
Citation: Da Silva, E.G.; Finamor,

I.A.; Bressan, C.A.; Schoenau, W.;

Vencato, M.D.S.; Pavanato, M.A.;

Cargnelutti, J.F.; Da Costa, S.T.;

Antoniazzi, A.Q.; Baldisserotto, B.

Dietary Supplementation with

R-(+)-Limonene Improves Growth,

Metabolism, Stress, and Antioxidant

Responses of Silver Catfish

Uninfected and Infected with

Aeromonas hydrophila. Animals 2023,

13, 3307. https://doi.org/

10.3390/ani13213307

Academic Editors: Radosław

P. Radzki, Marek Bienko and

Sylwia Szymańczyk
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Simple Summary: Increased intensification of the fish farming system requires care in production due
to induced stress conditions, which contribute to the occurrence of infectious diseases. In this research,
we evaluated how dietary supplementation with R-(+)-limonene, a compound found abundantly
in essential oils from plants such as lemon and orange, affects growth, plasma and liver metabolic
parameters, and antioxidant and stress responses in silver catfish, Rhamdia quelen, challenged or not
with Aeromonas hydrophila. Dietary R-(+)-limonene (L0.5, L1.0, and L2.0 mL/kg of diet) improved the
productive performance of fish and increased the expression of insulin growth factor 1 gene, which is
related to growth. The metabolic responses indicated that the additive in the feed was not harmful
to the health of the animals and increased resistance to A. hydrophila. R-(+)-limonene did not cause
damage to the liver and exhibited a hepatoprotective effect against A. hydrophila. The expression of
stress-related genes decreased with R-(+)-limonene dietary supplementation.

Abstract: R-(+)-limonene is a monoterpene from plants of the genus Citrus with diverse biological
properties. This research evaluated the effects of dietary supplementation with R-(+)-limonene on
growth, metabolic parameters in plasma and liver, and the antioxidant and stress responses in silver
catfish, Rhamdia quelen, challenged or not with Aeromonas hydrophila. Fish were fed for 67 days with
different doses of R-(+)-limonene in the diet (control 0.0, L0.5, L1.0, and L2.0 mL/kg of diet). On
the 60th day, a challenge with A. hydrophila was performed. R-(+)-limonene in the diet potentiated
the productive performance of the fish. The metabolic and antioxidant responses indicate that R-
(+)-limonene did not harm the health of the animals and made them more resistant to the bacterial
challenge. Histological findings showed the hepatoprotective effect of dietary R-(+)-limonene against
A. hydrophila. Igf1 mRNA levels were upregulated in the liver of fish fed with an L2.0 diet but
downregulated with bacterial challenge. The expression levels of crh mRNA were higher in the
brains of fish fed with the L2.0 diet. However, the L2.0 diet downregulated crh and hspa12a mRNA
expression in the brains of infected fish. In conclusion, the results indicated that R-(+)-limonene can
be considered a good dietary supplement for silver catfish.
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1. Introduction

Aquaculture has become the fastest growing food production technology in the
world [1]. Allied to this expansion, care and control over the health and survival of
animals also increase [2]. The practice of fish farming can lead to stressful situations [3],
contributing to the occurrence of infectious diseases, with Aeromonas hydrophila being the
most challenging pathogen associated with environmental stress [4,5].

The stress response results from several adjustments in physiological mechanisms in
order to restore the animal’s homeostatic state and survival in suboptimal conditions such
as low water quality and high density [6,7]. However, the difficulty in reestablishing the
organism’s balance makes the animal prone to reduced productive performance, metabolic
changes, inefficiency of the antioxidant defense system, and, in addition, increases mortal-
ity [7–10].

In the last decade, there has been a growing concern about the challenges faced by
commercial fish farming. Different treatments and control options including immunos-
timulants such as glycoproteins, probiotics, macroalgae, and essential oils have been used
to control diseases. Studies have shown that dietary supplementation of the glycoprotein
lactoferrin increases the immune response of fish [11–14]. For example, lactoferrin supple-
ments in the diet of Asian catfish (Clarias batrachus) increased the serum level of lysozyme
and protection against A. hydrophila [15]. Diets containing macroalgae increased growth,
lipid metabolism, and disease resistance in fish [16]. For example, seaweed (Gracilaria
pigmaea) in the diet stimulates growth, antioxidant, and immunological status in Asian sea
bass (Lates calcarifer) [17].

The use of essential oils (EO) and their phytochemicals in the dietary supplementation
of fish is also promising as stimulators of animal growth, health, and well-being [18–21].
EOs can reduce oxidative stress, increase the immune response, and modulate the metabolic
response of fish [7,22,23]. Several studies have shown that EOs from the genus Citrus
improved the productive performance of common carp (Cyprinus carpio) [18], modulated
the metabolic parameters of Nile tilapia (Oreochromis niloticus) [24] and sea bass (Micropterus
salmoides) [25], increased the antioxidant capacity in silver catfish (Rhamdia quelen) [23] and
tambaqui (Colossoma macropomum) [22], and increased the resistance and immune response
in Mozambican tilapia (Oreochromis mossambicus) [26].

Blood biochemical parameters are markers commonly used in aquaculture and scien-
tific research to evaluate the health and well-being of fish [27,28]. However, for a compre-
hensive assessment of the effects of various environmental or dietary factors, physiological
analyses should be supplemented by histological ones [29–32].

Limonene is a monocyclic monoterpene found abundantly in EOs from citrus plants
such as lemon and orange [33]. The isomer R-limonene or 4-isopropenyl-1-methylcyclohexene
(C10H16) is considered the major compound in Citrus peels and the main active biological
form of limonene [34,35]. Thus, the present work aimed to evaluate the effects of dietary
supplementation with R-(+)-limonene on R. quelen challenged or not with A. hydrophila.
These evaluations included a comprehensive analysis of fish growth parameters, blood
plasma, and liver metabolic parameters, including lipid metabolism and the antioxidant
system. Histology was performed on the liver, as it is a fundamental organ in metabolic
processes. The expression of genes related to stress responses to infection challenges was
also carried out in the brain.

2. Materials and Methods
2.1. Phytochemical

The phytochemical R-(+)-limonene (#W263303) was purchased from Sigma-AldrichTM
(St. Louis, MO, USA).

2.2. Fish and Culture Conditions

Silver catfish (20 ± 0.6 g and 11.3 ± 0.4 cm) were purchased from a local fish farm and
acclimatized for seven days in 71 L tanks, 15 fish per tank, with continuous aeration. During
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acclimatization, the fish were fed to satiation twice a day with commercial feed (Supra
Juvenil, São Leopoldo, Brazil). Dissolved oxygen (7.88 ± 0.31 mg/L) and temperature
(23.7 ± 0.5 ◦C) were measured daily with a Y 5512 oxygen meter (YSI, Yellow Springs, OH,
USA). A water recycling system with mechanical and biological filtration was used. The
levels of total ammonia (0.005 ± 0.001 mg/L) and nitrite (0.01 ± 0.01 mg/L) were checked
daily using commercial kits (Labcon Test, Camboriú, Brazil), preserving water quality. As
ammonia and nitrite levels were always low, nitrate levels were not measured. Feces and
residues were removed every day. The water in the boxes was renewed by 20% every
day. The Ethics on Animals Use Commission from the Federal University of Santa Maria
approved all animal management procedures (#2005260821).

