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Simple Summary: The yak is a unique livestock species living in the Qinghai–Tibet Plateau. Investi-
gating the morphological differences among different breeds of yaks is of paramount importance.
However, due to the lack of effective communication of yak genetic information under natural and
artificial selection, the genetic diversity of regional yaks is not effectively utilized for new breedings,
and it is difficult for the existing analysis models to analyze such complex multi-species popula-
tions. Therefore, we extended the application scope of the current statistical model to perform
whole-genome association analysis on multiple yak breeds and identified four genes significantly
associated with body height. The findings of this study are of great significance for the development
and improvement of yak morphological traits, as well as the expansion of statistical models.

Abstract: Yaks have evolved several breeds or genetic resources owing to their geographical and
ecological environment, and investigating the genetic construction of body size among breeds is
key for breeding. Here, a genome-wide association study (GWAS) was performed for five body size
traits in 31 yak breeds and genetic resources. The information from clustering individuals according
to their habitats was used for kinship grouping in the compressed mixed linear model (CMLM).
We named this approach the pCMLM method. A total of 3,584,464 high-quality single nucleotide
polymorphisms (SNPs) were obtained, and six markers were found to be significantly associated
with height by pCMLM. Four candidate genes, including FXYD6, SOHLH2, ADGRB2, and OSBPL6,
were identified. Our results show that when CMLM cannot identify optimal clustering groups,
pCMLM can provide sufficient associated results based on population information. Moreover, this
study provides basic information on the gene localization of quantitative traits of body size among
yak breeds.

Keywords: yak; genetic resource; genome-wide association study; body size trait; genetic characteristic;
extended model

1. Introduction

Yak (Bos grunniens), a unique large livestock species of the Qinghai–Tibet Plateau and
surrounding Hengduan Mountains, provide a basic resource for the livelihood of plateau
farmers and herders [1]. Due to different geographical and climatic environments, ecologi-
cal conditions, grassland types, feeding levels, breeding levels, and social and economic
structures in the main producing areas, China has formed 12 yak breeds: Qinghai Plateau
yaks, Gannan yaks, Tianzhu White yaks, Bazhou yaks, Zhongdian yaks, Jiulong yaks, Muli
yaks, Maiwa yaks, Niangya yaks, Xizang Alpine yaks, Pali yaks, and Sibu yaks [2]. Tibet is
one of the main yak-producing areas in China accounting for 30% of the total number. Yaks
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are distributed in 71 counties in Tibet, forming many local yak breeds and populations,
including the Niangya yak, Pari yak, Sibu yak, Sangsang yak, Sangri yak, Baqing yak,
Dingqing yak, Kangbu yak, Jiangda yak, Leiwuqi yak, and Gongbujiangda yak [3].

This rich genetic diversity reflects adaptation to the external environment and is a
vital genetic resource for breeding new breeds or strains. However, due to the lack of
active communication of yak genetic information during natural and artificial selection,
obtaining differential genetic information of different yak breeds and genetic resources has
become very important. The yak body size trait is the most critical genetic index. It is an
essential reference index to determine meat production performance and one of the most
direct breeding selection parameters [4]. Some yaks are more aggressive due to mixing
with wild blood, and extracting relevant biological traits is more complicated. However,
technology for extracting animal body size traits by image recognition has become more
advanced [5,6]. At present, digital images of beef cattle acquired by a Microsoft Kinect
device can be used to establish model equations for predicting body weight, carcass weight,
and body fat content; this has facilitated rapid and easy body size trait determination [7].

