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Simple Summary: The aim of this study was to detect the copy number variations in 25 Wannan
spotted pigs and 10 Asian wild boars with whole genome sequencing data. The selection signatures
of Wannan spotted pigs compared to those of Asian wild boars were calculated with fixation index
(Fst). A total of 195 selected CNVs were under selected, harboring 80 genes. The selected genes were
associated with reproduction, fatty acid composition, immune system, ear size, and feed efficiency.
This study provides a new insight for understanding the characteristics of Wannan spotted pigs based
on copy number variations.

Abstract: Copy number variation (CNV) is an important structural variation used to elucidate
complex economic traits. In this study, we sequenced 25 Wannan spotted pigs (WSPs) to detect
their CNVs and identify their selection signatures compared with those of 10 Asian wild boars. A
total of 14,161 CNVs were detected in the WSPs, accounting for 0.72% of the porcine genome. The
fixation index (Fst) was used to identify the selection signatures, and 195 CNVs with the top 1% of
the Fst value were selected. Eighty genes were identified in the selected CNV regions. Functional
GO and KEGG analyses revealed that the genes within these selected CNVs are associated with key
traits such as reproduction (GAL3ST1 and SETD2), fatty acid composition (PRKG1, ACACA, ACSL3,
UGT8), immune system (LYZ), ear size (WIF1), and feed efficiency (VIPR2). The findings of this study
contribute novel insights into the genetic CNVs underlying WSP characteristics and provide essential
information for the protection and utilization of WSP populations.

Keywords: Wannan spotted pig; Asian wild boar; copy number variation; selection signatures; whole
genome resequencing

1. Introduction

Pigs (Sus scrofa domesticus) are important agricultural animals that were domesticated
during the early Neolithic period [1]. They serve several functions for human society:
(1) Food supply: Pork is one of the most important meat products worldwide, providing
high levels of protein, vitamins, and minerals to meet people’s nutritional needs; (2) Eco-
nomic value: Pig farming is a large industry that provides considerable economic benefits
to a country; (3) Agricultural recycling: They can help dispose of organic waste and leftover
matter in farmlands, convert it into organic fertilizer, and keep farmlands fertile, reducing
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waste disposal and promoting sustainable agriculture; (4) Experimental animals: Their
anatomy and physiology are similar to those of humans and therefore, they can be used to
study human health problems, for drug testing, and in organ transplantation; and (5) Cul-
ture: In traditional Chinese culture, pigs are regarded as symbols of wealth, prosperity, and
happiness. Pigs also play an important role in festivals and celebrations, such as the Chinese
Spring Festival. In general, a complete understanding of the germplasm characteristics of
pig breeds is key to the conservation and utilization of pig breed resources.

The pig reference genome assembled in 2012 was of landmark significance [2]. With
advances in science and technology, a highly contiguous genome assembly (Sscrofa11.1)
was accomplished [3], which led to the discovery of genomic variations with greater accu-
racy. Numerous studies have been performed to identify single nucleotide polymorphisms
(SNPs) and elucidate their relationship with important economic traits [4–6]. In addition
to revealing the effects of SNP on phenotypes, another form of genomic variation, known
as copy number variation (CNV), has not been extensively studied. CNV is defined as a
fragment ranging from 50 bp to several Mb and can be classified as a duplication (Dup)
or deletion (Del) [7]. Compared with SNPs, CNVS have significant genomic effects, such
as direct effects on gene dosage and indirect changes in gene expression [8]. Research
has shown that 25% of the identified CNVs do not have linkage disequilibrium with the
detected SNP, indicating that CNVs play an irreplaceable role compared with SNPs [9].
Many studies have been conducted to determine the relationship between CNVs and
important economic traits in humans and animals. For instance, in humans, AMY1 is asso-
ciated with the digestion of starch [10], and MKL1 explains the adaptation to the plateau
environment in Tibetan humans [11]. In Bos taurus, TSPY is important for male embryonic
development [12], and SYT11 is positively related to growth conformation traits [13]. In
sheep, duplication of ASIP results in differences in coat color [14]. In pigs, CNV in MSRB3
could increase porcine ear size [15], and CNV in PELP1 could explain the differences in
intramuscular fat content [16]. These studies show that CNVs play an irreplaceable role in
revealing complex traits. Considering the huge number of breed resources worldwide, it is
vital to detect CNVs and elucidate the genetic basis of excellent germplasm characteristics.