2.3. Diets

Diets were prepared according to Zeppenfeld et al. [36]. For this purpose, the ingre-
dients were weighed, and during mixing, different doses of R-(+)-limonene were added
(0-control, 0.5, 1.0, or 2.0 mL of R-(+)-limonene per kg of diet). After mixing the ingredients,
the diets were moistened, pelleted, and taken to the oven to dry for 24 h at 50 ◦C. The
composition of the standard diet is shown in Table 1. The silver catfish were fed twice a
day, at 7:00 a.m. and 7:00 p.m., for 67 days, in an amount fixed at 5% of the biomass of
each tank.

Table 1. Formulation (%) of the experimental standard diet.

Ingredients (g/kg)

Meat meal 350
Soybean meal 300

Corn 150
Rice bran 120
Canola oil 30

Salt 10
Vitamin and mineral (pré-mix) * 30

Proximate composition
Dry matter 939.9

Mineral matter 252.3
Crude protein 303.2
Ether extract 74.9

Neutral detergent fiber 251.2
Acid detergent fiber 7.8

* Vitamin and mineral mixture (security levels per kilogram of product)-folic acid: 250 mg; pantothenic acid:
5000 mg; antioxidant: 0.60 g; biotin: 125 mg; cobalt: 25 mg; copper: 2000 mg; iron: 820 mg; iodide: 100 mg;
manganese: 3750 mg; niacin: 5000 mg; selenium: 75 mg; vitamin A: 1,000,000 UI; vitamin B1: 1250 mg; vitamin
B12: 3750 mcg; vitamin B2: 2500 mg; vitamin B6: 2485 mg; vitamin C: 28,000 mg; vitamin D3: 500,000 UI; vitamin
E: 20,000 UI; vitamin K: 500 mg; and zinc: 17,500 mg.

2.4. Challenge with A. hydrophila

The strain of A. hydrophila (MF 372510) was isolated from a naturally infected juvenile
silver catfish and identified through biochemistry and molecular assays [37]. Silver catfish
were inoculated intramuscularly with 0.1 mL of A. hydrophila solution (5.6× 108 CFU mL−1;
OD700) on the right lateral dorsal side. Uninfected fish received the same dose of sterile
saline through the same process. The challenge test was conducted for one week.

2.5. Experimental Design

For the experiment, the fish were divided into 8 groups in triplicate (n = 15 each
replicate). The fish were fed with different doses of R-(+)-limonene for 67 days: control
(0.0), 0.5 R-(+)-limonene (L0.5), 1.0 (L1.0), and 2.0 mL/kg of diet (L2.0). The diet was
provided twice a day. Growth performance indices were evaluated at 30 and 60 days of
treatment. On the 60th day, the animals were challenged with A. hydrophila or its vehicle
for one week. After this period, the fish were anesthetized for 3 min with 300 µL/L of
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Cymbopogon flexuosus EO [38] for blood collection and then euthanized by sectioning the
spinal cord to obtain liver and brain tissue.

2.6. Assays
2.6.1. Growth Performance

The production parameters were evaluated through weight, standard length, weight
gain (WG) = (final weight − initial weight), specific growth rate (SGR) = [(ln final weight
− ln initial weight)/time] × 100, [39], feed conversion rate (FCR) = (feed intake/weight
gain), [40], feed intake (FC) = (percentage of feed consumed per day), [41], hepatosomatic
index (HSI) = (liver weight/body weight)× 100, and survival = (final number of fish/initial
number of fish) × 100, [42]. The recorded mortality data were used to calculate the relative
survival percentage (RSP), RSP = 1 − [(mortality (%) in the treated group)/(mortality (%)
in the control group)] × 100 [43].

2.6.2. Plasma Metabolic Parameters

The blood was centrifuged at 3500 rpm for 10 min at room temperature. Plasma was
used to measure glucose, lactate dehydrogenase (LDH), and total protein, using kits (Gold
Analisa, Belo Horizonte, Brazil) and lactate (BioTecnica, Varginha, Brazil).

2.6.3. Liver Metabolic Parameters

Glucose and glycogen were determined according to Dubois et al. [44]. Lactate was
evaluated as described by Harrower and Brown [45]. The protein content was measured
according to Lowry [46].

2.6.4. Lipid Profile

Plasma triglycerides and total cholesterol were measured using kits (Gold Analisa,
Belo Horizonte, Brazil) and total lipid in liver tissue according to Frings et al. [47].

2.6.5. Enzymatic Markers of Liver Damage

The activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
were measured in the plasma, using kits (Gold Analisa®, Belo Horizonte, Brazil) and lactate
(BioTecnica®).

2.6.6. Antioxidant and Oxidative Parameters in the Liver
Superoxide Anion and Antioxidant Enzymes

Superoxide anion (O2
•−) levels were measured as defined by Wang et al. [48], and the

results were expressed as nmol min−1 g tissue−1. Total superoxide dismutase (SOD) was
performed according to Mirsa and Fridovich [49], and the values were expressed as USOD
g tissue−1. One SOD unit was defined as the amount of enzyme required for 50% inhibition
of adrenochrome formation. Catalase (CAT) was evaluated as reported by Aebi [50], and
the results were expressed as pmol g tissue−1.

Glutathione S-Transferase (GST)

Glutathione S-transferase (GST) activity, expressed as nmol min g tissue−1, was mea-
sured by following the rate of dinitrophenyl-S-glutathione formation at 340 nm as described
by Habig et al. [51].

Oxidative Damage Biomarker

Lipid peroxidation was evaluated using the lipid hydroperoxide (LOOH) technique
(LOOH) and performed as described by Hermes-Lima et al. [52]. LOOH results were
expressed in nmol mg tissue−1.
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Reduced and Oxidized Glutathione

Oxidized glutathione (GSSG) and total glutathione were estimated according to Gius-
tarini et al. [53]. Reduced glutathione (GSH) levels were obtained by subtracting the
measured amounts of GSSG (multiplied by 2, as in the recycling method one molecule of
GSSG is reduced to two molecules of GSH) from the amounts of total glutathione. Results
were expressed as nmol g tissue−1.

Total Antioxidant Capacity

The total antioxidant capacity (TAC) was verified according to Campos and Lissi [54],
and the values were expressed in µmol g tissue−1.

2.6.7. Histology

Fragments of liver tissue were carefully excised, washed with 0.9% NaCl, and fixed
in 10% formalin buffer for 24 h. After fixation, the tissues were dehydrated in an alcohol
series (70%, 80%, 90%, and 100%), then cleared with xylene solution, and finally embedded
in paraffin at 56–58 ◦C. After embedding in paraffin, the molds were sectioned at 6 µm
using an HM 325 rotary microtome (Thermo Scientific, Runcorn, UK). These tissue slides
sets were stained with Goldner’s trichrome and then washed for microscopic analysis. The
preparations were evaluated using an Axio Scope.A1 compound optical microscope (Zeiss,
Jena, Germany) coupled to an Axiocam 105 digital color camera (Zeiss, Jena, Germany).
For the morphometric analysis of the vacuoles, the images were divided into 12 quadrants
of 20,000 µm2. A quantitative analysis was performed for vacuoles. To this end, the images
were divided into forty-eight quadrants of 1000 µm2. ImageJ 1.54d, using the Grid plugin,
was used to analyze these measurements.

