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Simple Summary: Livestock diseases can affect the health of wild ruminants, and some of them
are zoonotic, affecting the human health, and additionally, wildlife can act as excellent sentinels
for infectious disease, since they have limited home ranges. To gain a better understanding of the
disease epidemiology of livestock and zoonotic pathogens, we examined the prevalence of antibodies
against Brucella abortus, Chlamydia abortus, Coxiella burnetii, seven pathogenic serovars of Leptospira
interrogans (Bratislava, Ballun, Grippotyphosa, Pomona, Canicola, Hardjo and Coppehageni), My-
cobacterium bovis, Toxoplasma gondii, Neospora caninum, SARS-CoV-2, Hepatitis E Virus, Pestivirus,

Animals 2024, 14, 526. https://doi.org/10.3390/ani14040526 https://www.mdpi.com/journal/animals

https://doi.org/10.3390/ani14040526
https://doi.org/10.3390/ani14040526
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0003-0995-1227
https://orcid.org/0009-0004-6250-296X
https://orcid.org/0000-0001-8415-7918
https://orcid.org/0000-0003-0104-2141
https://orcid.org/0000-0002-4578-4780
https://orcid.org/0000-0002-1608-2499
https://orcid.org/0000-0002-0820-5292
https://doi.org/10.3390/ani14040526
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani14040526?type=check_update&version=1


Animals 2024, 14, 526 2 of 19

Bovine Herpesvirus-1 (BHV-1), Epizootic Hemorrhagic Disease Virus (EHDV), and Bluetongue Virus
in 164 wild and under-human-care pudus from central and southern Chile using several serological
tests. We detected high seroprevalences for Leptospira interrogans Harjo and Pestivirus in wild pudus,
suggesting a livestock transmission in the template forest, and for T. gondii in under-human-care
animals. A Pestivirus outbreak is the most strongly suspected as the cause of abortions in a zoo in
the past. This study presents the first evidence of Chlamydia abortus in wildlife in South America
and exposure to Toxoplasma gondii, Leptospira interrogans, and Neopora caninum in wild ungulate
species in Chile, and further research will be necessary to understand their impact in the health and
conservation of pudu.

Abstract: A significant gap in exposure data for most livestock and zoonotic pathogens is common
for several Latin America deer species. This study examined the seroprevalence against 13 pathogens
in 164 wild and captive southern pudu from Chile between 2011 and 2023. Livestock and zoonotic
pathogen antibodies were detected in 22 of 109 wild pudus (20.18%; 95% CI: 13.34–29.18) and 17 of
55 captive pudus (30.91%; 95% CI: 19.52–44.96), including five Leptospira interrogans serovars (15.38%
and 10.71%), Toxoplasma gondii (8.57% and 37.50%), Chlamydia abortus (3.03% and 12.82%), Neospora
caninum (0.00% and 9.52%), and Pestivirus (8.00% and 6.67%). Risk factors were detected for Leptospira
spp., showing that fawn pudu have statistically significantly higher risk of positivity than adults. In
the case of T. gondii, pudu living in “free-range” have a lower risk of being positive for this parasite.
In under-human-care pudu, a Pestivirus outbreak is the most strongly suspected as the cause of
abortions in a zoo in the past. This study presents the first evidence of Chlamydia abortus in wildlife in
South America and exposure to T. gondii, L. interrogans, and N. caninum in wild ungulate species in
Chile. High seroprevalence of livestock pathogens such as Pestivirus and Leptospira Hardjo in wild
animals suggests a livestock transmission in Chilean template forest.

Keywords: Leptospira interrogans; Pestivirus; ELISA; Chamydia abortus; conservation; pudu;
serosurveillance

1. Introduction

The pudu (Pudu puda) is one of the smallest cervid species in the world. It is native to
the temperate dense scrub forests of Chile (36–49◦ S) and Argentina (39–43◦ S) [1]. With
a population in Chile of between 5000 and 10,000 animals, it is the most common cervid
in the southern cone. Its breeding and reproduction in captivity being common practices,
an estimated additional 300 animals are under human care in Chile [2]. However, its wild
population has been declining in recent years due to anthropogenic causes and landscape
changes [3], and it is currently classified as a vulnerable species according to Supreme
Decree No. 151 [4].

