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Simple Summary: Benign prostatic hyperplasia (BPH) is a common condition in older intact dogs,
characterized by nonmalignant growth of the prostate gland. However, diagnosis and treatment
strategies vary widely. Clinical proteomics is a rapidly growing field in both human and veterinary
medicine. It has the potential to help us discover new therapeutic targets and biomarkers for diagnosis,
prognosis, and treatment efficacy. However, there has been a notable gap in our understanding
regarding changes in the serum proteome of dogs with BPH. This study aimed to compare serum
proteome profiles of dogs with BPH to healthy dogs and evaluate the impact of castration. This
research represents the first investigation into serum proteome profiling in dogs with BPH before
and after castration. The findings suggest that specific serum proteins may be associated with the
development and progression of canine BPH. These proteins hold the potential to serve as non-
invasive biomarkers for diagnosing the disease. Further study is needed to identify and validate
diagnostic biomarkers for BPH in dogs, including proteins involved in related pathways, as numerous
alterations in serum proteins were observed post-castration.

Abstract: BPH is the most prevalent prostatic condition in aging dogs. Nevertheless, clinical diagnosis
and management remain inconsistent. This study employed in-solution digestion coupled with nano-
liquid chromatography tandem mass spectrometry to assess serum proteome profiling of dogs with
BPH and those dogs after castration. Male dogs were divided into two groups; control and BPH
groups. In the BPH group, each dog was evaluated at two time points: Day 0 (BF subgroup) and Day
30 after castration (AT subgroup). In the BF subgroup, three proteins were significantly upregulated
and associated with dihydrotestosterone: solute carrier family 5 member 5, tyrosine-protein kinase,
and FRAT regulator of WNT signaling pathway 1. Additionally, the overexpression of polymeric
immunoglobulin receptors in the BF subgroup hints at its potential as a novel protein linked to
the BPH development process. Conversely, alpha-1-B glycoprotein (A1BG) displayed significant
downregulation in the BF subgroup, suggesting A1BG’s potential as a predictive protein for canine
BPH. Finasteride was associated with increased proteins in the AT subgroup, including apolipoprotein
C-I, apolipoprotein E, apolipoprotein A-II, TAO kinase 1, DnaJ homolog subfamily C member 16, PH
domain and leucine-rich repeat protein phosphatase 1, neuregulin 1, and pseudopodium enriched
atypical kinase 1. In conclusion, this pilot study highlighted alterations in various serum proteins
in canine BPH, reflecting different pathological changes occurring in this condition. These proteins
could be a source of potential non-invasive biomarkers for diagnosing this disease.
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1. Introduction

Benign prostatic hyperplasia (BPH), prostatitis, prostatic cysts, prostatic abscesses,
and fewer cases of neoplasia like squamous metaplasia are prevalent prostatic diseases
in male dogs [1]. BPH is the most common prostatic disease that affects intact male dogs
and develops spontaneously as glandular hyperplasia [2]. It is mostly the consequence of
aging and increasing dihydrotestosterone (DHT) levels in intact male dogs, which causes
an increase in the size (hypertrophy) and number (hyperplasia: the main mechanism in
dogs) of the prostate epithelial cells [1,3]. DHT, an androgen derivate that collaborates
with its receptors on the prostate, is a crucial hormone in the pathophysiology of this
condition, enhancing the growth of both the stromal and glandular components of the
prostate, which leads to its enlargement [4]. Growth factors such as insulin-like growth
factor 1, epidermal growth factor (EGF), fibroblast growth factor, and vascular endothelial
growth factor (VEGF) are activated when DHT binds to androgen receptors, which may
cause prostatic enlargement and the development of BPH [5,6]. Estrogens increase the
number of androgen receptors and promote metaplasia, which is a change in the structure
of prostatic cells [7]. Moreover, the research on the potential mechanism of inducing BPH
in dogs by estradiol suggested that estrogens undergo conversion into catechol estrogen,
a form of estrogen metabolites. These metabolites, produced through this conversion
process, then actively participate in metabolic redox cycling—a process that generates free
radicals. Within this intricate pathway, cytochrome P450 enzymes play a crucial role by
oxidizing catechol estrogens to quinones via semiquinone intermediates. The formation of
semiquinones or other free radicals through metabolic redox cycling has the potential to
cause damage to cellular macromolecules. When these free radicals impact prostatic cells,
they may respond to DHT-mediated growth stimuli, ultimately leading to the development
of BPH [8]. Prolactin, produced by the anterior pituitary gland, may potentially contribute
to prostatic hyperplasia by enhancing the epithelial stroma via a mechanism that controls
the expression of granulocyte-macrophage colony-stimulating factor via sustained signal
transducer and activators [9]. Patient history, clinical signs, physical examination, rectal
palpation of the prostatic contour, radiographic measurement of the prostatic size, ultra-
sonographic measurement of the prostatic volume and parenchyma, ultrasound-guided
fine needle aspiration, and excisional biopsy are all methods used to diagnose BPH [10].
However, ultrasonography is the diagnostic method of choice for examining the prostate,
allowing for assessing both the gland’s size and the homogeneity of its parenchyma [11].
The length, width, and depth of the prostate gland and its internal structure and exterior
texture can all be examined using ultrasound [10]. In intact male dogs, age and body
weight also have a positive correlation with the prostate’s size [12]. Due to the similarities
in clinical and ultrasonographic findings, BPH can be challenging to distinguish from other
prostatic diseases, such as prostatitis, prostatic cysts or abscesses, and prostatic neopla-
sia [7]. However, using ultrasound-guided FNA for diagnostic purposes in canine prostatic
diseases requires extreme caution due to concerns about needle-track seeding with infec-
tious agents and neoplastic cells [13]. Furthermore, some researchers agree that excisional
biopsy, as an invasive operation, involves a risk of consequences such as infection, which
can lead to inflammation of the bladder, prostate, testicles, and spermatic duct [14]. Various
tests for specific biomarkers, including prostate-specific antigen (PSA), Kallikrein 2 (hK2),
urokinase plasminogen activator (uPA), transforming growth factor-beta 1 (TGF-Beta 1),
interleukin-6 (IL-6), VEGF, prostate cancer antigen (PCA), CCL11/Eotaxin chemokine, and
also microRNA (miRNA) are performed in the diagnosis of prostate diseases in men as
an addition to the standard clinical examination. According to these studies, biomarker
identification is common, practical, and minimally invasive, and it should be recognized
that they have excellent prognostic and diagnostic value [15–18]. There is currently little
information available in the literature about the use of biomarkers in canine prostate dis-
eases. Canine prostate-specific esterase (CPSE), prostatic acid phosphatase (PAP), and PSA
are some biomarkers of the male canine reproductive tract that may be assessed for the
diagnosis of BPH [19]. A recent study assumed that miRNA-129 and VEGF determination
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may be useful for diagnosing BPH in dogs [20]. There is currently an absence of studies on
the use of serum biomarkers for canine prostate diseases, particularly BPH.