The Wannan spotted pig (WSP) is native to the Kecun area, Anhui, China, located
across 29◦24′–30◦11′ N and 117◦38′–118◦53′ E. This breed has a history of at least 500 years
and is recorded in “annals of Xin’an” by Yuan Luo and “annals of Huizhou Prefecture” by
Hongzhi Ming from the Song Dynasty. WSPs are deeply loved by the local people, not
only for providing meat protein and increasing farmers’ income but also for their position
in local culture and history. With a long history of breeding, the WSP has developed
genetic characteristics of rough feeding resistance, disease resistance, and excellent meat
quality and has been recorded in the “China National Commission of Animal Genetic
Resource” [17]. According to the third National Survey of Livestock and Poultry Genetic
Resources in 2021, 8558 boars (85 boars; 2311 sows) will be stored in Anhui Province.
However, research on WSPs at the genome level is relatively scarce. Our previous studies
preliminarily elucidated the characteristics of WSPs based on RNA-seq and whole-genome
resequencing (mainly SNP) [18,19]. Considering the critical role of CNV in economic traits,
the detection and functional analysis of CNV in WSP populations are needed.

Subsequently, the main objectives of this study were to (1) detect CNV in WSP and
AWB populations; (2) identify the selection signatures of the WSP compared to the Asian
wild boar (AWB) based on CNV by calculating the Fst value; and (3) perform functional
genomic annotation of the selected CNV. Our findings can increase understanding of WSPs
and provide guidance for future protection and breeding.

2. Materials and Methods
2.1. Ethics Statement

This study was conducted in accordance with and was approved by the Animal Care
Committee of the Anhui Academy of Agricultural Sciences (Hefei, China; no. AAAS2020-04).
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2.2. Sample Collection and Sequencing Data Processing

The blood samples from twenty-five unrelated WSPs (♀10, ♂15; Figure 1) were col-
lected from a provincial conversation farm in Huangshan city, Anhui province, China.
Blood was collected from the auricular vein by using a blood collection needle and stored
in an anticoagulation tube. Genomic DNA was extracted using the standard phenol–
chloroform method [20] and assessed using a 0.5% agarose gel and Nanodrop spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA). Library construction and sequenc-
ing went as follows: (1) DNA fragmentation; (2) purification of the target fragments;
(3) addition of adapter ligation; and (4) PCR amplification and sequencing. Sequencing was
performed on the Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, USA) with
paired-end 150 bp reads using the Novogene service (Beijing, China). The sequencing reads
were processed with NGSQCToolkit [21], including removing reads containing adapter or
poly-N and low-quality reads with >30% base having Phred quality ≤25.
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Figure 1. Pictures of Wannan spotted pig: (A) male; (B) female.

To assess the selection signatures of WSPs compared to Asian wild boars (AWBs),
ten sequenced AWB samples were combined. Six accessions were obtained from our
previous study, with accession numbers SRR13630747–SRR13630752 [22]. The other four
were downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/, (accessed
on 15 March 2024)) with accession numbers ERR173220, ERR173222, SRR652378, and
SRR652379 [2,4].

2.3. Detection of CNVs in WSP and AWB Population

The clean reads were mapped to the pig reference genome 11.1 (https://www.ncbi.
nlm.nih.gov/datasets/genome/GCF_000003025.6/ accessed on 15 March 2024) using the
Burrows–Wheeler Aligner with default parameters [23]. Population CNVs on autosomes
were detected by combining the Manta v.1.6.0 [24] and Paragraph v2.4a software [25]. The
concrete procedures were: (1) detection of CNVs in each sample with Manta; (2) merging
the CNVs based on the CNV type and removing redundancy on the basis of genomic
location and CNV length; (3) genotyping the CNVs in each sample by Paragraph based on
the results with removed redundance; (4) removing the redundancy at the population level
based on location information (del is overlapping by 50%; dup are set to overlap 90%) and
genotyping results (population typing consistency ≥ 0.95); and (5) the quality controls were
as follows: ABS(INFO/SVLEN) ≤ 10,000,000, INFO/ExcHet ≥ 0.05, F_MISSING ≤ 0.2,
and INFO/MAF > 0. PLINK software v.1.90 [26] and R (v4.2.0) were used to calculate the
frequencies of the two populations and for separate visualization.