Among the issues that could be threatening this species are livestock diseases [5,6],
which have caused declines in the number of individuals in wild ruminant populations in
North America, Asia, Africa, and Europe over the last quarter of a century [7–12]. These
events could be due to the increasing interaction rates of livestock and wildlife because of
the increase in the population globally [13,14]. Latin America and the Caribbean have also
presented in recent decades an increase in livestock population and animal production [15].
However, currently there are no wild ruminant monitoring programs for livestock diseases,
which results in knowledge gaps with respect to disease occurrence, identification of reser-
voirs and their role, and the infectious dynamic of these diseases [16]. Assessing pathogen
exposure is critical, as reservoir hosts for novel pathogens are often identified from the
results of serological assays. This happens even before the isolation of the pathogen itself,
so it can be very useful [17], especially in regions with little epidemiological information,
such as Latin America and the Caribbean and countries like Chile, where knowledge about
the epidemiology of livestock and zoonotic diseases in wild ruminants is still limited.
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Serological studies suggest that wild cervids could be susceptible and represent
a wildlife reservoir for zoonotic pathogens, such as SARS-CoV-2 in white-tailed deer
(Odocoileus virginianus) in the USA or bovine tuberculosis in red deer (Cervus elaphus) in
Spain [18–20]. This justifies their health monitoring as sentinels for relevant diseases in
wild environments [21–23]. In Chile, Salgado et al. [5] provided evidence of pudu abor-
tions in zoos whose pathology, including congenital malformations, suggests bovine viral
diarrhea as the cause. However, the causal agent could not be confirmed. Recently, two
new intracellular bacteria, Mycoplasma ovis-like, Anaplasma phagocytophillum, and a new
intracellular protozoan, Babesia sp., were identified in Chilean wild pudus, which could
have zoonotic potential with public health implications [24–26]. The objective of this study
was to estimate the existence of exposure and the risk factors influencing it in relation to Bru-
cella abortus, Chlamydia abortus, Coxiella burnetii, Leptospira interrogans serovars (Bratislava,
Ballun, Grippotyphosa, Pomona, Canicola, Hardjo and Coppehageni), Mycobacterium bovis,
Pestivirus, Bovine Herpesvirus-1, Bluetongue Virus, Epizootic Hemorrhagic Disease Virus,
Hepatitis E Virus, SARS-CoV-2, Toxoplasma gondii, and Neospora caninum, in captive and
free-ranging pudus from Chile from 2011 to 2023.

2. Materials and Methods
2.1. Serum Samples

Pudu sera were obtained from the serum banks maintained by three Chilean rehabilita-
tion centers (Chiloe Silvestre, Chiloe Island, Los Lagos District; Universidad San Sebastian
Veterinary Faculty, Puerto Mont, Los Lagos District; Universidad de Concepcion Veterinary
Faculty, Chillan, Ñuble District), and two under-human-care populations (Buin Zoo, Buin,
Metropolitan District; Fundacion Romahue, Los Lagos District) (Figure 1). All the animals
come originally from all over its known distribution range in Southern Chile, from Maule
district to Chiloe Island, and were collected between 2011 and 2023 by the veterinary staff
of these centers. Sources for these serum banks included animals subjected annually to
medical check-ups in under-human-care centers. In the rehabilitation centers, most of the
animals enter because of health issues, mainly dog attacks, infectious diseases, vehicle
collisions and other causes. Sera were stored in individual cryo-vials and frozen at −20 ◦C
until use for serology. For this study, we used samples from all the animals available at
the serum banks. Epidemiological information for wild and captive pudus, including
sample origin, sampling date, health status, sex, and age, was gathered from each animal,
whenever possible.

Although blood samples from 109 free-ranging (S1) and 55 captive (S2 and S3) pudu
were collected, due to insufficient serum volume from some individuals, the sample size
for specific serologic tests varied between 17 and 145 individuals, depending on the test.
For all the free-ranging pudus, only one sample by pathogen was analyzed; however, for
captive pudus, some individuals had one sample by pathogen (S2), and several others were
monitored longitudinally (S3).
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Figure 1. Map of pudus positives (white circles) for antibodies to pathogens surveyed in this research.