Although no treatment is suggested for dogs with subclinical and mild signs of BPH,
some treatment should be recommended when symptoms affect the quality of life [21].
In breeding dogs, treatment with pharmacological compounds inhibiting the production
or activity of androgens such as 5α-reductase inhibitors (finasteride) and α1A-adrenergic
receptor antagonists may be preferred to maintain fertility [22]. Castration, which perma-
nently removes the androgenic stimulation of BPH, decreases the serum concentrations of
testosterone and estrogen, and results in a decrease in the size of the prostate, is known
as the gold standard treatment for BPH, especially in dogs not intended for breeding [23].
Up to 70% of the prostate’s size is decreased by castration [10]. A current study proposed
that castration is an effective and long-lasting treatment for dogs with BPH, as it causes
a rapid decrease in serum testosterone concentrations (within 7 days) and a decrease in
glandular volume, similar to the volume of healthy animals (within 14 days) [24]. Follow-
ing castration, the early phase of the decrease in prostatic volume was accompanied by
an immediate decrease in circulating testosterone levels; moreover, prostate atrophy was
encouraged, which altered the prostatic artery’s hemodynamics [25,26].

Clinical proteomics, a rapidly developing field with increasing significance in humans
as well as in veterinary medicine, shows promise for the discovery of novel therapeutic
targets and biomarkers for diagnosis, prognosis, and therapeutic efficacy by utilizing
current technology to compare proteome profiles between various physiological and disease
states [27,28]. Studies on proteomics in canine reproductive problems such as mammary
tumors [29] and pyometra [30] have been published, though they are less numerous than
those in humans. To the authors’ best knowledge, however, the possible changes in serum
proteome in canine BPH have not yet been studied. This study aimed to compare dogs
with BPH to healthy dogs and between dogs before and after castration to assess potential
alterations in serum proteome profiling.

2. Materials and Methods
2.1. Animals and Sample Collection

Thirty-five client-owned male dogs undergoing castration at Prasu-Arthorn Animal
Hospital, Faculty of Veterinary Science, Mahidol University were classified into healthy
dogs and dogs diagnosed with benign prostatic hyperplasia. Two main groups of dogs
were identified and categorized as the control group and the benign prostatic hyperplasia
group (BPH group). The classification process was performed based on several assess-
ments, such as patient history, clinical examination, digital rectal palpation of the prostate,
complete blood count (CBC), and serum biochemical analysis. Dogs in the control group
must be in the puberty age range (1–7 years), healthy with no chronic illnesses, and exhibit
normal results in digital rectal prostate palpation and blood tests. Twenty healthy dogs,
aged from 1 to 4 years, of different body weights (4 to 30 kg) served as a control group
(CTRL). Dog breeds included mongrels (n = 8), the Pomeranian (n = 3), Chihuahua (n = 2),
French Bulldog (n = 2), Siberian Husky (n = 2), Japanese Spitz (n = 1), Pit Bull Terrier (n = 1),
and Shih Tzu (n = 1). The BPH group included fifteen dogs that were diagnosed with
benign prostatic hyperplasia (Table 1). From the medical history screening, dogs in the BPH
group have no pre-existing conditions such as cardiovascular disease, urologic disorders,
gastrointestinal disorders, cancer, or endocrine diseases, with particular emphasis on repro-
ductive system disorders, including cryptorchidism, orchitis, penis tumors, and testicular
cancer. Moreover, these dogs, showing one or more clinical signs—sanguineous discharge
from the prepuce or urethra, hematuria, tenesmus, or straining during defecation—were
qualified [31]. Digital rectal examination revealed normal consistency and no pain. Blood
tests showed no abnormalities. Additionally, ultrasonography was used to confirm BPH
based on homogeneity of the parenchyma and gland size criteria. The prostatic ultrasono-
graphic assessment was performed transabdominally in each dog of the BPH group with a
linear transducer (GE LOGIQ P6, GE HealthCare, United States). Before transabdominal



Animals 2023, 13, 3853 4 of 23

scanning, the dogs’ caudal abdominal area was shaved and they were placed in a dorsal
recumbent position. Four thematic categories were used with precise and descriptive
terminology to identify the appearance of B-mode prostate parenchyma. These categories
were background echotexture (normal, hyperechoic, or hypoechoic); parenchymal stippling
(regular, increased, or coarse); general appearance (homo- and heterogenous); and focal
changes (cysts, mineralized opacities, or focal hypoechoic lesions) [32]. In this study, dogs
being considered for classification into the BPH group had to exhibit specific characteristics,
including increased echogenicity or hyperechoic background echotexture, parenchymal
stippling that may be coarse or regular, a general appearance that can be either heteroge-
neous or homogeneous, and focal changes such as small cysts measuring less than 0.5 cm
or the presence of mineralized opacities [31]. Therefore, dogs with ultrasonographic find-
ings of hypoechoic or anechoic cavities larger than 0.5 cm within prostate parenchyma,
indicating prostatic cyst or abscess, were excluded. The ultrasonographic examination
enabled the calculation of the prostate size using length, width, and diameter (dorsoventral
distance). Prostatic volume (PV) was determined by the formula: PV (cm3) = (width (cm)
× length (cm) × diameter (cm))/2.6 + 1.8; the estimated volume (EV) was determined by
the formula EV (cm3) = 0.33 × body weight (kg) + 3.28 [19,33]. Each dog in this group
was evaluated by ultrasonography at two time points: Day 0 (considered the day of BPH
diagnosis; BF subgroup) and Day 30 (one month after castration; AT subgroup).

Table 1. Age, weight, breed, and ultrasonographic findings in 15 dogs diagnosed with benign
prostatic hyperplasia.

Dog Breed
Weight Age Estimated

Volume
Prostatic Volume
before Castration

Prostatic Volume after
Castration

(kg) (Years) (cm3) (cm3) (cm3)

1 American Bully 30.00 2 13.18 33.80 7.70
2 Boston Terrier 12.00 5 7.24 9.12 7.20
3 Chihuahua 3.20 7 4.34 6.80 4.37
4 Chihuahua 2.60 3 4.14 5.80 3.20
5 Chihuahua 4.90 6 4.90 7.20 3.56
6 Golden Retriever 45.00 8 18.13 24.70 9.47
7 Jack Russell Terrier 8.50 7 6.09 7.80 3.60
8 Mongrel 24.00 7 11.20 43.60 9.30
9 Pomeranian 4.00 6 4.60 6.30 4.30

10 Pomeranian 4.30 10 4.69 9.04 4.11
11 Pomeranian 7.30 6 5.69 10.60 3.66
12 Shih Tzu 5.70 7 5.16 5.35 2.57
13 Shih Tzu 6.90 4 5.56 8.97 4.50
14 Shih Tzu 8.50 10 6.09 7.60 4.10
15 Thai Bangkaew 16.50 4 8.73 9.09 3.00

The 3 mL of blood samples were collected via the cephalic vein of all dogs before
castration. One month later, blood samples from the dogs in the BPH group were collected
again. Serum was obtained by centrifugation of blood collected in plain tubes. Aliquoted
samples were stored at −20 ◦C until analyzed. Lowry’s assay evaluated total protein
concentrations from serum samples using bovine serum albumin as a standard.