With the development of high-throughput genotyping technology, opportunities have
been provided for identifying new genetic variants associated with economic traits in
cattle, where single nucleotide polymorphisms (SNPs) distributed throughout the genome
have become the genetic markers of choice. Genome-wide association study (GWAS) is a
common experimental approach to study SNP markers associated with various economic
traits in animal production by linking phenotypic and genotypic data and using statistical
models to investigate genetic variant loci causally associated with the target trait [8]. The
GWAS approach has successfully revealed genetic determinants associated with disease
susceptibility and resistance in humans [9], animals [10], and plants [11]. At the same time,
the total genome data of yaks is 2.7 G, indicating genetic diversity among populations
and the use of random mating within populations. This results in a large number of
effective SNPs within the yak population. This will increase the computational burden.
The compressed Mixed Linear Model (CMLM) was reported to improve the statistical
power and computational speed of GWAS by clustering individuals into groups based on
kinship among individuals [12]. When the likelihood values of the testing model in the
CMLM are not able to identify the optimum clustering group, the individuals are grouped
in a group with only one individual. This result has been proved by simulation results.
However, previous population clustering [13] is widespread in animals, especially in yaks,
and application of previous population structure is key for animal GWAS.

In this study, we performed GWAS using yak datasets from different geographical
areas in order to (1) detect SNP markers associated with body size among yak breeds, and
(2) develop animal GWAS methods using the information provided on the populations.

2. Materials and Methods
2.1. Individual Samples and Sequencing

A total of 94 yaks were collected from different regions of the Qinghai–Tibet Plateau in
China, including 17 Tibetan regions, 4 Qinghai regions, 4 Sichuan regions, 2 Gansu regions,
2 Xinjiang regions, 1 Yunnan region, and 4 wild yaks; in total, there were 31 yak breeds
and genetic resources (Table 1). Detailed information on these yak genetic resources and
their distribution areas are shown in Table S1. Population samples were obtained from
the Key Laboratory of Qinghai–Tibetan Plateau Animal Genetic Resource Reservation and
Utilization, Sichuan Province, and Ministry of Education, Southwest Minzu University.
The sequence files of 94 yaks [13] were all obtained from the sequencing results of DNA
extracted from blood samples using the Illumina Hiseq 2000 sequencer (Illumina, San
Diego, CA, USA). Individuals of each yak (more than 2.5 years old, male) breed or genetic
resource were measured for body height (BH, cm), body length (BL, cm), body weight (BW,
kg), chest circumference (CC, cm), and circumference of the cannon bone (CCB, cm). The
phenotypic values used for GWAS analysis in this study were replaced by the overall mean
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values of the measured phenotypes for each breed or genetic resource. This allowed for a
better representation of breed characteristics [14].

Table 1. Data distribution of yak samples.

Location 1 Breeds or Genetic Resources 2 Count 3

Tibet, China
Zhongba, Senza, Cuona, Sangsang, Sangri, Sibu,
Riduo, Pali, Nierong, Longzi, Leiwuqi, Kangbu,
Lijia, Jiangda, Gongbujiangda, Baqing, Dingqing

51

Qinghai, China Qilian, Huanhu, Gaoyuan, Datong 12
Sichuan, China Maiwa, Jiulong, Jinchuan, Changtai 12
Gansu, China Tianzhu, Gannan 6

Xinjiang, China Xinjiang, Bazhou 6
Yunnan, China Zhongdian 3

Qinghai–Tibet Plateau Wild yak 4
Total 94

1 The administrative divisions all represent the regional divisions of the provinces or are autonomous of the
People’s Republic of China; 2 The names of the strains within the breeds or genetic resources are named after their
geographical locations; 3 The number in count is the number of individuals contained in this study population in
the region.