2.2. Laboratory Analyses

Commercially available tests were performed according to the manufacturer’s instruc-
tions (Table 1) to demonstrate active or former infection. The entire test has been used in
cervid species serosurveys.



Animals 2024, 14, 526 5 of 19

Table 1. Serological test used in this survey.

Pathogen Test References

Bluetongue virus INgezim BTV DR (Gold Standard Diagnostics, Madrid, Spain) [27]

Pestivirus VNT and INgezim Pestivirus Compac (Gold Standard Diagnostics, Madrid,
Spain) [5–28]

Chlamydia abortus
ID Screen® Chlamydophila abortus Indirect Multi-species (IDvet, Grabels,
France) and ELISA CHEKIT Chlamydophila abortus Antibody Test Kit,
IDEXX Laboratories, Bern, Switzerland

[29]

Coxiella burnetii
PrioCHECK™ Ruminant Q Fever Ab Plate Kit (ThermoFisher Scientific,
Waltham, MA, USA) and ELISA CHEKIT Q-Fever (Coxiella burnetii)
Antibody Test Kit, IDEXX Laboratories, Bern, Switzerland

[30,31]

Toxoplasma gondii ID Screen® Toxoplasmosis Indirect Multi-species (IDvet, Grabels, France) [32]

Epizootic Hemorrhagic Disease Virus ID Screen® EHDV Competition (IDvet, Grabels, France) [33,34]

Brucella abortus Rose Bengal test (Bengatestt, Parsippany, NJ, USA) and C ELISA
(SVANOVIRt Brucella Antibody Test, SVANOVA, Uppsala, Sweden) [35,36]

Leptospira interrogans MAT (Pomona, Grippotyphosa, Copenhageni, Hardjo, Canicola) [37,38]

Mycobacterium bovis in-house P22 ELISA [39]

Bovine Herpesvirus-1 VNT [40]

SARS-CoV-2 VNT [41]

Hepatitis E ELISA [42]

Neospora caninum ELISA (CHEKIT Neospora caninum Antibody Test Kit, IDEXX
Laboratories, Bern, Switzerland) [43]

2.3. Data Analysis

All results are expressed as relative and absolute frequencies to determine the sero-
prevalence/positivity rate for each of the studied pathogens.

Statistical differences in positivity to each studied pathogen were estimated. The
analysis was performed by calculating seroprevalence differences and 95% confidence
intervals for the differences (when possible), based on a chi-square approach and testing
that positivity rate differences were equal to 0 [44,45]. Statistically significant differences
were set at p-value < 0.05.

A logistic multivariable regression was performed to determine risk factors associated
with the positivity of each studied pathogen [46], considering that the outcome is negative
(0) or positive (1) for each studied pathogen. Sex, age, and condition (captive or free-
ranging) of the individuals were recorded. Models were built using a stepwise backward
elimination process, the Likelihood Ratio Test (LRT) was used for model selection [47], and
variables were kept in the model when the LRT gave a significant effect on the removal
(p < 0.05) or if the estimations changed over 20% when removed, as this is an indicator of
a potential confounding effect [46]. The convergence of the models was set to a value of
epsilon (ε) = e−16 to guarantee an adequate level of stringency for the models performed.
The Hosmer–Lemeshow test was performed for model adjustment evaluation. McFadden
pseudo-R2 was also estimated, to have an estimation of the quality of the prediction of the
outcome [48]. Sera with unknown sex or age were not included in the analysis. Biological
and epidemiological coherent interaction between recorded factors was performed.

All the analyses were performed using R version 4.2.2 [49], and “fmsb” [50], “nlme” [51],
“lme4” [52], “car” [53], “ggplot2” [54] packages for the multivariable logistic regression,
and “ResourceSelection” [55] package for the seroprevalence differences estimations.
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3. Results
3.1. Overall Exposure

Overall antibody prevalence against the livestock and zoonotic pathogens in pudu
was 20.18% (22/109; 95% CI: 13.34–29.18) in free-ranging and 30.91% (17/55; 95% CI:
19.52–44.96) in captive. Free-ranging pudus presented antibodies against four pathogens;
the highest seropositivity rate was found for L. interrogans and the lowest for C. abortus
(Table 2). Under-human-care pudus presented antibodies against five pathogens, the
highest seropositivity rate was found for Toxoplasma gondii and the lowest for Pestivirus
(Table 2). Reactivity to Pestivirus was confirmed by VNT in five positive sera.