2.2. In-Solution Digestion by Trypsin

In each sample, 5 µg of proteins were reduced using 5 mM dithiothreitol (DTT) in
10 mM ammonium bicarbonate (NH4HCO3) at 60 ◦C for 1 h. Alkylation of the reduced
cysteine residues was achieved by adding 15 mM iodoacetamide (IAA) in 10 mM am-
monium bicarbonate (NH4HCO3) and incubating the sample in darkness at 25 ◦C for
45 min. Afterward, the protease trypsin was added at a ratio of 1: 20 (enzyme/protein)
and allowed to act for 16 h at 37 ◦C. Finally, the samples were dissolved using 0.1% formic
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acid (FA) and assessed through nano-liquid chromatography tandem mass spectrometry
(nanoLC-MS/MS) analysis.

2.3. LC-MS/MS

The tryptic peptide samples were performed for injection into an Ultimate3000 Nano/
Capillary LC System (manufactured by Thermo Scientific, CHS, Chelmsford, UK) connected
to a ZenoTOF 7600 mass spectrometer (produced by SCIEX, located in Framingham, MA,
USA). In brief, one microliter of peptide digests was enriched using a µ-Precolumn (300 µm
i.d. × 5 mm) packed with C18 Pepmap 100 (5 µm, 100 A, from Thermo Scientific, CHS,
UK) and then separated on a 75 µm I.D. × 15 cm column packed with Acclaim PepMap
RSLC C18 (2 µm, 100 Å) using nanoViper technology (also from Thermo Scientific, CHS,
UK). The C18 column was enclosed within a temperature-controlled column oven set to
60 ◦C. Solvents A and B, containing 0.1% formic acid in water and 0.1% formic acid in 80%
acetonitrile, respectively, were used for the analytical column. A gradient ranging from 5%
to 55% of solvent B was employed to elute the peptides, maintaining a constant flow rate of
0.30 µL/min for 30 min.

For the ZenoTOF 7600 system, the source and gas parameters were configured as
follows: ion source gas 1 was set to 8 psi, curtain gas to 35 psi, CAD gas to 7 psi, source
temperature to 200 ◦C, polarity to positive, and spray voltage to 3300 V. Regarding the DDA
method selection, it involved the selection of the top 50 precursor ions with the highest
abundance from the survey MS1 scans for subsequent MS/MS analysis, with an intensity
threshold set above 150 cps. Precursor ions were dynamically excluded for 12 s after two
instances of MS/MS sampling (with dynamic CE for MS/MS enabled). MS2 spectra were
acquired in the range of 100–1800 m/z, each with a 50 ms accumulation time, and the Zeno
trap was enabled. The collision energy parameters included a declustering potential of
80 V, 0 V DP spread, and a CE spread of 0 V. The time bins to sum were set to 8 with all
channels enabled, and a Zeno trap threshold of 150,000 cps was applied. The cycle time for
the Top 60 DDA method was set to 3.0 s.

2.4. Bioinformatics and Data Analysis

MaxQuant version 2.2.0.0 was employed for protein quantification within individual
samples, utilizing the Andromeda search engine to align MS/MS spectra with the Uniprot
Canis familiaris database [34]. Label-free quantification was carried out using MaxQuant’s
standard parameters, which included allowing a maximum of two missed cleavages, a
mass tolerance of 0.6 daltons for the primary search, trypsin as the digestion enzyme, car-
bamidomethylation of cysteine as a fixed modification, and the consideration of methionine
oxidation and protein N-terminus acetylation as variable modifications.

For protein identification, only peptides containing a minimum of 7 amino acids as
well as at least one unique peptide were considered. Identified proteins had to meet the
criteria of having at least two peptides, including one unique peptide, to be included in
subsequent data analysis. A protein false discovery rate (FDR) of 1% was applied, and it
was estimated using the reversed search sequences. Additionally, the maximum number of
allowable modifications per peptide was set at 5. The search was performed using a FASTA
file containing the Canis familiaris proteome downloaded from UniProt as of 14 August 2023.

2.5. Statistical Analysis

The MaxQuant ProteinGroups.txt data file was imported into Perseus version 1.6.6.0 [35].
To ensure data integrity, any potential contaminants that did not align with UPS1 proteins
were excluded from the dataset. Subsequently, the ion intensities were subjected to a
log2 transformation, and comparisons between conditions were performed using t-tests.
In cases where data were missing, Perseus applied imputation by replacing the values
with a constant (zero) to maintain data continuity. For data normalization and the visual-
ization of changes in protein abundance between the control and experimental samples,
MetaboAnalyst software version 5.0 was used. The mean central tendency procedure was
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applied to transform and normalize peptide intensities from the LC-MS analyses. Statistical
analysis using analysis of variance (ANOVA) was performed to determine statistically
significant proteins (p < 0.05) in the data sets. The identified proteins were also submitted
to “Stitch EMBL” “http://stitch.embl.de (accessed on 21 August 2023)” to explore their
function and understand protein–protein interactions with 5α-dihydrotestosterone (DHT)
and finasteride.

3. Results
3.1. The Prostatic Size before and after Castration

The prostatic volume of dogs diagnosed with BPH from ultrasonography before and
after castration is shown in Table 1. All dogs in the BPH group presented decreased
prostatic volume resembling the estimated volume one month after castration.