2.2. Genotyping Quality Control and Filtering

Data filtering was performed using the FASTP [15] software (version 0.20.1). Double-
end sequencing reads were aligned using the Burrows–Wheeler Alignment Tool (BWA) [16]
software (version 0.7.15), and high-quality reads were compared with the yak reference
genome (BosGru3.0); the resulting BAM files were sorted using the sort command of the
SAMtools [17] software (version 1.11) and de-duplicated using the rmdup command (all
duplicate reads were removed directly). Local recombination of reads and comparison of
near enhanced indel polymorphisms were performed using the Genome Analysis Toolkit
(GATK) [18] software (version 4.0.1). Then the HaplotypeCaller command in GATK was
used for SNP calling, CombineGVCFs command for VCF file merging, GenotypeGVCFs
command for variant detection, and VariantFiltration command for initial filtering. The
variant filtering conditions were set as follows: QD (QualByDepth, variant loci confidence
divided by the number of unfiltered non-reference reads) < 2.0; FS (FisherStrand, Fisher
exact test to assess the probability that the current variant is a strand bias, this value is
between 0 and 60) > 60.0; MQ (RMSMappingQuality, square root of the matching quality in
all samples) < 40.0; MQRankSum (MappingQualityRankSumTest, assesses the confidence
based on the matching quality of the read of REF and ALT) < 12.5; ReadPosRankSum
(ReadPosRankSumTest, evaluate the variation confidence by the position of the variation
in the read, usually the error rate is higher at both ends of the read) < 8.0, and SOR
(StrandOddsRati, comprehensive assessment of the likelihood of strand bias) > 3.0. Maker
filtering using the PLINK [19] software (version 1.90) with the variant filtering conditions
were set as follows: maf (minor allele frequency) 0.05, max-missing (maximum deletion rate
of genotype) 0.05, and hwe (deviations from Hardy–Weinberg equilibrium) 1 × 10−6. The
Genome Associated Prediction Integrated Tool (GAPIT) [20] was used for heterozygosity
analysis of all markers.

2.3. Population Structure

The neighbor-joining (NJ) tree was constructed using the P distance matrix calculated by
the VCF2Dis [21] software (version 1.46), tree beautification was performed on the online site iTol
(https://itol.embl.de/, accessed on 3 October 2022), and principal component analysis (PCA)
was performed and plotted using the GAPIT package in R. Population clustering analysis was
performed using the Admixture [22] software (version 1.30). Kinship and differentiation between
samples from different regions were viewed by joint analysis, and linkage disequilibrium (LD)
decay analysis was performed using PopLDdecay (version 3.41) [23].

https://itol.embl.de/


Animals 2023, 13, 1470 4 of 14

2.4. Association Study

Genome-wide association analysis was performed using a compressed mixed linear
model (CMLM) [12] in the GAPIT (version 3.0) software, where PCA and the kinship matrix
were added as covariates, p-values were corrected with Bonferroni, and the cutoff was set
to 0.05/number of all markers.

The general expressions of CMLM are consistent:

Y = Wv + SNPi + Zu + e (1)

where, Y is the phenotypic vector (n × 1); W is the covariate design matrix of vector v,
and v is the corresponding coefficient vector, which is the non-marker effect among the
unknown fixed effects (we used the effects of the first 3 PCs as fixed effects in this study);
SNPi is the testing marker genotype; Z is the random design matrix (n × n) of u, where we
re-defined the Z matrix as n × n′, n′ being the number of groups compressed, and u being
the random effect vector of individuals, which obeys u~N(0,KVg), of which K is the n × n
kinship genetic matrix (in this study, we used the group kinship matrix n × n′ to replace
K); Vg is the additive genetic variance, and e is the random residual and obeys e~N(0,IVe),
in which I is the n×n design matrix and Ve is the residual component.

2.5. Population Index Building

Kinship in the model was calculated using all the markers. Combining test markers
with kinship in MLM may lead to confusion between test markers and the genetic effects
of individuals defined by kinship. In CMLM, Zhang et al. [12] introduced a variable now
called the compress group, which clusters individuals with closer kinship into groups
and uses the kinship between groups instead of the kinship between individuals for the
operation. In this study, 94 individual yaks were artificially clustered into 7 populations
based on their geographical relationships: Sichuan, Qinghai, Tibet, Gansu, Yunnan, Xin-
jiang, and wild yaks. We added a “compress_z” variable to the GAPIT built-in function
GAPIT.Compress.R to store the real geographical groupings; this provides the groupings in
CMLM in advance instead of the compressed groupings being estimated. We named this
approach the provided compressed mixed linear model (pCMLM). The specific parameter
compress_z under this method was marked with the number 1 to be identified as the
same group of objects, and the output parameter group.membership was marked with the
same number to be the same group. Currently, the parameter file for pCMLM has been
uploaded to GitHub (https://github.com/liu-xinrui, accessed on 8 February 2023), which
can provide a real or artificially defined grouping file for association study, as well as add
grouping information to CMLM.