Table 2. Seropositivity by Pudu puda condition (captive and free-range), 95% CI of the differences,
and p-value for the comparison of seropositivity between groups.

Pathogen n Captive * Free-Ranging * Differences 95% CI p-Value
Lower Upper

Pestivirus 145 3/45 (6.67%) 8/100 (8.00%) −0.0984 0.0889 0.384
Leptospira spp. 93 3/28 (10.71%) 10/65 (15.38%) −0.2165 0.1231 0.787
Toxoplasma gondii 67 12/32 (37.50%) 3/35 (8.57%) 0.0677 0.5109 <0.001
Neospora caninum 32 2/21 (9.52%) 0/11 (0.00%) −0.0996 0.2901 0.7731
Chlamydia abortus 72 5/39 (12.82%) 1/33 (3.03%) −0.0502 0.2460 0.2847
Bluetongue virus 60 0/26 (0.00%) 0/34 (0.00%) - -
SARS-CoV-2 17 - 0/17 (0.00%) - -
Hepatitis E virus 20 - 0/20 (0.00%) - -
Coxiella burneti 74 0/35 (0.00%) 0/39 (0.00%) - -
Brucella abortus 73 0/31 (0.00%) 0/42 (0.00%) - -
BoHV-1 86 0/47 (0.00%) 0/39 (0.00%) - -
EHDV 60 0/26 (0.00%) 0/34 (0.00%) - -

* Values in brackets correspond to seropositivity expressed as percentage.

Of captive pudus sampled longitudinally (S3), some became seropositive during
the study, indicating recent exposure, for T. gondii, L. interrogansy Ch. abortus inside the
facility. The coinfection was 12.72% in under-human-care pudus but with no occurrence in
free-ranging animals.

3.2. Leptospira interrogans Serovars

Four serovars were detected in wild (Hardjo—9.2%, Pomona—1.5%, Gryppotiphosa—
3.0%, and Coppenhageni—3.0%) and two in captive (Gryppotiphosa—7.1%, and Hardjo—
3.5%) pudus with titers of 1:100, except one free-ranging pudu with titers of 1:200 to serovar
Pomona. Coinfection with different leptospiral serovars occurred only in one (2.8%) wild
pudu (Hardjo and Gryppo serovars).

3.3. Data Analysis

Positivity rate differences were estimated for those pathogens/diseases with at least
one positive individual (Table 3). It can be observed that statistically significant differences
between under-human-care and free-range individuals were detected only for Toxoplasma
gondii, indicating higher values among under-human-care individuals (Table 2).

Multivariable logistic regressions only detected significant associations between the
tested factors and seropositivity with Leptospira spp. and Toxoplasma gondii models (Table 3).
The Leptospira spp. model indicates that pudu fawns have a higher risk of being positive
than adults. The Toxoplasma gondii model shows that pudu living in “free-range” have
a lower risk of being positive to T. gondii (Table 3). None of the evaluated interactions
resulted in any statistically significant result. The Hosmer–Lemershow test indicates a
good adjustment between data and the models (Leptospira spp. p = 0.234; Toxoplasma gondii
= 0.447). McFadden pseudo-R2 was estimated for both models, resulting in 12.61% for the
Leptospira spp. Model, and 19.16% for the Toxoplasma gondii model.
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Table 3. Final logistic regression model for risk factors for Leptospira spp. and Toxoplasma gondii
positivity in Pudu puda individuals in under-human-care and free-range conditions from Chile.

Model Variable Categories p-Value OR
95% CI

Lower Upper

Leptospira spp.