3.2. LC-MS/MS Results

The 3850 proteins in all samples were analyzed using in-solution digestion coupled
with LC-MS/MS (Supplementary Table S1). In heat maps, the data are shown as a grid,
with each column indicating a sample and each row indicating a protein (Figure 1A). Partial
least squares discrimination analysis (PLS-DA) was used to provide a comprehensive
depiction of the data. The PLS-DA plot in two dimensions exhibited discernible clusters
among the BPH dogs before castration (BF subgroup) vs. the BPH dogs after castration (AT
subgroup) and BF vs. control (CTRL) dogs, while the AT and CTRL dogs appeared to be
mostly separate clusters, as illustrated in Figure 1B. Through the utilization of one-way
ANOVA with post hoc Tukey’s test, the 22 candidate proteins were identified, including the
regulator of G protein signaling 22 (RGS22), apolipoprotein E (APOE), E3 ubiquitin-protein
ligase (TRIP12), ubiquitin-associated domain-containing protein 1 (UBAC1), apolipoprotein
C-I (APOC1), apolipoprotein A-II (APOA2), solute carrier family 5 member 5 (SLC5A5),
mitochondrial ribosomal protein S30 (MRPS30), pseudopodium enriched atypical kinase
1 (PEAK1), tyrosine-protein kinase (TNK2), FRAT regulator of WNT signaling pathway
1 (FRAT1), TAO kinase 1 (TAOK1), probable RNA-binding protein 18 (RBM18), DnaJ
homolog subfamily C member 16 (DNAJC16), polymeric immunoglobulin receptor (PIGR),
alpha-1-B glycoprotein (A1BG), fetuin B (FETUB), PH domain and leucine rich repeat
protein phosphatase 1 (PHLPP1), Ig-like domain-containing protein, neuregulin 1 (NRG1),
ring finger protein 213 (RNF213), and voltage-dependent L-type calcium channel subunit
alpha (CACNA1D). The assessment of these proteins involved an investigation of their
biological processes, cellular components, and molecular functions. This analysis was
evaluated using UniProtKB/Swiss-Prot (Table 2). Subsequently, Fisher’s Least Significant
Difference Test (Fisher’s LSD) was used to analyze the expression of these 22 proteins
across the three groups.

3.2.1. Comparisons of BF Subgroup versus Other Groups (BF vs. AT and BF vs. CTRL)

One unique protein, alpha-1-B glycoprotein (A1BG), demonstrated a significant de-
crease in the BF subgroup when compared with the other groups (Figure 2A). The overex-
pression of SLC5A5, TNK2, FRAT1, and PIGR in the BF subgroup compared to the other
groups was illustrated using box plots (Figure 2B–E).

3.2.2. Comparisons of AT Subgroup versus Other Groups (BF vs. AT and AT vs. CTRL)

When comparing the AT subgroup to the BF subgroup, a significant decrease was
observed in the expression of SLC5A5, TNK2, FRAT1, and PIGR. Moreover, the 12 proteins
exhibited highly significant differences between the AT subgroup and CTRL, as well as
between the AT subgroup and BF subgroup (Supplementary Figure S1).

http://stitch.embl.de
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Table 2. Nominated proteins based on biological process, cellular components, and molecular functions involvement using UniProtKB/Swiss-Prot.

Protein Names Gene Names −log10(p) FDR Fisher’s LSD Biological
Process

Cellular
Component

Molecular
Function

Regulator of G protein
signaling 22 RGS22 14.802 6.07 × 10−12

AT—BF;
AT—CTRL;
BF—CTRL

Regulation of signal
transduction N/A G-protein alpha-subunit binding

Apolipoprotein E APOE 9.3962 7.73 × 10−7 AT—BF;
AT—CTRL

AMPA glutamate receptor
clustering, cGMP-mediated

signaling, cholesterol catabolic
process, G protein-coupled
receptor signaling pathway,

gene expression

Chylomicron, endoplasmic
reticulum, extracellular

exosome, extracellular matrix,
extracellular space, Golgi

apparatus, plasma membrane

Amyloid-beta binding,
antioxidant activity, cholesterol

transfer activity, enzyme
binding, heparin binding,

lipoprotein particle binding,
phospholipid binding

E3 ubiquitin-protein
ligase TRIP12 8.341 5.85 × 10−6

AT—BF;
AT—CTRL;
BF—CTRL

DNA repair, protein
ubiquitination,

ubiquitin-dependent protein
catabolic process

Nucleoplasm Ubiquitin protein ligase activity,
zinc ion binding

Ubiquitin-associated
domain-containing

protein 1
UBAC1 8.1622 6.62 × 10−6

AT—BF;
AT—CTRL;
BF—CTRL

N/A N/A N/A

Apolipoprotein C-I APOC1 6.7248 1.31 × 10−4 AT—BF;
AT—CTRL

Lipid transport, lipoprotein
metabolic process, negative

regulation of cholesterol
transport, triglyceride metabolic

process

High-density lipoprotein
particle, very-low-density

lipoprotein particle

Fatty acid binding,
phospholipase inhibitor activity

Apolipoprotein A-II APOA2 6.6902 1.31 × 10−4 AT—BF;
AT—CTRL

Lipid transport, lipoprotein
metabolic process Extracellular region Lipid binding

Solute carrier family 5
member 5 SLC5A5 6.3569 2.42 × 10−4 BF—AT;

BF—CTRL N/A Membrane Transmembrane transporter
activity

Mitochondrial
ribosomal protein S30 MRPS30 5.6704 0.001028 AT—BF;

AT—CTRL Translation Mitochondrial large ribosomal
subunit

Structural constituent of
ribosome

Pseudopodium
enriched atypical kinase

1
PEAK1 5.6141 0.0010402 AT—BF;

AT—CTRL Protein phosphorylation N/A ATP binding, protein kinase
activity

Tyrosine-protein kinase TNK2 5.4357 0.001384 BF—AT;
BF—CTRL

Adaptive immune response,
intracellular signal transduction,

protein phosphorylation
Plasma membrane ATP binding, metal ion binding

protein, tyrosine kinase activity

FRAT regulator of WNT
signaling pathway 1 FRAT1 5.4029 0.001384 BF—AT;

BF—CTRL N/A N/A N/A
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Table 2. Cont.

Protein Names Gene Names −log10(p) FDR Fisher’s LSD Biological
Process

Cellular
Component

Molecular
Function

TAO kinase 1 TAOK1 5.2529 0.0017921 AT—BF;
AT—CTRL Protein phosphorylation N/A ATP binding, protein kinase

activity

RNA-binding protein 18 RBM18 4.9606 0.0032425 AT—BF;
AT—CTRL N/A N/A RNA binding

DnaJ homolog
subfamily C member 16 DNAJC16 4.8531 0.0037381 AT—BF;

AT—CTRL N/A Membrane N/A

Polymeric
immunoglobulin

receptor
PIGR 4.8367 0.0037381 BF—AT;

BF—CTRL N/A Membrane N/A

Alpha-1-B glycoprotein A1BG 4.6873 0.0049434 AT—BF; CTRL—BF N/A Membrane N/A

Fetuin B FETUB 4.4265 0.008483 AT—BF;
AT—CTRL

Binding of sperm to zona
pellucida, negative regulation of

endopeptidase activity
Extracellular space

Cysteine-type endopeptidase
inhibitor activity,

metalloendopeptidase inhibitor
activity

PH domain and leucine
rich repeat protein

phosphatase 1
PHLPP1 4.263 0.011673 AT—BF;

