 0.9653 0.9671 0.9661
Large-sized 0.9785 0.9613 0.9573 0.9592

Neck
Middle-sized 0.9346 0.9031 0.9058 0.9037
Large-sized 0.9537 0.8644 0.8304 0.8374

Gender
Back

Male 0.9787 0.9678 0.9688 0.9677
Female 0.9834 0.9731 0.9702 0.9716

Neck
Male 0.9459 0.9165 0.9125 0.9140

Female 0.9452 0.8979 0.8967 0.8972

Species Neck
Dog 0.9951 0.9960 0.9918 0.9939

Horse 0.9982 0.9950 0.9950 0.9950
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