2.6.8. Gene Expression

The expression levels of genes directly related to stress, hspa12a (heat shock protein 70,
member 12) and crh (corticotropin releasing hormone), were evaluated in the brain, and
the igf1 gene (insulin-like growth factor 1 (igf1)) in the liver (n = 8 per group for each of
the expressed genes). Primer design and qPCR analysis were performed according to the
protocol established by Souza et al. [55] and Da Silva et al. [56].

3. Statistical Analysis

The statistical analysis was made using the Statistica™ software version 11.0 (Statsoft,
Tulsa, OK, USA). Prior to analysis, Bartletts’s and Levene’s tests were used to verify the
normality and homogeneity of data distribution (p < 0.05), respectively. Almost all data
presented homoscedasticity (Levene, p > 0.05) and a normal distribution, but values of
glucose in the liver, triglycerides, and AST in the plasma were log transformed, and the
square plasma was extracted from ALT values to attend these conditions. Growth perfor-
mance was analyzed using one-way ANOVA, while data on metabolic, lipid, antioxidant,
oxidative, molecular, and histological morphometry parameters were subjected to two-
way ANOVA analysis (treatment × infected or not), each followed by Tukey’s multiple
comparison test (p < 0.05). The data from igf1 expression were not parametric (Levene,
p < 0.05), so they were analyzed by the Kruskal–Wallis/Scheirer–Ray–Hare test, followed
by the Nemenyi test. Results are reported as mean ± SEM, and differences were considered
significant when p < 0.05. For the analysis of growth, metabolism, and lipid profile, three
fish from each replicate were used (n = 9). For the remainder of the analyses, three fish
from two replicates (randomly chosen) and two fish from the other were used (n = 8).

4. Results

External signs indicated 100% of the fish from the control and 25% of those fed diets
L0.5 and L1.0 were infected with the bacterium. These fish presented ulcers with reddish
edges at the inoculation site, hemorrhage in the fins, lesions on the tail, and shortening of
the barbels. Fish fed diet L2.0 did not present any lesions or hemorrhage, only reddish fins.
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4.1. Growth Performance

Fish fed with L0.5 and L2.0 diets showed higher weight and SGR at 30 and 60 days
of treatment compared to the fish fed with the control diet (p < 0.05). The L0.5 and L2.0
diets exhibited a lower FCR than fish fed with control and L1.0 diets at 60 days of treatment
(p < 0.05). There was no mortality during all the experiments (Table 2).

Table 2. Growth performance of silver catfish (Rhamdia quelen) fed diets containing different doses of
the R-(+)-limonene isoform.

Growth
Performance

R-(+)-Limonene Concentration (mL/kg Diet)

0 (control) L (0.5) L (1.0) L (2.0)

Initial
W 20.21 ± 0.07 19.21 ± 0.04 19.81 ± 0.02 20.07 ± 0.04
SL 11.39 ± 0.02 10.55 ± 0.05 11.07 ± 0.04 11.12 ± 0.02

30 days
W 31.91 ± 1.46 a 41.78 ± 1.35 b 32.50 ± 1.46 ab 44.03 ± 1.40 b

SL 14.28 ± 0.40 a 14.86 ± 0.40 a 14.70 ± 0.40 a 15.07 ± 0.40 a

SGR 1.78 ± 0.21 a 3.58 ± 0.17 b 3.14 ± 0.18 a 4.29 ± 0.18 b

60 days
W 62.24 ± 1.06 a 88.44 ± 1.50 b 73.33 ± 1.11 a 91.33 ± 1.73 b

SL 17.10 ± 0.41 a 18.17 ± 0.41 a 17.68 ± 0.40 a 19.44 ± 0.40 a

FI 66.43 ± 1.11 a 75.77 ± 1.30 a 68.03 ± 1.40 a 68.84 ± 1.10 a

FCR 1.79 ± 0.02 a 1.33 ± 0.02 bc 1.83 ± 0.04 a 1.11 ± 0.05 c

SGR 3.45 ± 0.07 a 3.99 ± 0.05 c 3.67 ± 0.07 b 3.98 ± 0.07 c

HSI 1.29 ± 0.10 a 1.21 ± 0.10 a 1.27 ± 0.11 a 1.18 ± 0.11 a

Survival 100 100 100 100
Data are presented as mean ± SEM (n = 9). Different letters in the rows indicate a significant difference between
treatments (one-way ANOVA and Tukey Test, p < 0.05). Abbreviations: weight (W) (g), standard length (cm) (SL),
feed intake (%) (FI), feed conversion rate (FCR), specific growth rate (%) (SGR), hepatosomatic index (%) (HSI),
and survival (%).

4.2. Plasma Metabolic Parameters

There was a significant interaction between diet and infection for glucose, lactate,
total proteins, and LDH (p < 0.05), but diets did not significantly affect these parameters in
uninfected fish (p > 0.05). All the groups treated with R-(+)-limonene and challenged with
A. hydrophila had lower glucose, lactate, glycogen, and total protein in plasma in relation to
their infected control group. The L0.5 group infected with A. hydrophila presented higher
lactate levels than the L0.5 non-infected group (p < 0.05) and the L1.0 and L2.0 infected
groups (p < 0.05). The L2.0 group infected with A. hydrophila showed higher lactate levels
than the non-infected L2.0 group (p < 0.05). Moreover, LDH levels were lower in the L1.0
group infected with A. hydrophila than in the infected control and L1.0 non-infected groups
(p < 0.05) (Table 3).

Table 3. Metabolic parameters of silver catfish Rhamdia quelen fed with diets containing different
doses of R-(+)-limonene.

R-(+)-Limonene Dose (mL/kg/Diet)

Non-Infected Groups

Metabolites 0 (Control) L (0.5) L (1.0) L (2.0)

Plasma
Glucose 72.32 ± 5.89 a 79.80 ± 5.51 a 75.37 ± 5.00 a 79.55 ± 5.00 a

Lactate 35.35 ± 2.38 a 26.08 ± 2.38 a 27.29 ± 2.55 a 27.67 ± 2.38 a

Total Protein 5.08 ± 0.34 a 5.30 ± 0.32 a 4.55 ± 0.32 a 4.53 ± 0.32 a

LDH 154.45 ± 10.82 a 135.99 ± 10.82 a 138.10 ± 10.82 a 119.77 ± 10.82 b

Liver
Glucose 56.44 ± 2.92 a 56.44 ± 2.92 a 64.69 ± 3.46 ab 72.50 ± 3.43 b

Lactate 21.89 ± 3.12 a 21.89 ± 3.12 a 20.03 ± 3.12 a 24.09 ± 3.12 a



Animals 2023, 13, 3307 7 of 23

Table 3. Cont.