AT—CTRL N/A N/A N/A

Ig-like
domain-containing

protein
N/A 4.2288 0.011965 AT—CTRL;

BF—CTRL N/A N/A N/A

Neuregulin 1 NRG1 4.1774 0.012795 AT—BF;
AT—CTRL Nervous system development Cellular anatomical entity Signaling receptor binding

Ring finger protein 213 RNF213 4.1374 0.013005 AT—BF;
AT—CTRL N/A Cytoplasm

ATP hydrolysis activity, metal
ion binding, ubiquitin-protein

transferase activity

Voltage-dependent
L-type calcium channel

subunit alpha
CACNA1D 4.1289 0.013005

AT—BF;
AT—CTRL;
CTRL—BF

Regulation of monoatomic ion
transmembrane transport

Voltage-gated calcium channel
complex

Metal ion binding, voltage-gated
calcium channel activity
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3.2.3. The Interactions between DHT and Overexpressed Proteins in the BF Subgroup

DHT was added to the protein–protein and protein–chemical interaction networks
of the SLC5A5, TNK2, FRAT1, and PIGR overexpression in the BF subgroup. Among
these, SLC5A5, TNK2, FRAT1, and DHT exhibited the highest level of relationship in the
protein interaction network (with edge confidence >0.9) with their functional partners.
These partners included cell division cycle 42 (CDC42), growth factor receptor-bound
protein 2 (GRB2), glycogen synthase kinase 3 beta (GSK3B), epidermal growth factor
receptor (EGFR), breast cancer anti-estrogen resistance 1 (BCAR1), disheveled, Dsh homolog
1 (DVL1), ubiquitin C (UBC), sex hormone-binding globulin (SHBG), androgen receptor
(AR), and iodide. However, PIGR was isolated from this protein network (Figure 3).
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kinase (TNK2), and FRAT regulator of WNT signaling pathway 1 (FRAT1) in the network of pro-
tein interaction with dihydrotestosterone (DHT) their functional partners. Red circle: polymeric
immunoglobulin receptor (PIGR). Abbreviations of functional protein partner: CDC42, cell divi-
sion cycle 42; GRB2, growth factor receptor-bound protein 2; GSK3B, glycogen synthase kinase
3 beta; EGFR, epidermal growth factor receptor; BCAR1, breast cancer anti-estrogen resistance 1;
DVL1, disheveled, Dsh homolog 1; UBC, ubiquitin C; SHBG, sex hormone-binding globulin; AR,
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3.2.4. The Interactions between Finasteride and Overexpressed Proteins in the
AT Subgroup

Enrichment assessment and exploration of protein–protein interactions were per-
formed on finasteride and the 12 overexpressed proteins in the AT subgroup, including
APOE, APOA2, APOC1, MRPS30, PEAK1, TAOK1, DNAJC16, FETUB, PHLPP1, NRG1,
RBM18, and RNF213. Among these proteins combined with finasteride, APOE, APOC1,
and APOA2 demonstrated the most significant level of interaction within the protein
network (edge confidence >0.9). Additionally, TAOK1, DNAJC16, PHLPP1, and NRG1
displayed strong relationships (edge confidence >0.7) with their respective predicted func-
tional partners. These partners included v-akt murine thymoma viral oncogene homolog
1 (AKT1), Cbl proto-oncogene (CBL), epidermal growth factor receptor (EGFR), v-erb-b2
erythroblastic leukemia viral oncogene homolog 3 (ERBB3), v-erb-a erythroblastic leukemia
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viral oncogene homolog 4 (ERBB4), forkhead box O1 (FOXO1), growth factor receptor-
bound protein 2 (GRB2), heat shock protein 90kDa alpha (cytosolic), class A member
1 (HSP90AA1), heat shock protein 90kDa alpha (cytosolic), class B member 1 (HSP90AB1),
lipoprotein receptor-related protein 1 (LRP1), lipoprotein receptor-related protein 8 (LRP8),
macrophage stimulating 1 (MST1), mechanistic target of rapamycin (serine/threonine
kinase) (MTOR), nitric oxide synthase 3 (NOS3), PH domain and leucine rich repeat pro-
tein phosphatase 2 (PHLPP2), RPTOR independent companion of MTOR (RICTOR), SHC
(Src homology 2 domain containing) transforming protein 1 (SHC1), sorting nexin family
member 27 (SNX27), signal transducer and activator of transcription 3 (STAT3), suppressor
of G2 allele of SKP1 (SUGT1). Furthermore, PEAK1 exhibited moderate relationships (edge
confidence >0.7) with its predicted functional partner, GRB2. However, FETUB, MRPS30,
RNF213, and RBM18 were not connected within this protein network (Figure 4).
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domain and leucine rich repeat protein phosphatase 1 (PHLPP1), Ig-like domain-containing protein,
neuregulin 1 (NRG1) and pseudopodium-enriched atypical kinase 1 (PEAK1) in the network of
protein interaction with finasteride and their respective predicted functional partners. Red circle:
mitochondrial ribosomal protein S30 (MRPS30), fetuin B (FETUB), ring finger protein 213 (RNF213)
and RNA-binding protein 18 (RBM18). Abbreviations of functional protein partner: AKT1, v-akt
murine thymoma viral oncogene homolog 1; CBL, Cbl proto-oncogene; EGFR, epidermal growth
factor receptor; ERBB3, v-erb-b2 erythroblastic leukemia viral oncogene homolog 3; ERBB4, v-erb-a
erythroblastic leukemia viral oncogene homolog 4; FOXO1, forkhead box O1; GRB2, growth factor
receptor-bound protein 2; HSP90AA1, heat shock protein 90kDa alpha (cytosolic), class A member 1;
HSP90AB1, heat shock protein 90kDa alpha (cytosolic), class B member 1; LRP1, lipoprotein receptor-
related protein 1; LRP8, lipoprotein receptor-related protein 8; MST1, macrophage stimulating 1;
MTOR, mechanistic target of rapamycin (serine/threonine kinase); NOS3, nitric oxide synthase 3;
PHLPP2, PH domain and leucine rich repeat protein phosphatase 2; RICTOR, RPTOR independent
companion of MTOR; SHC1, SHC (Src homology 2 domain containing) transforming protein 1;
SNX27, sorting nexin family member 27; STAT3, signal transducer and activator of transcription 3;
SUGT1, suppressor of G2 allele of SKP1.