(Intercept) 0 0.138 0.066 0.289
Age Adult Reference

Fawn 0.028 7.25 1.244 42.257
Juvenile 0.649 0.604 0.069 5.29

Indeterminate 0.176 7.25 0.412 127.7

Toxoplasma
gondii

(Intercept) 0.213 0.632 0.307 1.301
Condition Under human care Reference

Free-range 0.007 0.148 0.037 0.594

4. Discussion

Surveillance for zoonotic and livestock pathogens in wild animal species is a critical
step to our understanding of the epidemiology and control of infectious diseases at the
interface between humans, domestic animals, and wildlife [56]. The use of sentinel wildlife
species, like pudu, can be a useful tool for public health, livestock production, and pre-
vention of pathogen infection of endangered species [57,58]. In other regions of the world,
studies carried out to estimate the exposure of wildlife to livestock and zoonotic pathogens
include commonly large sample sizes per species and long-term approaches. These may
provide a more accurate understanding of disease epidemiology, allowing the identification
of the main drivers of pathogen–wildlife interactions [59,60]. However, serological studies
of pathogens present in wild cervids in Latin America are scarce, with very few samples per
species [61–64], so the findings of this study, where a high circulation of livestock agents
in wild pudus was identified, represent a significant contribution to the state-of-the-art
epidemiological knowledge and to estimating potential conservation threats derived from
the anthropogenic impact on wild ruminants in the region. To the best of our knowledge,
no previous exposure data have been published for Chlamydia abortus exposure in wildlife
from Latin America and the Caribbean. The findings on T. gondii, Leptospira interrogans, and
Neospora caninum are also novel for wild ruminants in Chile. As occurs with most pathogen
seroprevalence studies in wildlife, none of the serological tests used in this study have
been validated for use in pudu, so the results should be interpreted with caution [65–67],
and more serological and/or molecular evidence is required to complement our findings.
This study faced limitations due to the selective analysis of pathogens, dictated by the
finite volume of samples available. Not all pathogens were tested in each sample, which
may affect the comprehensiveness of our findings. Despite this, the data presented offer
important preliminary insights, and we advocate for subsequent research with broader
testing to validate and expand upon these results.

4.1. Wild Animals

There are only two previous reports of seroprevalence for infectious agents in wild
cervids in Chile [63,68], although with small sample sizes per species (<30) that are lower
than those of the present study. Therefore, for pathogens with a low true prevalence, it is
difficult to detect at least one infected individual in a population, which may be influencing
the results [69,70].

4.1.1. Leptospira interrogans

Leptospirosis is a good example of a disease that can affect the health of domestic
and wildlife species and it is also a zoonosis [71]. With a wide variety of serovars that
infect different species widely reported worldwide [72], there are few antecedents in wild
ruminants in Latin America and no previous studies in Chile. The overall seroprevalence
of Leptospira interrogans in wild pudus in Chile was on the reported average (18%) for wild
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Artyodactyl species in Latin America [73]. In other studies, the most detected serovars
in wild deer were L. Grippotyphosa and L. Pomona, which have small rodents and pigs
as their main hosts, respectively [74–77]. However, in the present study, the serovar
Hardjo was detected with a higher frequency than that observed in other cervids species
in LAC countries: (i) 5.6% in white-tailed deer in Mexico [78]; (ii) 0% in pampas deer in
Argentina [61]; (iii) 0% in gray brocket deer in Bolivia [62]; and (iv) in mash deer, sambar
deer, and pampas deer in Brazil (0–11.9%) [64,79–81]. The exposure to this serovar is similar
to the highest rate reported in other regions of the world such as in elk (Cervus elaphus), mule
deer (Odocoileus hemionus), white-tailed deer, and moose (Alces alces) in North America
(0–11%) [77,82–87], and in red deer, fallow deer (Dama dama), and roe deer (Capreolus
capreolus) in Europe (0–10.5%) [74,88–90]. In Chile, the seroprevalence of leptospirosis in
cattle, which are recognized as the maintenance host of the serovar Hardjo [91] and to be a
potential source of infection for humans and other animal species, was recently reported
on the dairy farms of Los Rios and Los Lagos districts (5.3%), with the most prevalent
serovars being Hardjo and Pomona [92]. The most frequent origin of wild pudus in the
present study was Los Lagos district. All the pudu samples coming from this district were
seropositive for Hardjo and Pomona serovars of L. interrogans, which makes it probable that
the source of infection for the pudus was cattle from small farms, because they have the
highest prevalence of L. interrogans, associated with a shortage of vaccination prevention
programs against this disease [92]. In farmed deer species in New Zealand, the serovar
Pomona appears to produce clinical and probably subclinical disease, whereas serovar
Hardjobovis appears to cause only subclinical disease [93]. Thus, it seems of great relevance
to evaluate the pathogenicity and clinical impact of both serovars in pudus.