R-(+)-Limonene Dose (mL/kg/Diet)

Glycogen 41.69 ± 2.5 a 35.08 ± 2.50 a 38.83 ± 2.50 a 37.05 ± 2.50 a

Total Protein 126.51 ± 3.64 a 148.34 ± 3.76 a 131.11 ± 3.89 a 137.77 ± 3.48 a

Groups Infected with A. hydrophila

Plasma
Glucose 123.88 ± 6.36 A* 67.70 ± 6.36 B 57.51 ± 5.00 B 60.10 ± 6.00 B

Lactate 68.20 ± 2.55 A* 53.46 ± 2.38 B#* 36.70 ± 2.38 C 39.78 ± 2.38 C#

Total Protein 8.10 ± 0.34 A* 4.72 ± 0.32 B 3.93 ± 0.32 B 4.67 ± 0.32 B

LDH 230.08 ± 9.14 A* 131.20 ± 10.82 B 94.36 ± 10.82 B#* 137.03 ± 10.82 B

Liver
Glucose 112.73 ± 2.90 A* 65.02 ± 3.43 B 66.84 ± 3.13 B 67.47 ± 3.13 B

Lactate 68.95 ± 3.12 A* 30.99 ± 3.12 B# 27.25 ± 3.12 C 29.16 ± 3.12 BC

Glycogen 134.22 ± 2.50 A* 42.91 ± 2.50 B# 55.28 ± 2.50 C#* 60.24 ± 2.50 C#*
Total Protein 109.69 ± 4.12 A 152.21 ± 3.26 B* 151.16 ± 3.48 B 148.70 ± 3.48 B

Data are presented as mean ± SEM (n = 9). Two-way ANOVA and Tukey’s test, p < 0.05. Plasma: glucose and
lactate (mg/dL), protein (g/dL), LDH (U/L). Liver: glucose, lactate, glycogen, and protein levels were expressed
as µmol/g of tissue. Different lowercase letters indicate significant differences between healthy groups. Different
capital letters indicate a significant difference between groups infected with A. hydrophila. The asterisk (*) indicates
a significant difference from the respective healthy group. The number sign (#) indicates a significant difference
between groups with A. hydrophila.

4.3. Liver Metabolic Parameters

There was a significant interaction between diet and infection for lactate, glycogen,
and total protein levels, but the diets did not significantly change these hepatic metabolites
in uninfected fish (p > 0.05) in relation to the control group, except for the higher glucose
level in the L2.0 group compared to the uninfected control and L0.5 groups (p < 0.05)
(Table 3).

Glucose, lactate, and glycogen levels were all lower in the infected groups treated with
R-(+)-limonene in relation to their infected control group. The L1.0 group infected with
A. hydrophila exhibited lower lactate levels than L0.5 infected with A. hydrophila (p < 0.05),
which presented higher lactate levels than the L0.5 non-infected group (p < 0.05) (Table 3).
Otherwise, total protein in the infected groups treated with R-(+)-limonene were all higher
than their infected control group (p < 0.05) (Table 3).

Glycogen levels in fish challenged with A. hydrophila were higher than in the non-
infected control group (p < 0.05). However, when fed with the L0.5, L1.0, and L2.0 diets,
the glycogen levels were significantly lower than in the control infected with A. hydrophila,
but still higher than their respective non-infected groups (p < 0.05) (Table 3).

4.4. Lipid Profile

There was a significant interaction between diet and infection for total lipid levels
in the liver (p < 0.05) but not for plasma triglycerides and cholesterol (p > 0.05). Fish fed
the L1.0 and L2.0 diets significantly reduced plasma triglycerides levels compared to the
control group and L0.5 in uninfected fish (p < 0.05). The diets did not significantly affect
plasma cholesterol levels in uninfected fish (p > 0.05). Non-infected fish fed the L0.5 diet
presented the lowest total lipid levels in the liver compared to the control, L1.0, and L2.0
uninfected groups (p < 0.05) (Table 4).

All fish groups infected with A. hydrophila and treated with R-(+)-limonene exhibited
significantly lower plasmatic levels of triglycerides and cholesterol in relation to both
controls (non-infected infected with A. hydrophila) (p < 0.05). In addition, the L0.5 group
infected with A. hydrophila showed lower triglyceride levels than the non-infected L0.5
group (p < 0.05) (Table 4).

The L1.0 and L2.0 groups infected with A. hydrophila exhibited lower levels of total lipid
than the control and L0.5 groups infected with A. hydrophila, who presented higher total
lipid levels than the non-infected control group (p < 0.05). Moreover, fish challenged with
A. hydrophila and fed the L0.5 diet showed higher levels of total lipid than the non-infected
L0.5 group (p < 0.05) (Table 4).
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Table 4. Lipid profile of silver catfish Rhamdia quelen fed with diets containing different doses of
R-(+)-limonene.

R-(+)-Limonene Dose (mL/kg/Diet)

Non-Infected Groups

Lipid Profile 0 (Control) L (0.5) L (1.0) L (2.0)

Plasma
Triglycerides 445.04 ± 28.06 a 396.45 ± 28.06 a 268.30 ± 30.31 b 294.66 ± 30.31 b

Cholesterol 111.36 ± 4.49 a 113.52 ± 5.31 a 106.09 ± 5.94 a 89.75 ± 5.31 a

Liver
Total lipid 786 ± 25.34 a 618.67 ± 22.66 b 703.10 ± 22.66 a 744.32 ± 25.34 a

Groups Infected with A. hydrophila

Plasma
Triglycerides 918.64 ± 33.20 A* 256.69 ± 30.31 B#* 228.75 ± 30.31 B* 301.37 ± 28.06 B*
Cholesterol 219.85 ± 5.31 A* 105.84 ± 4.85 B 111.20 ± 5.31 B 95.69 ± 4.85 B

Liver
Total lipid 909.48 ± 22.66 A* 925.76 ± 25.34 A#* 719.33 ± 22.66 B 712.04 ± 25.34 B

Data are presented as mean ± SEM (n = 9). Two-way ANOVA and Tukey’s test, p < 0.05. Plasma: triglycerides
(mg/dL), cholesterol (mg/dL). Liver: total lipids (mg/g tissue). Different lowercase letters indicate significant
differences between healthy groups. Different capital letters indicate a significant difference between groups
infected with A. hydrophila. The asterisk (*) indicates a significant difference from the respective healthy group.
The number sign (#) indicates a significant difference between groups with A. hydrophila.

4.5. Liver Transaminases Activity

There was a significant interaction between diet and infection for ALT and AST
activities (p < 0.05). Fish fed the L0.5 and L2.0 diets significantly reduced ALT activity
compared to the control and L1.0 groups in uninfected fish (p < 0.05); however, diets did
not significantly affect AST activity in uninfected fish (p > 0.05) (Figure 1A,B).
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Figure 1. Liver transaminases, alanine (ALT) (A) and aspartate aminotransferase (AST) (B), activities
in plasma of Rhamdia quelen fed different doses of R-(+)-limonene in the diet and infected or not with
A. hydrophila. Data are presented as mean ± SEM (n = 8). Two-way ANOVA and Tukey’s test, p < 0.05.
Different lowercase letters indicate significant differences between healthy groups. Different capital
letters indicate a significant difference between groups infected with A. hydrophila. The number sign
(#) indicates a significant difference between the groups infected with A. hydrophila in relation to the
healthy groups. The asterisk (*) indicates a significant difference between the groups infected with
A. hydrophila in relation to the respective healthy control group.

There were no significant differences in AST activity in all the non-infected groups. All
the infected groups treated with limonene showed a reduction in AST activity in relation to
their control group (p < 0.05). AST activity in the L0.5 group infected with A. hydrophila was
significantly lower than in the non-infected L0.5 and control groups (p < 0.05) (Figure 1A,B).