4. Discussion

To the authors’ knowledge, this is the first investigation to report serum proteome
profiling in dogs with BPH before and after castration. A candidate peptide, predicted
A1BG, showed lower expression in the BF subgroup compared with other groups. A1BG is
a secreted plasma protein whose function is still unknown. Through internal duplication
and sequence similarity to immunoglobulin-like proteins, A1BG exhibits homology to
the immunoglobulin supergene family. Although this protein is known to be extensively
expressed in adult and fetal livers, small amounts of it are discovered in the blood, brain,
lung, and lymph nodes [36]. Regarding cancer patients, A1BG level was elevated in the
serum of women with endometrial and cervical cancer [37] as well as in the plasma of
patients with small renal cell carcinoma [38]. Moreover, the study with plasma proteomic
analysis identified A1BG as a potential biomarker related to squamous cell carcinoma of
the cervix [39]. In other diseases, increased levels of A1BG have been reported in pediatric
steroid-resistant nephrotic syndrome [40] and in dogs with uncomplicated babesiosis [41].
In addition, the A1BG serum biomarker shows potential as a stage III and stage IV en-
dometriosis diagnostic tool for women [42]. Increased thyroid hormone levels in patients
with hyperthyroidism might be associated with the regulation of acute phase protein re-
sponses, including A1BG, indicating an inflammatory state [43]. A recent study suggested
that elephants with negative tuberculosis may have a defense against infection that con-
tains A1BG as part of their possible defensive mechanisms [44]. While canine mammary
gland tissue samples, analyzed using matrix-assisted laser desorption/ionization mass
spectrometry imaging coupled with liquid chromatography tandem mass spectrometry,
exhibited overexpression in poorly differentiated tumors, the lower expression of the A1BG
gene was demonstrated to predict a poorer prognosis for distant metastasis-free survival
in human breast cancer patients [45]. Therefore, altered A1BG might serve as a potential
biomarker for canine prostatic hyperplasia. Further studies are needed to validate A1BG
expression and biological function or association with this disease.

Accordingly, in our study, the protein–protein interactions of SLC5A5, TNK2, FRAT1,
and DHT were associated with AR, except for PIGR. Functional analysis showed that
significantly upregulated proteins related to pathways in cancer, focal adhesion, prostatic
cancers, and others were induced as the compensatory reaction. SLC5A5 belongs to the so-
lute carrier (SLC) group of membrane transport proteins, residing within the cell membrane.
Encoded by the SLC5A5 gene, the sodium/iodine symporter is an intrinsic membrane
protein responsible for facilitating the transfer of iodine from the bloodstream into thyroid
follicular cells via SLC5A5 marking the initial stage in the synthesis of thyroid hormone [46].
This transfer leverages the sodium gradient produced by the Na+/K+-ATPase [47]. Previ-



Animals 2023, 13, 3853 13 of 23

ous reports illustrated the induction of the fusion RNA and protein product, namely the
SLC45A3-ELK4 transcript, by androgens. Notably, the chimeric mRNA, but not the wild-
type ELK4, was identified as a driver for androgen-dependent proliferation in prostate can-
cer cells. ELK4 protein plays a crucial role in controlling cell overgrowth, operating in both
androgen-dependent and -independent prostate cancer cells. Disease progression appears
to correlate with the chimeric transcript’s levels, peaking in prostate cancer metastases [48].
A current study in prostate cancer proposed that the abnormal expression of SLC12A5,
SLC25A17, and SLC27A6 were strong to metabolic reprogramming and the development
of resistance against chemotherapeutic drugs. As prostate cancer cells undergo metabolic
reprogramming in an androgen-deprived setting, the upregulation of solute carrier genes
points to their potential as attractive therapeutic targets [49]. Moreover, a previous study
suggested that SLC5A5 expression could differentiate between follicular adenomas and
carcinomas [50]. Our investigation revealed connections between SLC5A5 and the risk of
canine BPH. Therefore, the polymorphisms in SLC5A5 might serve as candidates for gene
or protein carriers in therapeutic interventions of BPH in dogs. Several investigations have
connected various types of cancers to the abnormal activation of tyrosine kinases (TNK2)
caused by somatic mutation or DNA amplification [51]. For prostate cancer, tyrosine ki-
nases play an additional role in the progression toward a castration-resistant disease state.
This stage of prostate carcinogenesis, which presents the most formidable challenge due to
its resistance to effective treatments, is currently without any viable solutions. Non-receptor
tyrosine kinases, specifically Src/Etk/FAK collectively known as the Src tyrosine kinase
complex, contribute significantly to this process. This complex has been demonstrated to
wield considerable influence over the aberrant activation of AR, driven by various growth
factors such as EGF, cytokines like IL-6, chemokines including IL-8, and neurokines such
as gastrin-releasing peptide. These factors are induced and released from prostate cancer
cells to stromal cells upon androgen withdrawal [52]. Elevated signaling through tyrosine
kinases has been observed in advanced prostate cancer. Specific tyrosine kinase pathways
in the development of prostatic cancer, including the activation of EGFR, ephrin type-A
receptor 2, and JAK2, have been identified in a mouse model [53]. As a result, this study
suggested that a high level of TNK2 serves as one contributing factor in the development
of BPH. The FRAT1 protein functions by inhibiting GSK-3-mediated phosphorylation of
beta-catenin, thereby exerting a positive influence on the Wnt signaling pathway. A prior
study demonstrated that the expression levels of FRAT1 were modified through overex-
pression or RNA interference-induced depletion in prostate cancer cells. Notably, FRAT1
was exclusively expressed in the nuclei of normal prostate basal cells, while nuclear FRAT1
was observed in 68% (40 out of 59) of prostate adenocarcinoma samples [54]. Furthermore,
instances of FRAT1 overexpression have been documented in various cancers, including
ovarian cancer, gastric cancer, esophageal squamous cell carcinoma, and non-small cell
lung cancer [55–58]. The involvement of FRAT1 in cell development and progression is
evident. Thus, FRAT1 could potentially contribute as a factor in canine BPH.

Our study demonstrated that the overexpression of PIGR did not show the interaction
of PIGR with others such as SLC5A5, TNK2, FRAT1, and DHT. However, in both male and
female reproductive organs, androgens have been demonstrated to increase the expression
of the PIGR gene, and two crucial AR binding sites have been identified in the human
PIGR gene [59]. The high level of PIGR was affected by sex steroids and polypeptide
hormones, including estradiol, progesterone, androgens, glucocorticoids, and prolactin [60].
At the basolateral surface of epithelial cells, the PIGR, a member of the immunoglobulin
superfamily, binds polymeric immunoglobulin molecules. The complex is subsequently
secreted at the apical surface as a secretory component after transcytosis across the cell [61].
One study revealed associations between early-stage endometrial cancer and high PIGR
expression, proposing a possible explanation for this less aggressive type [62]. Significant
relationships between PIGR expression and low-grade tumors were also discovered in
a prospective population-based cohort of epithelial ovarian cancer, demonstrating a less
aggressive character for tumors with high PIGR expression [63]. This study demonstrated
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no association between PIGR and AR or DHT in dogs with BPH, leading them to identify
PIGR as a novel biomarker linked to the development of BPH in dogs.