2.4. Identification of Selection Signatures

We explored and genotyped bi-allelic CNVs in WSPs and AWBs in light of population
genetics by Manta and Paragraph. These genotypes were used to calculate the allele
frequency of each CNV locus. The genetic differentiation of the two populations based on
CNVs was calculated using the “-weir-fst-pop” in VCFtools [27] with the fixation index (Fst)
method [28], which is a widely used statistic in CNV studies [29,30]. The value of Fst ranged
from 0 to 1. A larger value indicated greater differentiation at the CNVs; otherwise, a smaller
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variation was observed. The formula for the Fst calculation was Fst = (Ht − Hs)/Ht, where
Ht is the expected heterozygosity of the population and Hs is the expected heterozygosity
of the subgroup. Fst was calculated for 19,537 bi-allelic CNVs. In this study, a CNV with
an Fst value in the top 1% of all Fst values was regarded as a selected CNV. All selected
CNVs were aligned to Sus scrofa 11.1 to obtain the genes harboring CNVs. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to
annotate selected genes using KOBAS (http://kobas.cbi.pku.edu.cn/ accessed on 15 March
2024). The terms and pathways exhibiting p-values < 0.05 were considered significant.

3. Results
3.1. Detection of CNVs in WSP and AWB

The clean data of 25 WSPs and 10 AWBs were 724.83 Gb and 253.7 Gb, respectively.
The average depth of the WSPs was 10.11× and ranged from 9.11× to 12.82× (Table S1).
The average depth of the AWBs was 9.73× and ranged from 6.24× to 12.53× (Table S2). A
total of 978.53 Gb was used for CNV detection and selection signature analyses. A total of
14,161 CNVs, covering ~18.12 Mb (0.72% of the pig genome), were detected in the 25 WSP,
consisting of 13,671 deletions and 490 duplications (Table 1). In AWBs, 14,355 CNVs, cover-
ing ~22.10 Mb (0.88% of the pig genome), were detected, which consisted of 13,919 deletions
and 436 duplications (Table 1). Detailed information on the CNVs in WSPs and AWBs is
provided in Tables S3 and S4. The number of CNVs on each chromosome is consistent
with its length. In the WSP, chromosome 1 had the largest number of CNVs (1332), and
chromosome 18 had the lowest (414) (Table S5). The numbers of Del and Dup genes on
each chromosome are shown in Figure 2A. In AWB, chromosomes 1 and 18 had 1414 and
439 CNVs, respectively (Table S6). The numbers of Del and Dup genes on each chromosome
are shown in Figure 2B.

Table 1. The number and length of CNV in WSP and AWB.

Breed
Total Number of Variants Total Length (bp)/

Number Del Dup Genome Ratio

WSP 14,161 13,671 490 18,121, 370/0.72%
AWB 14,355 13,919 436 22,097, 264/0.88%

Animals 2024, 14, x FOR PEER REVIEW 4 of 12 
 

2.4. Identification of Selection Signatures 
We explored and genotyped bi-allelic CNVs in WSPs and AWBs in light of population 

genetics by Manta and Paragraph. These genotypes were used to calculate the allele fre-
quency of each CNV locus. The genetic differentiation of the two populations based on 
CNVs was calculated using the “-weir-fst-pop” in VCFtools [27] with the fixation index 
(Fst) method [28], which is a widely used statistic in CNV studies [29,30]. The value of Fst 
ranged from 0 to 1. A larger value indicated greater differentiation at the CNVs; otherwise, 
a smaller variation was observed. The formula for the Fst calculation was Fst = (Ht − 
Hs)/Ht, where Ht is the expected heterozygosity of the population and Hs is the expected 
heterozygosity of the subgroup. Fst was calculated for 19,537 bi-allelic CNVs. In this 
study, a CNV with an Fst value in the top 1% of all Fst values was regarded as a selected 
CNV. All selected CNVs were aligned to Sus scrofa 11.1 to obtain the genes harboring 
CNVs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were performed to annotate selected genes using KOBAS (http://ko-
bas.cbi.pku.edu.cn/ accessed on 15 March 2024). The terms and pathways exhibiting p-val-
ues < 0.05 were considered significant. 