2.6. Identification of Candidate Genes

Based on the physical location of the target trait association loci on the yak reference
genome and combined with the LD decay distance of the yak genome (~20 kb), associated
genes were screened on both sides of the SNP loci; we adjusted the LD decay distance to
100 kb when no linked genes were detected. If the gene on the reference genome had only an
Ensembl ID, the sequence of the gene was extracted for Basic Local Alignment Search Tool
(BLAST) comparison using the wild yak reference genome (BosGru_v2.0) for functional
analysis. For multiple significant SNP loci, haploid block mapping was performed using
LDBlockShow [24] (version 1.40) for all SNPs within 100 kb upstream and downstream of
the lead SNP, and a box plot of independent significant SNPs and phenotypic values of
each individual within a block was created.

3. Results
3.1. Phenotypic Distribution

We analyzed five body size traits of 94 adult yaks and summarized the descriptive
statistics (mean, variance, maximum, minimum, and coefficient of variation) for different
body size traits (Table 2). Most records of the body heights ranged from 100 to 205 cm. The

https://github.com/liu-xinrui
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mean value of body height was 118.2 cm, the mean value of body length was 138.6 cm, the
mean value of body weight was 284.9 kg, the mean value of the chest circumference was
168.8 cm, and the mean value of circumference of the cannon bone was 17.24 cm. All body
size data of wild yaks were higher than those of domestic yaks in all regions. The t-test
results showed that there was a significant difference (p-value < 0.05) between the body
sizes of the domestic yaks and wild yaks. Among them, the body size trait of yaks in the
Tibetan region was in the upper level among domestic yaks.

Table 2. Descriptive statistics of body size traits in yak.

Taxa * Max Min Mean SD SE CV (%)

BH 205 100.7 118.2 16.7559 1.72823 14.1805
BL 240 105.4 138.6 27.3521 2.82116 19.7283
BW 821 156.1 284.9 103.982 10.7249 36.4992
CC 270 140.1 168.8 23.2648 2.39958 13.7847

CCB 22.9 10.05 17.24 2.90050 2.39958 16.8203
* Body height (BH, cm), body length (BL, cm), body weight (BW, kg), chest circumference (CC, cm), circumference
of the cannon bone (CCB, cm), maximum (Max), minimum (Min), standard deviation (SD), standard error (SE),
coefficient of variation (CV). The description statistics of all phenotypes are generated by the summary function
of R.

3.2. SNP Calling and Population Structure

A total of 47.15 million markers, including SNPs, indels, and other variants, were
detected using the BWA-SAMtools-GATK pipeline [25] program with default parameters.
Overall, 3,584,464 SNPs remained after filtering by the GATK and PLINK software; on
average, they were distributed over 29 autosomes and 1 X chromosome, and the SNP
density of most windows was >1 kb/Mb (Figure 1A). In addition, the heterozygosity of
most individuals’ and SNP markers’ was low (Figure 1B,C).
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number of SNPs within a 1 Mb windows size. (B) Histograms of heterozygosity frequencies for all
94 individuals. (C) Histograms of heterozygous frequencies of all SNP markers.