4.6. Superoxide Anion and Antioxidant Enzymes

Diets did not significantly affect O2
•− levels in uninfected fish (p > 0.05), but there was

a significant interaction between diet and infection. O2
− levels were significantly higher
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in control fish challenged with A. hydrophila compared to the uninfected control group
(p < 0.05). In infected fish fed the L0.5, L1.0, and L2.0 diets, O2

•− levels were significantly
lower than their infected control group (p < 0.05) (Figure 2A).
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Figure 2. Superoxide (O2
•−) levels (A) and superoxide dismutase (SOD) (B) and catalase (CAT) (C)

activities in the liver of Rhamdia quelen fed different doses of R-(+)-limonene in the diet and infected
or not with A. hydrophila. Data are presented as mean ± SEM (n = 8). Two-way ANOVA and Tukey’s
test, p < 0.05. Different lowercase letters indicate significant differences between healthy groups.
Different capital letters indicate a significant difference between groups infected with A. hydrophila.
The number sign (#) indicates a significant difference between the groups infected with A. hydrophila
in relation to the healthy groups. The asterisk (*) indicates a significant difference between the groups
infected with A. hydrophila in relation to the respective healthy control group.

There was a significant interaction between diet and infection for SOD activity. Fish
fed the diets L1.0 and L2.0 significantly increased SOD activity compared to the control
group and L0.5 in uninfected fish (p < 0.05). The control fish infected with A. hydrophila
showed higher SOD activity than the non-infected control (p < 0.05). The L0.5, L1.0, and
L2.0 infected groups exhibited significantly higher SOD activity than the non-infected and
infected controls (p < 0.05). Infected fish fed the L1.0 and L2.0 diets presented higher SOD
activity than the control and L0.5 groups infected with A. hydrophila (p < 0.05). L0.5 and L2.0
infected groups showed higher SOD activity than the L0.5 and L2.0 non-infected groups
(p < 0.05) (Figure 2B).

There was a significant interaction between diet and infection for CAT activity. The
diets significantly increased CAT activity compared to the control group in uninfected fish
(p < 0.05). The control, L1.0, and L2.0 groups infected with A. hydrophila exhibited lower
CAT activity compared to the L0.5 diet (p < 0.05) in infected fish. Fish infected with A.
hydrophila and those infected and fed L1.0 and L2.0 diets showed lower CAT activity than
the uninfected control group (p < 0.05) (Figure 2C).

4.7. Glutathiones

Diets did not significantly affect GST activity in uninfected fish (p > 0.05), but there
was a significant interaction between diet and infection. The infected control showed lower
enzymatic activity compared to the uninfected control (p < 0.05). The L0.5 group infected
with A. hydrophila showed higher GST activity compared to the other infected groups
(p < 0.05) (Figure 3A).

There was a significant interaction between diet and infection in GSH levels. Fish
fed the L2.0 diet had significantly increased GSH levels compared to control, L0.5, and
L1.0 in uninfected fish (p < 0.05). The GSH levels were lower in infected fish and in those
infected and fed with L0.5 and L1.0 diets compared to the non-infected control (p < 0.05).
The infected L2.0 group showed significantly higher GSH levels compared to the control
infected with A. hydrophila (p < 0.05), whereas fish infected and fed the L0.5, L1.0, and L2.0
diets exhibited lower GSH levels compared to their respective uninfected groups (p < 0.05)
(Figure 3B).
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There was a significant interaction between diet and infection in GSH levels. Fish fed 
the L2.0 diet had significantly increased GSH levels compared to control, L0.5, and L1.0 in 
uninfected fish (p < 0.05). The GSH levels were lower in infected fish and in those infected 

Figure 3. Glutathione S-transferase (GST) activity (A), reduced (GSH) (B), and oxidized glutathione
(GSSG) (C) levels in the liver of Rhamdia quelen fed different doses of R-(+)-limonene in the diet
and infected or not with A. hydrophila. Data are presented as mean ± SEM (n = 8). Two-way
ANOVA and Tukey’s test, p < 0.05. Different lowercase letters indicate significant differences between
healthy groups. Different capital letters indicate a significant difference between groups infected
with A. hydrophila. The number sign (#) indicates a significant difference between the groups infected
with A. hydrophila in relation to the healthy groups. The asterisk (*) indicates a significant difference
between the groups infected with A. hydrophila in relation to the respective healthy control group.

Diets did not significantly affect GSSG levels in uninfected fish (p > 0.05), but there was
a significant interaction between diet and infection. GSSG levels were higher in infected
control fish than in uninfected control fish (p < 0.05). Infected fish fed the L0.5, L1.0, and
L2.0 diets showed significantly reduced GSSG levels compared to the infected control
group (p < 0.05) (Figure 3C).

4.8. Oxidative Damage Biomarker

Diets did not significantly affect LOOH levels in uninfected fish (p > 0.05), but there was a
significant interaction between diet and infection. LOOH levels were higher in fish challenged
with A. hydrophila than in the uninfected control (p < 0.05), although they were lower in infected
fish fed the L0.5 and L2.0 diets compared to the control group (p < 0.05) (Figure 4).
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the L0.5 diet had significantly increased TAC levels compared to the control group, L1.0, 
and L2.0 in uninfected fish (p < 0.05). TAC levels were lower in infected control fish than 
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Figure 4. Lipid hydroperoxide levels in the liver of Rhamdia quelen fed different doses of R-(+)-
limonene in the diet and infected or not with A. hydrophila. Data are presented as mean ± SEM
(n = 8). Two-way ANOVA and Tukey’s test, p < 0.05. Different lowercase letters indicate significant
differences between healthy groups. Different capital letters indicate a significant difference between
groups infected with A. hydrophila. The number sign (#) indicates a significant difference between
the groups infected with A. hydrophila in relation to the healthy groups. The asterisk (*) indicates
a significant difference between the groups infected with A. hydrophila in relation to the respective
healthy control group.
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4.9. Total Antioxidant Capacity

There was a significant interaction between diet and infection on TAC levels. Fish fed
the L0.5 diet had significantly increased TAC levels compared to the control group, L1.0,
and L2.0 in uninfected fish (p < 0.05). TAC levels were lower in infected control fish than
in uninfected control fish (p < 0.05). Infected fish fed the L0.5 diet exhibited significantly
higher TAC levels than the other infected groups (p < 0.05) (Figure 5).
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Figure 5. Total antioxidant capacity (TAC) in the liver of Rhamdia quelen fed with different doses of
R-(+)-limonene in the diet and infected or not with A. hydrophila. Data are presented as mean ± SEM
(n = 8). Two-way ANOVA and Tukey’s test, p < 0.05. Different lowercase letters indicate significant
differences between healthy groups. Different capital letters indicate a significant difference between
groups infected with A. hydrophila. The asterisk (*) indicates a significant difference between the
groups infected with A. hydrophila in relation to the respective healthy control group.

4.10. Histology

Vacuolation and lipid deposits in hepatocytes, nuclear pyknosis, binucleated hepato-
cytes, erythrocyte infiltration in the sinusoids, fibrosis, and hemorrhage were evaluated
histopathologically (Figure 6). Uninfected fish fed the control, L0.5, L1.0, and L2.0 diets did
not show any histological changes in the liver (Figure 6A–D). Control fish challenged with
A. hydrophila showed intense vacuolization of hepatocytes, infiltration of erythrocytes in
the blood sinusoids, nuclear pyknosis, fibrosis, and hemorrhage (Figure 6E). Erythrocyte
infiltration in the blood sinusoids and nuclear pyknosis were observed in fish fed the
L0.5 diet (Figure 6F). Fish fed the L1.0 diet exhibited vacuolization of hepatocytes and
binucleated hepatocytes (Figure 6G). Infiltration of erythrocytes in the blood sinusoids was
observed in fish fed the L2.0 diet (Figure 6H).