4.1.2. Pestivirus

Ruminant pestiviruses, such as Pestivirus A (formerly known as Bovine Viral Diarrhea
Virus 1, BVDV-1), Pestivirus B (Bovine Viral Diarrhea Virus 2, BVDV-2), Pestivirus H (Bovine
Viral Diarrhea Virus 3, BVDV-3, or HoBi-like Pestivirus, HoBiPeV), and Pestivirus D (Border
Disease Virus, BDV), are widely distributed worldwide, causing abortions, mucosal disease,
diarrhea, and respiratory problems in cattle and sheep [94]. Furthermore, they also caused
outbreaks with high mortality in Pyrenean chamois (Rupicapra pyernaica) in the Spanish
Pyrenees [95]. Despite the high relevance of pestiviruses in the livestock industry, where
they generate significant economic losses [96], which places them on the list of notifiable
diseases of the World Organization of Animal Health, the knowledge about the role of
cervids in the epidemiology of this disease [94] and the impact of these pathogens on
their health is not clear [97]. The seroprevalence of antibodies against Pestivirus found in
this study in wild pudus was higher than that reported in most studies in wild cervids in
Europe, North America, and Australia [98–100]. Higher seroprevalences were reported
in Spanish red deer (19.5% and 10.8%) [101,102] and mule deer (17.1%) in the USA [77],
suggesting sympatric cattle grazing alongside cervid populations as a source for BVDV
infection. However, other studies propose that pestiviruses could be enzootic to wild cervid
populations and thus maintained independently of livestock [98,100,103]. There are few
studies focusing on detecting antibodies against pestiviruses in wild cervids in other LAC
countries; until now, all animals were seronegative [61,62,81].

The ELISA used in this study has not been validated in pudu and cross-reactivity
between different ruminants’ Pestivirus can occur [97,104]. Therefore, being unable to
isolate the virus, it cannot be confirmed if the detected antibodies were against BVDV 1 or
BVDV-2, reported in cattle in southern Chile [105,106], or against pestiviruses adapted to
Chilean cervids [97]. In wild huemuls in Aysen district, 11.1% of the samples were positive
for anti-pestivirus antibodies, although with a much smaller number of samples [67]. The
only previous report of Pestivirus infection in wild pudu was an animal rescued in the
Bio Bio region, infected with a Pestivirus of the BVDV-1b genotype isolated from lesions,
suggesting the ability of the virus to cause clinical disease in pudus, posing a potential
threat to the health of the wild population of this species [107].
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In Chile, there are no reports of the presence of Border Disease Virus, whose reservoir
host is sheep [108], while the seroprevalence of BVDV in cattle in the Los Lagos district
is 3.5% [109]. For that reason, we suggest that the latter could potentially be the source
of infection for the positive pudus in this study. Our study confirms the susceptibility
and high circulation of pestiviruses in wild populations of pudu in Chile. However, more
information is needed to understand the role of pudu in the epidemiology of the virus, e.g.,
if they can shed BVDV and if they can maintain BVDV without contact with cattle [110],
and the impact of BVDV infection on the health and conservation of wild pudus.

4.1.3. Toxoplasma gondii

Toxoplasma gondii is a globally zoonotic protozoan apicomplexa that infects a wide
variety of warm-blooded animals [111], causing abortions and neonatal mortality in humans
and domestic/wild ruminants [112–114]. Cervids have been reported as sentinels of
environmental contamination by T. gondii and a potential source of clinical toxoplasmosis
infection in humans by transmitting it through the ingestion of uncooked or undercooked
meat containing tissue cysts [115,116]. The seroprevalence of T. gondii in wild pudu was low
compared to that reported globally in other cervid species in wild environments [117,118],
and for other wildlife species [1,119] and humans [120] in the same region of this study in
Chile. However, as it is a species whose meat is consumed by local communities, the risk
of contagion is latent and molecular studies are recommended to confirm the presence of
infective parasitic stages in the muscles and characterize the genotypes of T gondii in pudus,
as well as develop education and dissemination campaigns about the risks of consuming
uncooked meat of this species.