3. Results 
3.1. Detection of CNVs in WSP and AWB 

The clean data of 25 WSPs and 10 AWBs were 724.83 Gb and 253.7 Gb, respectively. 
The average depth of the WSPs was 10.11× and ranged from 9.11× to 12.82× (Table S1). The 
average depth of the AWBs was 9.73× and ranged from 6.24× to 12.53× (Table S2). A total 
of 978.53 Gb was used for CNV detection and selection signature analyses. A total of 
14,161 CNVs, covering ~18.12 Mb (0.72% of the pig genome), were detected in the 25 WSP, 
consisting of 13,671 deletions and 490 duplications (Table 1). In AWBs, 14,355 CNVs, cov-
ering ~22.10 Mb (0.88% of the pig genome), were detected, which consisted of 13,919 de-
letions and 436 duplications (Table 1). Detailed information on the CNVs in WSPs and 
AWBs is provided in Tables S3 and S4. The number of CNVs on each chromosome is con-
sistent with its length. In the WSP, chromosome 1 had the largest number of CNVs (1332), 
and chromosome 18 had the lowest (414) (Table S5). The numbers of Del and Dup genes 
on each chromosome are shown in Figure 2A. In AWB, chromosomes 1 and 18 had 1414 
and 439 CNVs, respectively (Table S6). The numbers of Del and Dup genes on each chro-
mosome are shown in Figure 2B. 

 
Figure 2. Numbers of CNVs identified across autosomes: (A) the WSP; (B) the AWB. 
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After merging the CNVs of the WSP and AWB based on the procedures in Materials
and Methods, 19,537 CNVs (18,923 Del and 614 Dup; Table S7) were obtained, covering
22.91 Mb in length (approximately 1.2% of the pig genome). To assess the distribution of
CNVs in gene-related regions, the merged CNVs were annotated and revealed that the
intergenic region has the largest number of CNVs (8923), following the intronic, ncRNA,
exonic, and 3′UTR regions (Table 2). To assess the frequency of CNVs in the two populations,

http://kobas.cbi.pku.edu.cn/
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they were divided into ten groups (0–0.1, 0.9–1, see Tables S8 and S9; Figure 3A,B). In WSPs,
the 0–0.l group had 7357 Dels, the largest of the ten groups, covering 38.88%. The CNV
trends in the two populations were similar.

Table 2. Annotation of the merged CNVs.

Classification No. of Variants

Downstream 161
Upstream 110
Upstream; downstream 3
Exonic 205
Intronic 8570
Intergenic 8932
ncRNA 1307
Splicing 14
UTR3 188
UTR5 47
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3.2. Patterns of Selection Signatures

The selection signatures in the autosomes of the WSP were calculated using Fst. The
threshold for the top 1% of the total FST values was 0.8293. A CNV with an Fst value
greater than 0.8293 was selected. A total of 195 CNVs were identified (Table S10). A Man-
hattan plot of the FST statistics is shown in Figure 4. After annotating the selected CNVs
in the pig genome, 80 genes were identified in the selected CNVs (Table S11). Figure 5
shows the results of the functional annotation analysis of the selected genes. A total
of 32 GO terms were enriched at level 2 GO enrichment (Table S12), which consisted
of immune system processes (GO:0002376, 10 genes), regulation of biological processes
(GO:0050789, 52 genes), responses to stimuli (GO:0050896, 34 genes), reproductive pro-
cesses (GO:0022414, 2 genes), reproduction (GO:0000003, 2 genes), and metabolic processes
(GO:0008152, 45 genes). Twelve pathways were enriched in the KEGG analyses (Table
S13), including fatty acid biosynthesis (KO00061, 2 genes), metabolic pathways (KO01100,
17 genes), biotin metabolism (KO00780, 1 gene), and fatty acid metabolism (KO01212,
2 genes).
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4. Discussion

WSPs play an important role in the protection of genetic resources and local character-
istics and the development of local agriculture and cultural inheritance. (1) Genetic resource
protection: WSPs are one of the excellent resources in China, which is very important for
the protection and inheritance of this native genetic resource; (2) Local characteristics: the
WSP is a local, rural, characteristic breed, representing the culture and tradition of the
southern Anhui region; (3) Strong adaptability: WSPs have adapted to the local climate
environment and feeding conditions and are a common breed of local farmers; (4) Excellent
meat quality: the meat of WSP is fresh and tender, is juicy, and has a good taste, which is
favored by consumers; (5) Economic benefits: The breeding of WSPs can bring economic
benefits to local farmers, improve livelihoods, and promote local economic development.