Diets did not significantly affect the number of vacuoles in uninfected fish (p > 0.05),
but there was a significant interaction between diet and infection. The number of vacuoles
in fish infected with A. hydrophila was greater than in the uninfected control group (p < 0.05).
On the other hand, the infected groups fed the L0.5 and L2.0 diets showed a reduction in
the number of vacuoles compared to the infected control group (p < 0.05) (Figure 7A).

There was a significant interaction between diet and infection on the size of vacuoles.
Fish fed the L1.0 diet significantly increased the size of vacuoles in the hepatocytes com-
pared to control, L0.5, and L2.0 uninfected groups (p < 0.05). The number of vacuoles in
fish infected with A. hydrophila was greater than in the uninfected control group (p < 0.05).
On the other hand, the infected groups fed the L0.5 and L2.0 diets showed a reduction in
the number of vacuoles compared to the infected control group (p < 0.05) (Figure 7B).
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Figure 6. Effects of R-(+)-limonene supplemented in the diet on histopathological findings observed
in the liver of Rhamdia quelen infected or not with A. hydrophila. Representative images of Masson-
Goldner trichrome histological staining in the liver tissue of silver catfish exposed to R-(+)-limomene.
Control (A), L0.5 (B), L1.0 (C), L2.0 (D), without A. hydrophila; control (E), L0.5 (F), L1.0 (G), L2.0
(H), with A. hydrophila. (n = 8). 200× (bar = 20 µm). + (vacuolation of hepatocytes),
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in the liver. The L2.0 diet significantly increased igf1 mRNA levels in the liver compared 
to the control, L0.5, and L1.0 groups in uninfected fish (p < 0.05). Challenge with A. 
hydrophila reduced igf1 mRNA levels in all groups compared to the uninfected control (p 
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group (p < 0.05) (Figure 8A). 
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4.11. Gene Expression

There was a significant interaction between diet and infection on igf1 mRNA levels in
the liver. The L2.0 diet significantly increased igf1 mRNA levels in the liver compared to
the control, L0.5, and L1.0 groups in uninfected fish (p < 0.05). Challenge with A. hydrophila
reduced igf1 mRNA levels in all groups compared to the uninfected control (p < 0.05). Igf1
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mRNA levels were lower in the infected L2.0 group than in the uninfected L2.0 group
(p < 0.05) (Figure 8A).
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Diets did not significantly affect brain hspa12a mRNA levels in uninfected fish
(p > 0.05), but there was a significant interaction between diet and infection. Infected
fish fed the L2.0 diet showed downregulation of hspa12a mRNA expression in relation to
the infected control and those fed the L0.5 diet (p < 0.05). The L0.5 diet in infected fish
stimulated higher levels of hspa12a mRNA than the control and L0.5 diets in uninfected
fish (p < 0.05) (Figure 8B).

There was a significant interaction between diet and infection on crh expression. In
infected fish, the L2.0 diet significantly decreased crh expression in relation to the infected
control and the L0.5 diet (p < 0.05). The expression of crh mRNA levels in infected fish fed
the L2.0 diet was lower than in uninfected fish fed the L2.0 diet (p < 0.05) (Figure 8C).

5. Discussion

Phytochemicals are compounds with numerous bioactivities that have been contin-
uously used in the pharmaceutical industry and the scientific community [57]. EO from
the genus Citrus, with R-(+)-limonene as the main compound, has several therapeutic
effects in fish, including growth-promoting and antioxidant and anti-inflammatory proper-
ties [22,23,58,59].

This study showed that supplementation of R-(+)-limonene in the diet improved the
productive performance of fish, increasing weight and specific growth rate, in addition to
improving the feed conversion rate. Metabolic responses indicated that R-(+)-limonene
was not harmful to the health of the animals and increased resistance to the challenge with
A. hydrophila, the main pathogen that causes disease in fish. Antioxidant defenses were
stimulated, and the lowest concentration of R-(+)-limonene showed better performance
against the pathogen. Histological findings of liver tissue showed that nutrition with
R-(+)-limonene did not cause liver damage and that it has a hepatoprotective effect against
A. hydrophila. Expression of the growth-related gene increased with the highest concen-
tration of R-(+)-limonene in the diet but decreased when challenged with A. hydrophila.
R-(+)-limonene in the diet of fish with A. hydrophila inhibited the expression of genes related
to stress.
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Dietary supplementation with R-(+)-limonene enhanced catfish production parame-
ters, with an increase in final weight and TCE at 30 and 60 days and better feed conversion.
According to Gültepe [60], good growth performance can be attributed to the rapid absorp-
tion of EOs in the gastrointestinal tract of fish. The current results are consistent with data
found in Mozambican tilapia fed C. sinensis EO (83% limonene), whose final weight and
SGR were higher than those fed a controlled diet [26]. Ngugi et al. [61] observed that the
addition of Citrus limon peel EO (81% limonene) to the diet of Labeo victorianus, in addition
to weight and TCS, changed feed conversion.

Changes in metabolic parameters in fish blood have been used as a reference to
understand the effects of diets on animal metabolism and health [62,63]. Glucose, lipids,
and proteins are the main sources of energy for fish. The determination of total proteins
in plasma is a sensitive and physiologically relevant parameter, and when elevated in
plasma, it can be considered together with other factors useful for signaling the health and
immunity status of fish [64]. The mobilization of plasma proteins increases according to
the intensity of stress to meet energy demand, maintain osmoregulation, and increase the
immune response [65,66]. Glucose, an important nutrient for energy, varies according to the
physiological state of the animal [62]. Increased plasma glycemia may also be associated
with stressful situations or illnesses. Lactate, an important biomarker of stress, is an end
product of the glycolysis process, formed by the conversion of pyruvate through the enzyme
LDH (terminal enzyme of anaerobic glycolysis) [67]. Elevated lactate levels suggest the use
of anaerobic pathways to obtain energy in the absence of oxygen from the environment, or
functional pathways, when fish cannot capture it [68]. Changes in LDH activity can arise
when tissues are infected or damaged, in addition to indicating an imbalance in anaerobic
carbohydrate metabolism [69]. Considering that plasma metabolic parameters were not
altered, it can be assumed that dietary supplementation with different doses of R-(+)-
limonene did not stress or harm the catfish health. Furthermore, faced with the challenge of
A. hydrophila, R-(+)-limonene in the diets made the fish more resistant to damage caused by
the bacteria. Ngugi et al. [61] reported that concentrations of 5 and 8% (50 and 80 mL per
kg of diet, respectively) C. limon EO in the diet of L. victorianus infected with A. hydrophila
increased fish resistance, since levels of glucose and total proteins remained similar to
the levels of healthy fish. Partially corroborating our data, Gültepe et al. [70] found that
R-(+)-limonene derived from orange peel EO and supplemented in the diet of rainbow trout
increased resistance against Yersinia ruckeri, since serum glucose and total protein levels
did not change. However, contrary to our data, the addition of 1 mL of R-(+)-limonene per
kg of diet induced an increase in LDH in rainbow trout infected with Y. ruckeri.