In this study, yak populations were derived from 31 yak breeds and genetic resources
from different regions of the Qinghai–Tibetan Plateau, and consisted of several yak pop-
ulations from several provincial areas of China (Figure 2A); moreover, this sample had
complex population structures. To analyze the population structures of the 94 yaks, we
performed PCA, population stratification, and NJ-tree analysis on seven yak populations
(including six regions and wild yak populations) using 3.58 million high-quality SNP data
points obtained through filtering. The two-dimensional scatter plot of PCA clustering
showed that the population structure of the yak populations was relatively weak, and it
was difficult to distinguish between population structures. After excluding outliers, the six
populations were in a mixed state excepted for Tibetan individuals that could be roughly
clustered into a population (Figure 2B). The genetic variance contribution explained by the
first two principal components was 2.85% and 1.82% (Figure S1). The NJ-tree clustering re-
sults showed that most of the breeds or genetic resources shared a recent common ancestor
with both the Tibetan and Gansu populations, and all individuals were not independent;
these NJ-tree clustering results presented approximately the same population structure as
PCA did (Figure 2C). The optimal CV value of 1 in admixture population structure analysis
cannot accurately reflect the actual grouping of the population. To analyze yak breeds
and genetic resources more accurately, we forced grouping of Admixture, and classified
yak breeds and resources based on geographical population (seven populations in total).
However, the results only showed that most Tibetan individuals could be clustered into
one population, while the remaining six populations were in a mixed state where specific
clustering situations could not distinguish (Figure 2E). The LD analysis showed that the
breed-based yak populations had more rapid decay of LD and lower LD levels. The most
immediate decay was in the Tibetan breeds or genetic resources, followed by the Sichuan
yaks, Qinghai yaks, Gansu yaks, Xinjiang yaks, Wild yaks, and Yunnan yaks.
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structure explained by PCA using all SNP markers (B). All SNP markers were used to generate
NJ-tree of 94 yaks using VCF2Dis software (C). All SNP markers were used for LD decay analysis of
cultivars from seven different provinces and regions (D). All SNP markers were used to cluster the
cultivars from seven different provinces by Admixture software. Different colors are used to indicate
different provinces and regions in the figure (E).

3.3. GWAS and Candidate Genes

The CMLM model was used to associate loci with body size traits, and two statistical
strategies were constructed. The first strategy was a tight grouping constructed by splitting
all individual kinship matrices into several inter-group kinship matrices using CMLM,
named the CMLM group. The second was CMLM using a prior population clustering
parameter, named the pCMLM group. Comparing the negative twice likelihood (-2LL) of
the two strategies for detecting BH traits, the results showed that the difference between
pCMLM and CMLM was less than 10% of the mean value. Genotypic and phenotypic data
of 94 individual yaks were analyzed using the GAPIT software with the first three principal
components as fixed effects. Manhattan and quantile–quantile (QQ) plots are shown in
Figure 3. After Bonferroni correction, six SNPs were found to pass the 5% threshold line
(p-value < 1.39 × 10−8) and these were associated with BH only in pCMLM (Figure 3A),
whereas no significant loci associated with body sizes were detected in any of the CMLM
(Figures S2–S6). The QQ plot (Figure 3C) of pCMLM shows that all points corresponding
to observed and predicted values were in the middle or above the diagonal line. Although
there are some deviations, the model still has a meaningful corrective effect on popula-
tion stratification relative to traditional CMLM. The likelihood value used to determine
the best compression ratio in traditional CMLM was not significant. CMLM does not
catch the best clustered groups and cannot reflect the true population structure; this could
lead to a large number of false negative results (Figure 3B). The QQ plot of traditional
CMLM with BH show most points below the diagonal (Figure 3C), which indicates that the
observed p-value for most loci was less than the expected value and that the model overcor-
rected for this group. The significant SNPs detected in pCMLM were rs769892 (located at
4,883,046 bp) on chromosome 4, rs2659279 (located at 59,118,279 bp) and rs2659285 (located
at 59,119,427 bp) on chromosome 13, rs310769 (located at 16,165,590 bp) and rs477265
(located at 57,505,237 bp) on chromosome 2, and rs2910497 (located at 129,838,648 bp) on
chromosome 15. The significant SNPs with their associated candidate genes did not have
annotation information in the 100 kb linkage disequilibrium interval information either
upstream or downstream. Therefore, we extracted the FASTA sequences of these candidate
genes that were not annotated with gene names on the reference genome, for sequence
alignment with the reference genome of wild yaks using BLAST. Except for the rs769892
locus, all the candidate loci obtained gene names with high similarity on the wild yak
reference genome (Table 3).