Out of the 11 elevated proteins observed in the AT subgroup when combined with
finasteride, apolipoproteins (APOs) exhibited the highest level of prominence within the
protein network. APOs play a crucial role in lipid transportation and are essential con-
stituents of lipoproteins, which are intricate structures responsible for ferrying lipids into
the bloodstream [64]. These APOs play a crucial role in lipid transport within the blood
circulation, contributing significantly to the utilization and clearance of lipoproteins [65].
APOE serves a multifaceted function in cholesterol metabolism, facilitating the uptake of
lipoprotein particles into cells by binding to receptors, including those of the low-density
lipoprotein receptor family and the receptor for chylomicron remnants [66]. In humans,
APOE has been linked not only to cholesterol transport but also to various functions
such as DNA synthesis, cell proliferation, angiogenesis, and metastasis. Deviations from
these functions can potentially contribute to tumor formation and progression. APOE
overexpression has been observed in diverse cancers, including gastric, lung, prostate,
thyroid, ovarian, endometrial cancer, and glioblastoma [67–71]. However, APOE plays a
role in tissue repair and regeneration beyond its lipid transport. Research indicates that
APOE can act as a cell proliferation inhibitor [72], participating in immune regulation,
modulation of cell growth and differentiation [73], and exerting antioxidant activity [74].
APOC1, present in both triglyceride-rich and high-density lipoproteins, is critical for
plasma lipoprotein metabolism [75]. APOC1’s interactions with APOE are implicated in
various biological processes, including cholesterol breakdown, membrane remodeling, and
dendritic reorganization [76]. Numerous studies link APOC1 to several diseases, such as
diabetic nephropathy, type 1 and type 2 diabetes, Alzheimer’s disease, and glomerulosclero-
sis [76–80]. Additionally, APOC1’s involvement extends to the progression of breast cancer,
pancreatic cancer, lung cancer, and prostate cancer [81–84]. APOA2, a gene belonging to the
apolipoprotein A family, is a primary apolipoprotein found in high-density lipoprotein. The
study in pregnant women with gestational diabetes revealed reduced APOA2 expression,
indicating its involvement in inflammation [85]. APOA2 has also been linked to cancer and
has potential diagnostic and prognostic value in pancreatic cancer, lung cancer, prostatic
cancer, colorectal cancer, metastatic renal cancer, and gastric cancer [86–91]. In this study,
low levels of APOE, APOC1, and APOA2 were observed in the BF subgroup. Recent studies
have demonstrated significantly lower levels of serum APOA and APOE in BPH patients
compared to controls, while levels were notably higher in BPH than in prostate cancer
patients [92]. Similar reductions in serum APOA2 and APOE were observed in dogs with
BPH, as in human findings. This study also revealed protein–protein interactions involving
APOE, APOC1, and APOA2 in association with finasteride, suggesting the potential effects
of this drug on these interactions.

PEAK1 is a novel non-receptor tyrosine kinase that shows widespread expression
across all tissues and is highly conserved among vertebrates. Its dysregulation has been
observed in various cancer types [93]. Remarkably, PEAK1 exerts significant influence in
the realm of cancer. Through the PEAK1-GATA2 transcriptional pathway, it orchestrates the
transcription of vascular endothelial growth factor receptor 2 (VEGFR2), a pivotal driver of
neovascularization in vertebrates [94]. Recent research has revealed the PEAK1 signature,
which becomes elevated under conditions of moderate to severe hypoxia, correlating with
heightened MYC expression and a robust Ki67-proliferation index in cancer cells. This
phenomenon has been observed in prostate cancer patients [95]. This research observed an
association between PEAK1 and finasteride via AKT1 in the protein interaction network.
Previous studies have reported that treating rats with finasteride led to a notable reduction
in ventral prostate weight and intraprostatic DHT levels, primarily by inhibiting AKT1 and
MAPK expression [96]. As a result, elevated PEAK1 levels may potentially be linked to
AKT1 and finasteride in dogs.

The discovery of the PHLPP1 stemmed from a search for genes possessing both a
phosphatase activity and a PH domain. This gene design was theorized to counteract
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kinases containing PH domains, such as AKT. The serine/threonine phosphatases PHLPP1
have been established as direct inhibitors of AKT and protein kinase C [97–99]. Previous
investigations indicated that the absence of PHLPP1, particularly in scenarios involving
partial PTEN loss, triggers p53 activation and cellular senescence within the prostate gland.
This cascade ultimately contributes to the emergence of spontaneous p53 mutations during
the progression of prostate cancer [100]. In this study, the notable elevation of PHLPP1
levels observed in the AT subgroup, relative to the control group, holds promise as a
potential marker for BPH in dogs. The protein network showed PHLPP1 associated with
AKT1 and finasteride, in which PHLPP1 might be inhibited by AKT1-like finasteride.

Thousand and one kinases (TAOKs) are members of the MAP3K (MAP kinase kinase
kinase) family. There are three members of this subfamily known to be found in mam-
mals: TAOK1, 2, and 3 [101]. MAPKs control critical cellular processes including mitosis,
proliferation, differentiation, apoptosis, stress, and immune responses [102]. TAOKs are
implicated in the regulation of inflammation and immunity. The testes and brain express
TAOKs at the greatest levels; however, they are generally ubiquitously expressed in most
tissues [103]. The current study demonstrated that TAOK1 increases the lipopolysaccharide
(LPS)-induced production of pro-inflammatory cytokines, including IL-6, TNF-α (tumor
necrosis factor-α), and IL12p40, in macrophages. It was also found that TAOK1 enhances
the LPS-induced activation of ERK1/2 by interacting with TRAF6 (TNF receptor-associated
factor 6) and TPL2 (MAP3K8). Therefore, the study proposed that TAOK1 is a positive
regulator of the Toll-like receptor 4-induced inflammatory responses in macrophages [104].
Moreover, TAOKs are involved in apoptosis regulation. In the lung carcinoma cell line
H1299, it was found that the activation of TAOK1 can induce cell contraction, membrane
blebbing, cleavage of Rho kinase 1 and caspase 3, and activate the JNK pathway to induce
apoptosis [105]. Our study discovered that TAOK1 is related to AKT1 and finasteride
through MST1. Previous reports have indicated that MST1 is also involved in regulating
the AKT1 pathway. This kinase could potentially serve as a crucial new connection be-
tween androgenic and growth factor signaling, making it a novel therapeutic target in
prostate cancer [106]. Therefore, TAOK1 may play a role as one of the factors in managing
prostatic diseases.