The liver was chosen as the focus of this research because it is a key organ in metabolic
processes as it is important for triggering the body’s defenses with metabolic readjustments
after being challenged with pathogens [71]. This organ is essential in the synthesis of
plasma proteins and endocrine factors, such as insulin-like growth factors (IGFs), and
therefore influences, in addition to metabolism, the growth of the entire organism. It is also
considered the main site of detoxification [72] and most susceptible to toxicant-induced
injury [73–76].

Most physiological processes, such as growth, are modulated by the endocrine sys-
tem. Igf1, produced in the liver, is one of the main hormones involved in regulating
fish growth [77–79]. Ifg1 expression levels are often compared with growth in length or
weight [79]. Studies have reported that igf1 mRNA levels in the fish liver can be used
as a growth index marker [80–82]. Consistent with the production performance results,
fish fed the highest dietary dose of R-(+)-limonene exhibited higher levels of hepatic igf1
mRNA expression, suggesting that this phytochemical stimulated fish growth. A study
conducted by Aanyu et al. [78] showed an increase in the expression of igf1 mRNA in
the liver tissue of Nile tilapia fed with the highest concentration of limonene (600 ppm)
tested in diets. According to these same authors, one of the possible mechanisms by which
dietary limonene stimulates growth is through increasing the energy availability of feed
ingredients. Conversely, igf1 mRNA levels were reduced following A. hydrophila infection



Animals 2023, 13, 3307 15 of 23

in fish fed all the diets. Similar results were observed when different fish species were
infected with distinct types of pathogens [83,84], including A. hydrophila [85].

The liver synthesizes and stores glucose in the body in the form of glycogen, an impor-
tant energy reserve polysaccharide for animals [86]. Thus, the synthesis and degradation of
hepatic glycogen are regulated to maintain plasma glucose levels, which are essential for
the body’s needs [87]. The results of metabolic parameters in the liver showed an increase in
glucose levels with the highest dietary dose of R-(+)-limonene; however, glycogen, lactate,
and protein levels were not changed. This demonstrates that the animals were physio-
logically healthy since it was not necessary to activate the hepatic energy homeostasis
mechanisms. In contrast to our results, the lowest concentration (0.25 mL EO kg/diet) of
Citrus × latifolia EO in the tambaqui diet increased hepatic glucose levels [22]. Likewise,
Lopes et al. [23] found that adding Citrus aurantium EO to the silver catfish diet did not
alter liver glycogen levels; however, it did cause an increase in lactate and protein levels.

Stress caused by bacteria induces the animal’s body to initiate metabolic reprogram-
ming in order to modulate the energy deficiency resulting from stress, mainly in the liver,
which is a fundamental organ in adapting to stress. It can be seen that in the challenge
with A. hydrophila, dietary R-(+)-limonene prevented a hyperglycemic condition caused by
the bacteria in silver catfish. Carbohydrate metabolism is significantly affected by primary
and secondary stress responses [88–90]. Lin et al. [91] stated that blood hyperglycemia to
meet energy demands in stressful situations is linked to hepatic glycogenolysis. In this
study, dietary R-(+)-limonene prevented glycogen degradation in catfish infected with
A. hydrophila, as plasma glucose parameters remained normal. Furthermore, it preserved
hepatic protein metabolism and prevented protein catabolism in silver catfish infected with
A. hydrophila, since plasma protein levels were normal.

Lipids are important structural elements of the cell membrane, with functions in cell
signaling and inflammation. Changes in the lipid profile may be related to the symptoms
of the disease, particularly in the case of bacterial infections [92]. According to Dillard and
German [93], terpenes are effective in reducing plasma cholesterol levels. Vieira et al. [94]
and Ahmad and Beg [95] reported that diets containing limonene reduced, in addition to
total cholesterol, serum triglyceride levels. The results of our investigation are consistent
with these studies in that dietary R-(+)-limonene reduced triglyceride levels and did not
alter basal cholesterol levels. Against A. hydrophila, all diets supplemented with R-(+)-
limonene were effective in reducing triglyceride and cholesterol levels. In relation to total
lipids, diets containing R-(+)-limonene induced a reduction in lipid content in the liver of
fish, and when fish were challenged with A. hydrophila, diets with R-(+)-limonene managed
to return the values of this parameter to control levels. Similar to our results, Baba et al. [20],
using EO from Citrus limon, and Acar et al. [26], using EO from C. sinensis, observed that
diets supplemented with citrus oils decreased the levels of these parameters in tilapia. It is
possible to note in this research that R-(+)-limonene promoted hypocholesterolemic and
hypolipidemic effects in silver catfish challenged with A. hydrophila.

Liver function transaminases (ALT and AST) are important enzymes in the mobi-
lization of amino acids for gluconeogenesis and are associated with liver disease. They
are used to monitor the function and integrity of liver tissue and damage to fish health,
and high levels are associated with liver damage [96]. The results of this investigation
point to a hepatoprotective effect of R-(+)-limonene, an indication that this phytochemical
helps maintain normal function by accelerating the regenerative capacity of liver cells.
In uninfected fish, R-(+)-limonene decreased ALT activity and preserved the activity of
control AST, suggesting that liver tissue did not suffer any damage from R-(+)-limonene
supplementation. Diets supplemented with R-(+)-limonene protected the liver from dam-
age caused by A. hydrophila, as it inhibited the increase in ALT and AST activity. Sadeghi
et al. [97], when using C. aurantifolia EO as a dietary supplement for common carp infected
with A. hydrophila, noted that the tested additive did not harm liver function, since ALT
and AST activities did not increase. These results suggest that dietary doses of R-(+)-
limonene did not have a negative impact on liver function. Together with the stable values



Animals 2023, 13, 3307 16 of 23

of triglycerides, total plasma cholesterol, and total lipids in the liver, it can be inferred that
R-(+)-limonene is recommended to maintain the health of silver catfish. Studies have also
reported that changes in protein and carbohydrate metabolism due to stressful situations
lead to changes in ALT and AST activity [74]. However, in this investigation, the levels of
glucose and total plasma and liver proteins in healthy fish and with A. hydrophila, treated
with R-(+)-limonene, presented control values.

The balance between oxidation and antioxidant systems can be affected by stress,
which causes excessive formation of reactive oxygen species (ROS) or reduced antioxidant
production [98]. Endogenous antioxidant activity is essential to protect the organism from
oxidative damage caused by ROS [99] and antioxidant enzymes, such as SOD, CAT, and
glutathione peroxidase, which are the first line of protection. In fish, these enzymes are
capable of deactivating the harmful effects of ROS and of modulating and restoring antiox-
idant mechanisms [100]. While SOD converts the O2

•− radical into hydrogen peroxide,
CAT is responsible for eliminating it. A failure in this elimination will result in LPO that
can be converted into an excretable molecule by GST [101,102]. In this study, fish fed diets
supplemented with R-(+)-limonene exhibited greater SOD and CAT antioxidant activities,
suggesting that this phytochemical can increase the capacity of the animal’s enzymatic
antioxidant system. Similar results in increasing the activities of these enzymes were ob-
served by Mohamed et al. [58] and Rahman et al. [59] in Nile tilapia fed diets containing
EO from C. sinensis and African catfish (Clarias gariepinus) fed diets containing EO from C.
limon, respectively. In the present study, O2