4.1.4. Chlamydia abortus

Chlamydia abortus is a Gram-negative intracellular bacterium recognized as having
the most common causative agent of abortion in small ruminants and zoonotic public
health problems with serious consequences in pregnant women and immunocompromised
individuals [121,122]. However, few data are available on the prevalence and relevance
of Ch. abortus in wildlife hosts [23,123,124]. Chlamydia abortus was recently reported in
livestock in Latin America and the Caribbean countries [125]. However, to the best of
our knowledge, this is the first description of Ch. abortus in South American wildlife. Our
results suggest that it is not a common pathogen in the wild pudu populations in Chile.
Further research will be necessary to determine the current epidemiological situation of Ch.
abortus in domestic small ruminants and in other wild ruminants in Chile.

4.2. Under-Human-Care Pudus

Unlike the scarcity of infectious disease reports in free-ranging wild cervids in Latin
America, in captive populations, there are epidemiological and pathological reports that
confirm the susceptibility of native species in the region to livestock and zoonotic
pathogens [5,37,126–128]. In the present study, the same infectious agents that were de-
tected in wild pudus were detected in captive pudus, except for Neospora caninum, which
suggests that, in Chile, infectious diseases of wildlife under human care are the same as
those of free-ranging individuals. Therefore, ex situ conservation programs can directly
benefit from medical research on captive species [129].

4.2.1. Neospora caninum

Neospora caninum is a protozoan parasite that can cause neosporosis, a major cause
of abortions and neonatal mortality in cattle, neuromuscular and neurological disorders
in dogs, and, in some wildlife species (mainly in captive deer, rhinos, and carnivores),
presenting with a variable clinical picture [130]. Cervids are recognized among the most
important wildlife reservoirs for this pathogen [131] and a recent review describes that
infection seroprevalence in deer was higher in South America compared with other regions
of the world [131]. In Chile, N. caninum was previously reported in domestic animals [132],
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but not in wildlife [36]. Our results describe the pudu as a new deer host species for
N. caninum and the first report of these protozoa in under-human-care wild ruminant
species in Chile. However, contrary to reports in the region and worldwide, where wild
cervids present higher seroprevalences than under-human-care animals [132], no antibodies
were found in wild Chilean pudus, probably due to the low number of samples analyzed.
Based on the history of abortions in captive pudus in Chile [5], and the perinatal mortality
and outbreak of abortions recently reported in captive deer in Argentina [133,134], further
research will be necessary to evaluate the pathogenicity of N. caninum in the pudu and the
possible association with reproductive losses in this species.

4.2.2. Toxoplasma gondii

The exposure of captive pudus to T. gondii was significantly higher than that found
in free-ranging animals, which is different from what has been reported in other cervid
species worldwide [117]. Exposure to this protozoan had previously been described in
captive populations of cervids from other countries in the region [81] and in other wild
species in Chile [36], but not in native cervids. The seroprevalence in under-human-care
pudus was lower than that reported (38.3%) for other captive cervid species in Chile [45].
Although there are some reports of reproductive pathologies caused by T. gondii in deer
species [135,136], reports of fatal cases of toxoplasmosis in cervids are not common in zoos
or hatcheries [137,138]. Therefore, despite the high seroprevalence found for this protozoan,
it should not be considered a major health threat to pudus under human care.

4.2.3. Leptospira interrogans

The seroprevalence of L. interrogans in captive pudus was lower than that detected in
wild pudus, as well as lower than that previously reported [37] in pudus in zoos in Chile.
Serovar Hardjo, which was the most common in wild pudus, is reported for the first time in
this species. Infection with this serovar had the highest prevalence in farmed deer species
in New Zealand and cervids are suggested to be maintenance hosts [93]. However, in
Brazil, clinical leptospirosis was reported in a pampas deer (Ozotoceros bezoarticus) by four
serotypes of Leptospira interrogans, including serovar Hardjo [139], so preventive measures
against this pathogen should be maintained in the pudu population to prevent disease
occurrence. Likewise, it is recommended to deepen pathological studies to determine
if there is clinical susceptibility in this species to the serovars reported here, and it may
represent a threat in free-ranging animals or animals under human care.