A large number of chaperones known as heat shock proteins (HSPs) are activated
by a variety of stressors, including high temperatures, hypoxia, infections, and other
conditions [107]. HSP40 proteins, also known as DNAJ proteins, constitute one of the largest
families among HSPs. HSP40 has been linked to cell apoptosis in type 2 diabetes [108,109].
DNAJC is one type of HSP40 protein that only has a J-domain, which is not necessarily
located at the N-terminus of the protein [110]. A recent study revealed that ERdj8, a
782-amino-acid protein encoded by DNAJC16, localizes to a meshwork-like endoplasmic
reticulum subdomain. It is linked to the control of the size of autophagosomes, together
with phosphatidylinositol synthase and the autophagy-related proteins [111]. Moreover,
the study in humans suggested that the DNAJC16 gene associated with gout disease may
be involved in the mechanism of urate phagocytosis [112]. Interestingly, the DNAJC16
gene is one of the chaperone families HSP40, which regulates AR and mediating sensitivity
to chaperone inhibitors to aid in identifying new drug targets for efficacy in castration-
resistant prostate cancer [113]. Therefore, this study proposed that DNAJC16 might be a
novel therapeutic target in dogs with BPH.

NRG1 is a neurotrophic factor that belongs to the family of epidermal growth factors.
It is mainly discovered in the neurological and cardiovascular systems. NRG-1 signaling
is transduced by the erb-b2 receptor tyrosine kinase (ErbB) family, which belongs to the
receptor protein tyrosine kinase family, and phosphorylation and dimerization of these
receptors leads to activation of intracellular signaling cascades [114]. It has been suggested
that NRG1/ErbB signaling controls neural development, including neuron–glia interac-
tions during the lamination of the cerebral and cerebellum [115]. In the cardiovascular
system, NRG1/ErbBs have systemic effects that include reducing oxidative stress, inhibit-
ing the inflammatory response, protecting central and peripheral nerve performance, and
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providing comprehensive protection in various clinical situations [116]. Moreover, NRG-1
in cardiomyocytes inhibits apoptosis by PI3K/AKT signaling [117]. NRG-1 has been shown
to have anti-inflammatory characteristics in a variety of tissues, including the heart, skin,
lungs, brain, and adipose tissue [118]. The mechanisms behind the anti-inflammatory
ErbB4 assists result from a variety of processes, such as decreased tissue damage, inhibi-
tion of proinflammatory adhesion molecules on endothelial cells, the decreased release of
cytokines, and increased macrophage clearance by apoptosis [119]. The study conducted
in mice elucidated the functions and interactions of luteinizing hormone and NRG1 in
controlling specific testicular processes. These processes include Leydig cell proliferation
during testis development through the ERK1/2 pathway, Leydig cell survival in the adult
testis via the AKT pathway, and sperm maturation through the maintenance of testosterone
production by adult Leydig cells [120]. In the protein network, NRG1 exhibited a similarity
to its relation with AKT1 in humans. Therefore, it could potentially be a crucial protein in
dogs with BPH.

Furthermore, FETUB, MRPS30, RNF213, and RBM18 did not exhibit any associations
in the protein network when combined with finasteride in our study. FETUB is a glycopro-
tein belonging to the type 3 cysteine protease inhibitor protein family [121]. It is primarily
produced by the liver and inhibits the activation of cysteine-type endopeptidases. FETUB
shares some similarities in function with its paralog fetuin-A, which plays roles in various
physiological processes such as fatty acid transport [122], response to systemic inflamma-
tion [123], and the inhibition of basic calcium phosphate precipitation [124]. Recent studies
in humans have linked FETUB to cardiovascular disease [125], tumors [126], reproduc-
tion [127], and glucose and lipid metabolism [128]. Interestingly, FETUB expression in rats
is induced by estrogen and may inhibit breast cancer development under estrogen influ-
ence [129]. In humans, FETUB levels were significantly higher in normal prostate cell lines
compared to prostate cancer (PC) cells, and FETUB overexpression inhibited PC cell prolifer-
ation, migration, and invasion by inhibiting the PI3K/AKT signaling pathway and inducing
apoptosis [130]. Mitochondrial ribosomal protein (MRP) genes, including MRPS30, have
been linked to human diseases such as deafness and retinitis pigmentosa [131]. MRPS30, an
apoptosis-related gene, exhibited differential expression between androgen-resistant and
androgen-responsive prostate cancer cell lines [132]. Recent research has proposed hypothe-
ses about the MRPS30 genomic region and its relation to postmenopausal breast cancer
risk [133]. However, its precise function remains elusive. In Moyamoya disease, a rare cere-
brovascular condition, RNF213 mutations are common [134]. This gene encodes a protein
with AAA+ ATPase and E3 ubiquitin ligase domains, which are associated with functions
like angiogenesis, autophagy, autoimmunity, and lipid metabolism [135]. RNF213 has been
identified as an interferon-induced megaprotein with antimicrobial activity against various
viruses [136]. In Madin Darby canine kidney cells, RNF213 genes were upregulated when
exposed to acid in a metabolic acidosis model, suggesting a potential role as a ubiquitin
ligase [137]. Taken together, these findings suggest that FETUB, MRPS30, and RNF213 may
be novel proteins with potential relevance to canine BPH. RNA-binding proteins (RBPs)
facilitate the interactions among various RNAs, forming ribonucleoproteins that govern
post-transcriptional gene expression regulation [138]. Moreover, they play a vital role in
regulating RNA metabolism processes like splicing, translation, and localization [139].
Given the regulatory functions of RBPs, recent research has pointed about their malfunction
in cancer initiation and progression [140]. In this study, RBM18 exhibited elevated levels
in the AT subgroup. However, there is no prior documentation of RBM18 in mammals,
suggesting it could be a novel protein associated with the development of BPH in dogs.

5. Conclusions

This study performed the first investigation of serum proteome profiling in dogs
with BPH before and after castration. Interestingly, the predicted A1BG displayed lower
expression in the BF subgroup when compared to the other groups. Additionally, our study
unveiled protein–protein interactions involving SLC5A5, TNK2, FRAT1, and DHT with
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AR. Furthermore, within the AT subgroup, where finasteride was combined, this study
observed an elevation in 12 proteins, with a particular prominence of APOs. These findings
indicate the potential of these proteins as biomarkers and warrant further investigation into
their roles and implications in canine BPH. However, further studies are essential to validate
their expression, elucidate their biological functions, and establish their associations with
this disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13243853/s1, Supplementary Figure S1: Boxplot of protein
expression significantly different between AT (red), BF (green), and CTRL (blue) of APOC1, APOA2,
APOE, RNF213, NRG1, MRPS30, PHLPP1, DNAJC16, PEAK1, TAOK1, FETUB, RBM18; Supplemen-
tary Table S1: The list of 3850 proteins in all serum samples using in solution digestion coupled with
LC-MS/MS.
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