•− and LOOH levels and GST activity were
not changed with the addition of R-(+)-limonene to the diet. This suggests that limonene
in the diet is non-toxic, does not cause stress and lipoperoxidation to the liver, and does
not impair antioxidant defenses. The results of GST activity differ from Lopes et al. [23],
whose diets supplemented with Citrus × aurantium EO decreased the activity of this en-
zyme. GSH, the main endogenous antioxidant, is found in the thiol-reduced form (GSH)
and the disulfide-oxidized form (GSSG) [103], acting to detoxify ROS and maintain redox
balance [104]. Oxidative stress in fish can be detected by the depletion of GSH and the
increase of LOOH in liver tissue [105]. As noted, stress can be avoided, as the liver did
not show lipid peroxidation and GSH content increased in fish fed the highest dose of
R-(+)-limonene, similar to Nile tilapia, whose diets contained EO C. limon [59]. However,
GSSG levels in healthy fish were not altered by the R-(+)-limonene diet. Total antioxidant
capacity can be considered the ability of a compound to act by reducing or neutralizing pro-
oxidants [106,107], and its measurement is important to evaluate the protective activities of
all antioxidants present in a sample [108]. In this study, the lowest dose of R-(+)-limonene
in the diet stimulated antioxidant responses by increasing TAC. Likewise, Salem et al. [98]
found that sea bream (Sparus aurata) fed orange peel in the diet showed a better antioxidant
response with increased TAC activity.

Aeromonas hydrophila infection can induce changes in antioxidant defenses [109], sug-
gesting that this change may be caused by increased O2

•− levels in combination with
decreased SOD activity. A study with brown trout (Salmo trutta trutta) showed that in-
fection with A. hydrophila reduced the activity of SOD and CAT enzymes [110]. In this
investigation, we observed significant interactions between the effects of dietary supple-
mentation with R-(+)-limonene and A. hydrophila infection on O2

•- levels and hepatic SOD
activity. Diets with three doses of R-(+)-limonene decreased O2

•- levels and increased SOD
activity in the liver of fish challenged with A. hydrophila. On the other hand, the lowest
dose of R-(+)-limonene in the diet of fish infected with A. hydrophila increased CAT activity.
These results show that R-(+)-limonene in the diet protected the catfish liver in the face
of challenging situations, such as A. hydrophila infection, and increased the activity of the
first defense enzymes (SOD and CAT). Apparently, the aggressive effect of A. hydrophila
on an insufficient antioxidant system causes the activation of lipid peroxidation; therefore,
tissue LOOH levels are elevated [111]. However, in this study, LOOH levels were markedly
reduced in infected fish fed diets containing R-(+)-limonene, while GST activity returned
to control values only with the L0.5 diet. Although GST activity in the other doses of
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R-(+)-limonene in the diet was reduced in relation to the control diet, it is likely that this
enzyme was not necessary for detoxification, since the lipoperoxidation products were re-
duced. Similar findings were observed in silver catfish treated with caffeine-supplemented
diets, whose treatment prevented the increase in hepatic LOOH levels and prevented
the inhibition of SOD and GST activities caused by A. hydrophila [112]. The addition of
R-(+)-limonene to the diets of fish with A. hydrophila did not prevent the reduction of GSSG
levels in relation to infected and untreated fish, while the lowest dose of R-(+)-limonene
increased the CT scan. Therefore, these results indicate that in the face of an A. hydrophila
infection, the addition of R-(+)-limonene stimulates antioxidant activity, reduces tissue
damage, and increases resistance to oxidative stress, improving the health status of silver
catfish. Swamy et al. [113] observed that enzymatic antioxidant activity and resistance
against A. hydrophila improved when Nile tilapia were fed diets supplemented with bay
leaf (Laurus nobilis), which has limonene as one of its constituents.

Lesions in tissue and cellular morphology are useful in clarifying pathological pro-
cesses and in identifying and diagnosing different diseases [18,114]. The fish liver is an
organ sensitive to damage caused by A. hydrophila. As expected, the histopathological
results of A. hydrophila infection in untreated silver catfish showed distinct morphological
and quantitative changes in the liver tissue. An increase in the number and size of vacuoles
in hepatocytes, erythrocyte infiltration in the sinusoids, hemorrhage, fibrosis, and nuclear
pyknosis were observed. Silver catfish fed the lowest and highest dose of the phytochemical
in the diet exhibited erythrocyte infiltration in the blood sinusoids; in addition, the former
also presented nuclear pyknosis. In fish fed the L1.0 diet, vacuolation of hepatocytes and
binucleated hepatocytes were observed. The lowest dose of R-(+)-limonene in the diet did
not prevent the increase in the number of vacuolation in hepatocytes; however, it prevented
their growth. Mustahal et al. [115] observed that catfish (Clarias sp.) infected with A. hy-
drophila and not treated with a probiotic-based diet presented liver congestion and lipid
accumulation in the liver due to the formation of vacuoles, which according to Kalaiyarasi
et. al. [116], compromises the lipid metabolism of fish. In another study, carried out by Al
Mamun et al. [117], A. hydrophila infection in catfish (Pangasianodon hypophthalmus) caused
necrosis of hepatocytes and pyknotic nuclei. The cause of hemorrhage and fibrosis in the
liver tissue of Nile tilapia is associated with the release of toxins and extracellular products
produced by A. hydrophila [118]. Our results showed that R-(+)-limonene supplementation
in the diet of fish with A. hydrophila had a protective effect on liver tissue, as it reduced the
number and size of vacuoles in hepatocytes. A hepatoprotective effect was observed in
Nile tilapia fed with clove, basil, and ginger EO after being challenged with Streptococcus
agalactiae [119].

Heat shock proteins (HSP) are molecules that can be activated in stress situations
and in the immune response in bacterial infections, acting to protect proteins against
denaturation caused by stressors [120]. In aquaculture, HSPs are important in signaling
the development of inflammation and the immune response to pathogens [121,122]. In
this investigation, in the challenge with A. hydrophila, the highest dose of R-(+)-limonene
in the fish diet induced a decrease in the expression of hspa12a, and the lowest dose did
not prevent the increase in the expression of this gene. The higher the expression of
hspa12a, the greater the stressor capacity of A. hydrophila infection in silver catfish [121].
In fish, the stress response mediated by the hypothalamic–pituitary–interrenal (HPI) axis
is associated with CRH [123,124]. The HPI axis, when activated by a stressor, releases
CRH from neurons in the preoptic neurosecretory area [123], stimulating the pituitary
gland to secrete adrenocorticotropic hormone (ACTH) [125]. ACTH, in turn, stimulates
interrenal cells to produce and secrete corticosteroids, such as cortisol. This corticosteroid
acts on energy metabolism, resulting in an increase in serum glucose levels, in order to
meet the energy needs of the stressed animal [124]. In the present study, the highest dose of
R-(+)-limonene induced an increase in the expression of crh in the brain, but in the challenge
with A. hydrophila, the diet with the phytochemical decreased the expression of this gene.
However, low dietary doses of R-(+)-limonene did not prevent the stress caused by the
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bacteria, indicating the activation of the HPI pathway, as it increased the expression of crh.
Similar data were found by Bandeira Junior et al. [121], when they found that the effect of
A. hydrophila infection increased the expression of stress-related genes (hspa12a and crh) in
the brain.

6. Conclusions

In conclusion, the current research recommends the consumption of diets containing
0.5% R-(+)-limonene in their composition to increase the productive performance of silver
catfish and improve their well-being even in the face of a challenging situation such as
infection with A. hydrophila, not only modulating metabolic responses and reducing stress,
but also protecting the liver against morphological changes and oxidative stress.
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