Table 3. Significant SNP and candidate gene information.

SNP No. * Chr Position (bp) Alleles Gene ID Blast Gene Name

rs769892 4 4,883,046 G/C - -

rs2659279 13 59,118,279 A/G ENSBGRP00000037978
ENSBGRP00000037933 FXYD

rs310769 2 16,165,590 C/T
ENSBGRP00000016273
ENSBGRP00000016168
ENSBGRP00000016219

ADGRB2

rs2910497 15 57,505,237 G/A ENSBGRP00000032309
ENSBGRP00000032370 SOHLH2

rs477265 2 129,838,648 T/C ENSBGRP00000000742 OSBPL6
* SNP No. indicates the sequence number in the entire tag list. Chromosomes and locations refer to physical
location information in genomic data. The gene names are annotated from the GTF file of the Bosgru_v3.0
reference genome.
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Figure 3. Manhattan and quantile-quantile plots of the p-values for the genome-wide association
study of BH, BL, BW, CC, and CCB of yaks based on the pCMLM method; the horizontal line of
significance threshold (p-value < 1.39 × 10−8) was used to distinguish significantly associated loci,
and the different colors to distinguish different chromosomes (A); Circular Manhattan (B), and
quantile–quantile plots (C) of the optimized pCMLM method and the conventional CMLM method
in detecting body height traits in yaks, where the inner ring is pCMLM, the outer ring is conventional
CMLM, and the outermost ring indicates the labeling density of this chromosome.

3.4. Genotype Correlation in the LD Block

In order to further determine the haplotype effect of association markers in BH, we
used phenotype values distribution of significant alleles across all individuals to show
the influence between BH and alleles. The results of haplotype analysis of 100 kb before
and after the independently significant SNP showed that there was linkage disequilibrium
in chr15-rs2910497-57505237 (chr: chromosome of the SNP; rs: SNP numbering on the
genome; the third digit indicates the relative physical position of the chromosome on which
it is located). The nearby LD block region was small, and the SNP was located on the outer
side of the transcript. The analysis of allele haplotype based on this SNP showed that
only GA and GG genotypes existed in 94 individuals, and no homozygous AA genotype
was observed. In the results of the BH traits, yak individuals show higher body height
(Figure 4A) when they have allele A at this SNP position. The same situation was also
observed for four SNPs: rs2659279 (Figure 4B), rs477625 (Figure 4C), rs310769 (Figure 4D),
and rs769892 (Figure 4E); the four haplotypic alleles with strong additive effects on BH were
G, C, T, and C, respectively. There was a strong LD between chr13-rs2659279-59118279 and
chr4-rs769892-4883046, two SNPs in a LD block, but the block segment was small. Among
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them, rs2659279 and rs2659285 on chromosome 13 had strong linkage disequilibrium, and
the two SNPs were physically close to each other. rs2659279 was used as a benchmark
when screening candidate genes. Except for rs769892, the other four SNPs with statistical
significance were located near the intron region where at least one unknown transcript
existed, and the sequences of the physically closest transcripts were compared by blast.
The results showed that the transcript near rs2659279 was matched to FXYD gene, rs310769
to ADGRB2, rs2910497 to SOHLH2, and rs477265 to OSBPL6 (Table 3).
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Figure 4. Local Manhattan plot of 200 kb near each independently significant SNP (top left), the
structure of the transcript in this region (middle left), and the LD heat map (bottom left). Phenotype
distribution among the genotypes of all independently significant SNPs is on the right side. The
red horizontal line indicates the threshold (p-value < 1.39 × 10-8) of GWAS. Multiple transcripts are
abbreviated in the figure. The LD heat map distinguishes the strength of association with different
colors: the redder the color, the stronger the association. The genotype-phenotype association plots
of SNPs distinguish different genotypes in pink, green, and blue. rs2910497 of chromosome 15 (A),
rs2659279 of chromosome 13 (B), rs477265 of chromosome 2 (C), rs310769 of chromosome 2 (D), and
rs769892 of chromosome 4 (E). The horizontal coordinate of the box line plots indicates the allele
distribution of the marker on all individuals, and its vertical coordinate indicates the phenotypic
values of all individuals of the marker.
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4. Discussion