In this study, we sequenced 25 WSPs to identify CNVs and genes. A total of 724.83 Gb
of data were generated for the WSP, and 14,161 CNVs were detected. For the signatures of
the selection analysis, 10 AWB were combined. A total of 195 CNVs harboring 80 genes were
found to be under selection. Functional analysis revealed that these genes are associated
with important traits.
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Elucidating the genetic basis of pig reproductive performance is the key to optimizing
offspring production. Indigenous Chinese pig breeds are characterized by high fertility
rates. In this study, we found that several genes in the selected CNV regions were as-
sociated with reproduction. Galactose-3-O-sulfotransferase 1 (GAL3ST1), also known as
cerebroside sulfotransferase (CST), is involved in spermatogenesis [31]. The GAL3ST1
was found selected in (dwarf surf clam) and associated with male reproduction [32]. By
observing GAL3ST1 knockout mice, it was found that males displayed sterility, which
resulted from a block in spermatogenesis before the first meiotic division [33]. A genome-
wide association analysis of bulls showed that GAL3ST1 was significantly associated with
sperm concentration [34]. Using the GeneSeek Genomic Profiler Porcine HD BeadChip
(Neogen Corporation, Lansing, MI, USA), GAL3ST1 was found to be associated with
spermatogenesis in 223 pigs [35]. GAL3ST1 is found on chromosome 14 in pigs. In the
present study, a DUP (61 bp, start = 47,474,122 bp, end = 47,474,183 bp) was found in the
intronic region. SET domain-containing 2 histone lysine methyltransferase (SETD2), an
H3K36me3 methyltransferase, participates in the maintenance of chromatin architecture,
transcription elongation, genome stability, and other biological events. SETD2 was first
found as selected. Recent research on SETD2 in mice revealed that SETD2 deficiency results
in a series of alterations in the oocyte epigenome, such as the loss of H3K36me3 and failure
to establish the correct DNA methylome. More importantly, depletion leads to defects in
oocyte maturation and subsequent one-cell arrest after fertilization [36]. In mice, deletion
of SETD2 results in developmental delay in early embryos [37,38]. In a study on the effects
of SETD2 in zebrafish, SETD2-null zebrafish were fertile. However, they have a small
body size due to insufficient energy metabolism and protein synthesis [39]. In the present
study, Del (114 bp, start = 29,915,687, end = 29,915,801) was detected in the intronic region.
Considering the above findings, GAL3ST1 and SETD2 could be regarded as candidate
genes that regulate reproductive traits in pigs. Further functional studies are required to
confirm this hypothesis.

Meat quality is a key factor in the sustainable development of the pork industry. Fatty
acids, which are important flavor precursors, directly affect the sense of smell and taste
in meat sensory reactions and are also one of the important factors leading to differences
in the taste of different pork types, indirectly affecting their acceptability to consumers
and the value of meat. In this study, several genes (PRKG1, ACACA, and ACSL3) were
found to be associated with fatty acid metabolism. cGMP-dependent kinase 1 (PRKG1)
regulates lipolysis in adipocytes to release fatty acids and glycerol via the hydrolysis of
triacylglycerol. The PRKG1 was found as selected in the pigs of our previous study [19]. In
cattle, post-GWAS identified that PRKG1 has a positive effect on milk fatty acids, especially
medium-chain saturated fatty acid traits [40]. Moreover, PRKG1 knockout mice have
decreased triglyceride stores in brown adipose tissue [41]. In pigs, a GWAS on fatty acid
composition in 691 Ningxiang pigs revealed that PRKG1 was associated with saturated fatty
acid traits [42]. According to RNA-Seq analysis, PRKG1 exhibits differential expression
between high and low fatty acid composition groups in the muscle [43]. Acetyl-CoA
carboxylase alpha (ACACA), an important enzyme in lipid metabolism, controls de novo
fatty acid biosynthesis [44]. The ACACA was found selected in pigs in a previous study [45].
Several studies have demonstrated that ACACA has a significant impact on the fatty acid
profiles of cattle, including C10:0, C14:0, and C13:0 [46–49]. In a transcriptomic and lipid
metabolomic analysis of beef cattle, ACACA positively correlated with total MUFA [50].
In the Puławska breed (a Poland native pig breed originating from the Lublin region),
ACACA exhibited a relationship with IMF content, with differences reaching 20% [51].
Acyl-CoA synthetase long-chain family member 3 (ACSL3) mediates the synthesis of
diacylglycerol, affects the secretion of very low density lipoproteins, and stimulates fatty
acid oxidation and lipid accumulation in mammals [52,53]. The ACSL3 was first found as
selected in pig. Previous studies have shown that ACSL3 knockdown significantly reduces
the activity of lipid-producing transcription factors and regulates fat production in the
liver [54]. Inhibition of intestinal ACSL3 reduces lipid synthesis [55]. In cattle, knockdown
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of ACSL3 expression leads to a decrease in lipid content in cattle adipocytes [56]. In
pigs, ACSL3 overexpression and knockdown promote the accumulation of lipid droplets
in intramuscular preadipocytes [57]. Bile acids play crucial roles in controlling lipid
and glucose metabolism and directly regulating the fatty acid pathway [58]. Previous
research revealed that UDP glycosyltransferase 8 (UGT8) participates in bile acid signaling.
Moreover, in a study on Nanchukmacdon pigs, UGT8 expression was positively correlated
with meat quality [59].