Most GWAS models are effective in detecting populations, which is usually conducted
by using genome-wide SNPs in a large number of individuals in the same population [26].
They have good statistical power in a wide range of applications for locating human
disease loci [27] and developing molecular markers [28], and for breeding selection of
major economic plants and animals [29]. On the Qinghai–Tibet Plateau, it is difficult to
obtain a large number of individual yaks of the same breeds or genetic resources. In this
study, we performed GWAS with a large number of non-homologous resource individuals.
From the results, even if there is significant population stratification, it is difficult to reduce
the stratification effect by marker estimation through traditional GWAS models. However,
population structure is often a fundamental factor affecting the accuracy of association
results, which inevitably leads to false positive and false negative association results [30]. In
addition, all of these yak populations were sampled from each kernel population. There is
wide inbreeding in each kernel population to keep pure lines between families. All samples
were clustered into several groups. Hence, heterozygosity is not abundant.

Variation in body size traits is mainly based on distant cross-breeding among yak
populations or genetic resources. In particular, to rejuvenate current domestic yak pro-
duction performance, the wild yaks with superior traits were used for cross-breeding
by local herders. These wild-blooded yaks (cross-breeding offspring of wild yaks and
domestic yaks) tend to have a stronger body. Therefore, yak populations are more complex
throughout the whole Qinghai–Tibet Plateau region. None of the 31 yak breeds and genetic
resources in this study showed significant population clustering in multiple cluster anal-
yses, with only the Tibetan breeds and genetics resources having a more similar genetic
structure owing to their domesticated origins in Tibet [13]. Such populations with complex
population structures are not conducive to statistical analysis by traditional CMLM. The
grouping process of CMLM, which assigns individuals with similar characteristics to the
same group, uses the elements in the kinship matrix as a similarity measure [31], replacing
the kinship between individuals [12]. The genetic principle utilizes intra-group balance,
which reduces the variance of the model’s residual part and improves the statistical power
of GWAS. The difference between pCMLM and CMLM is that pCMLM provides clustering
relationships of breeds or populations from previous and known study, and the kinship
is compressed directly. In contrast, CMLM needs to filter the best compression levels by
optimizing the likelihood values. However, sometimes the likelihood values between
different compression levels are insignificant. The above situation would cause CMLM to
use individuals to represent groups and kinships without any compression, taking CMLM
back to MLM. Population structure or population origin in yak populations usually implies
similarity in nutritional level and growth environment [32], and so using these factors
to force CMLM to be compressed is beneficial for detecting candidate genetic markers.
However, the complex structure makes the statistical power of CMLM closer to that of
standard MLM. Therefore, when traditional CMLM cannot identify optimal clustered
groups, our proposed pCMLM can reduce the variance of the residuals in the model by
providing the real kinship and group structure. In summary, pCMLM can provide us with
more adequate association results. The results show a small difference in -2LL between the
two strategies. The -2LL is used to determine how well the model fits the variables, and
when there is a large difference in the -2LL values, the model’s fit can be used to explain
the training optimality of the model itself. However, this training optimality is not absolute
because the training optimality of the model itself does not fully represent the detection
ability and prediction ability. In 2010 and 2014, Zhiwu Zhang and Meng Li, respectively,
confirmed a negative correlation between -2LL values and GWAS detection efficiency using
a large amount of simulated data, but this relationship was derived from a large number of
statistics and no specific conclusion was given in a single experiment [12].

GWAS results based on pCMLM identified six SNP loci that were statistically signifi-
cant in association with BH. Based on the annotation information provided by the 100 kb
upstream and downstream of the yak reference genome, we obtained relevant annotation
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information on only four SNPs, but these contained only Ensembl ID. Probably because the
yak reference genome is not yet complete, the sequences of these genes were compared to
the wild yak reference genome by the BLAST tool. These candidate genes show association
of rs2659279 (chr13-59118279) with FXYD6 (domain containing ion transport regulator 6),
rs2910497 (chr15-57505237) with SOHLH2 (spermatogenesis- and oogenesis-specific basic
helix-loop-helix 2), rs310769 (chr2-16165590) with ADGRB2 (adhesion G protein-coupled
receptor B2), and rs477265 (chr2-129838648) with OSBPL6 (adhesion G protein-coupled re-
ceptor B2). Among these genes, the FXYD6 gene is a member of the FXYD family encoding
a transmembrane protein, a specific protein encoding the hippocampus phosphate that has
been shown in humans to be involved in mediating the Na/K ion pump [33]. The FXYD6
gene significantly accelerates Na+ deactivation and Na+ pump conversion rates [34] and
alters the selectivity of the intracellular ion pump [35]. The SOHLH2 gene belongs to the
b-HLH (basic helix-loop-helix transcription factor) family, which encodes a testis-specific
transcription factor essential for spermatogenesis, oogenesis, and folliculogenesis [36]. The
b-HLH family is involved in numerous biological processes in the organism, including cell
differentiation, cell cycle arrest, and apoptosis [37]. The SOHLH2 gene has also been shown
to play an important regulatory role in the reproductive gonadal axis, pituitary, hypothala-
mus, ovary, and testis of buffalo [38], pigs [39], and mice [36,40,41]. The ADGRB2 gene acts
as a transcriptional repressor through GA-binding protein, regulates vascular endothelial
growth factor, and is significantly associated with its growth traits in grouper [42]. The
OSBPL6 gene is a member of the family encoding hydroxysteroid-binding protein (OSBP),
an intracellular lipid receptor [43]. The OSBPL6 gene contributes to the maintenance of
cholesterol homeostasis in vivo by regulating cholesterol transport in humans through
miR-33 and miR-27b [44]. In studies of OSBPL6 in juvenile DePaul dwarf horses, it was
shown that OSBPL6 is an essential factor affecting body height in DePaul dwarf horses [45]
by showing variable splicing of ES type in the pituitary gland. Moreover, ES variable
splicing causes GH1 third exon jumping resulting in a 17.5 kD GH isoform, which is an
essential factor contributing to height defects in patients with autosomal dominant growth
hormone deficiency (type II) [46], and the gene may be associated with multiple epiphyseal
dysplasias [47]. Therefore, it is hypothesized that OSBPL6 and ADGRB2 genes are the
most likely candidates to affect body height traits in yaks. However, whether and how
the studied localized genes affect body height and size traits in yaks needs to be further
explored, providing new directions and ideas for later validation studies.

5. Conclusions

In conclusion, when traditional CMLM cannot provide effective compressed grouping
by obtaining the best likelihood value, pCMLM can obtain better results by using the previ-
ous population clustering information provided. From the GWAS results of pCMLM and
LD analysis, four candidate genes (FXYD6, SOHLH2, ADGRB2, and OSBPL6) were provided
in association with yak’s body height. This study will help us to develop better biostatistical
model optimization ideas and a deeper understanding of the relationship between genes
and body height. These results may provide basic information for quantitative trait gene
localization or candidate gene cloning in the yak body height formation mechanism.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ani13091470/s1, Figure S1: Genetic variance explained and percentage of
overall with Principal components of each dimension; Figure S2: Manhattan and quantile–quantile
plots of body height of yaks by CMLM method; Figure S3: Manhattan and quantile–quantile plots
of body length of yaks by CMLM method; Figure S4: Manhattan and quantile–quantile plots of
body weight of yaks by CMLM method; Figure S5: Manhattan and quantile–quantile plots of chest
circumference of yaks by CMLM method; Figure S6: Manhattan and quantile–quantile plots of
circumference of cannon bone of yaks by CMLM method; Table S1: Distribution area of yak of
different breeds and genetic resources.
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