Furthermore, we identified genes related to other important traits. The immune system
is important for pig health and is a key factor in the pig industry. Lysozyme (LYZ), an
antimicrobial enzyme, is primarily recognized as an important component of the innate
immune system [60]. The LYZ was found as selected in pigs in a previous study [61].
In buffaloes, lysozyme expression was positively associated with antibacterial activity in
the buffalo mammary glands [62]. In mice, LYC protects the intestinal epithelium from
oxidative injury induced by DON exposure [63]. In piglets, the addition of lysozyme to
dietary supplements can improve the development and function of the intestine and protect
against enterotoxigenic Escherichia coli infection [64,65]. Ear size is an obvious trait used
to distinguish between pig breeds. WNT inhibitory factor 1 (WIF1) could inhibit activity
of the Wnt/β-catenin pathway that can regulate proliferation and differentiation in many
tissues, such as controlling the growth of connective tissue by regulating the connective
tissue growth factor [66]. The WIF1 was found as selected in pigs in our previous study [29].
Based on an association analysis, WIF1 was found to regulate the ear size of pigs and
dogs [29,67]. Feed efficiency is one of the main factors determining production costs
in the pig industry. Vasoactive intestinal peptide receptor 2 (VIPR2), a transmembrane
glycoprotein, was selected in this study. The VIPR2 was found as selected in pigs in
our previous study [30]. In humans, VIPR2 plays an important role in controlling fat
deposition [68]; in mice, VIPR2-knockout results in growth inhibition, decreased fat mass,
and increased lean mass [69]; and in pigs, VIPR2 is associated with feeding efficiency [70].

In this study, we detected CNVs in WSPs for comparison with AWBs. Genes associated
with important traits were also identified. However, this study has some limitations. First,
the sample size of each population was insufficient to represent the total population. Second,
because of African swine fever, we could not collect phenotypes and samples to verify the
function of CNVs. Nevertheless, to some extent, this study supports the understanding of
CNVs in WSPs and elucidates the effects on domestication.

5. Conclusions

We conducted a comprehensive detection of CNVs in WSPs at the genomic level,
comparing them with wild pigs to pinpoint selectively favored CNVs. These identified
CNVs are linked to key economic traits, thereby enhancing the genetic variation landscape
of the WSP. Our findings create a robust basis for future breeding efforts aimed at trait
enhancement and the preservation of genetic diversity in WSPs. Moreover, this study offers
substantial backing for the analysis of significant economic traits in local pigs through the
lens of CNVs, potentially speeding up the breeding process and boosting the competitive
edge of local pig breeds in the marketplace.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani14101419/s1, Table S1: the statistics of 25 sequenced Wannan
spotted pigs; Table S2: the statistics of 10 sequenced Asian wild boars; Table S3: the information of
CNVs in the WSP population; Table S4: the information of CNVs in the AWB population; Table S5:
the statistics of CNVs of WSPs in each chromosome; Table S6: the statistics of CNVs of AWBs in each
chromosome; Table S7: the information of merged CNVs; Table S8: the frequency of CNV in WSPs;
Table S9: the frequency of CNV in AWBs; Table S10: the information of selected CNVs; Table S11: the
genes harboring in the selected CNV region; Table S12: GO analysis of the selected genes; Table S13:
KEGG analysis of the selected genes.
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