4.2.4. Pestivirus

To the authors’ knowledge, there are no reports of Pestivirus infection in captive
populations of wild Artiodactyla species in other countries of Latin America and the
Caribbean. The seroprevalence of antibodies against Pestivirus detected in under-human-
care pudus was lower than that found in free-ranging pudus and significantly lower than
that previously reported for pudus from a zoo in Chile (100%) between 2010 and 2012 [5].
Then, our results confirm the hypothesis suggested by these authors, that this outbreak was
caused by a Pestivirus introduced to the pudu population maintained in the zoo, and not by
an enzootic virus of the captive cervid populations in Chile. In addition, the co-occurrence
of abortions with clinical and pathological signs of infectious origin with this epizootic
in this zoo suggests BVDV as the cause for these abortions. After the removal of a pudu
persistently infected with the virus, there have been no abortive events with signs of an
infectious cause in this zoo during the last 10 years. There is no evidence of many species
of cervids clinically susceptible to natural infection by BVDV [140], so future pathological
and molecular studies are necessary to confirm the probable pathogenicity and impact of
Pestivirus in pudu and other Chilean endangered cervids such as huemul and taruka.
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4.2.5. Chlamydia abortus

The seroprevalence of Ch. abortus in under-human-care pudus was higher than in the
wild and, combined with several seroconversion events in pudus monitored longitudinally
in this study, it confirms the susceptibility of this cervid to this pathogen. There is no history
of reports of exposure to Ch. abortus in captive deer, so to the best of the authors’ knowledge,
the pudu is the first deer species reported with evidence of infection by Ch. abortus in
captive populations. Clinical and pathological studies are needed to determine if there is
disease due to these bacteria in pudus.

4.3. Other Pathogens

The non-evidence of exposure in wild and captive pudus for pathogens commonly
reported in cervids in other regions of the world, such as Bluetongue Virus and Epizootic
Hemorrhagic Disease Virus, is expected, because they are none reported in Chile. Further,
no prior evidence of these viruses in the country has been reported, and only recently were
mortality episodes caused by EHDV reported in cervids in Latin America in Brazil [127].
Likewise, it is also expected that no evidence of exposure will be detected for some livestock
and zoonotic pathogens, such as Brucella abortus and Mycobacterium bovis, which have a very
low prevalence in the country in their host reservoir, cattle, thanks to the governmental
programs for control and eradication [36,68]. Our results for M. bovis are similar to those
reported through molecular screening of feces and serology for free-ranging pudus and
huemul, where they found no evidence of infection throughout their entire distribution [68].
No evidence of exposure to Bovine Herpesvirus 1 was found in pudus, which is similar to
what was reported in huemul [63], but different from studies developed in Europe, where
this agent has been reported frequently in serological studies in free-ranging and captive
cervids [141]. However, no mortality events due to BovHV 1 have been reported in cervids.
SARS-CoV-2 has been detected only in captive and wild populations of white-tailed deer in
the US [19,142], but not in other deer species in other regions of the world [143], so studies
in cervid species phylogenetically close to the white-tailed deer, such as the pudu, would
allow us to better understand its epidemiology. Our results may be influenced by the few
samples analyzed or the low sensitivity of the non-specific technique for this species or a
combination of all these factors. Reports on susceptibility to Hepatitis E Virus infection
in deer are abundant in Europe [144]. However, it was not possible to confirm if pudus
are susceptible to this virus, because, like SARS-CoV-2, the number of samples analyzed
was very low, so it is recommended to analyze a greater number of samples to confirm
our results. Finally, there is a recent report of molecular detection of Coxiella burnetii in a
free-ranging pudu [145]; however, it is likely that the prevalence is very low or that the
sensitivity of the technique is not the same, so it was not possible to detect it in the wild or
captive populations of the present study. In addition to this, the prevalence and distribution
of this pathogen in Chile are very low and localized, so it is suggested to analyze a high
number of wild pudu samples using serological and molecular techniques that confirm the
reported findings.

Finally, additional considerations should be taken into account regarding the results of
rescued pudus, because they can be biased by some infectious pathogens that can cause ill
animals. Clinical leptospirosis in deer cause signs like dullness [93], and Toxoplasma gondii
infection influences the host behavior, including decreases in motor performance, learning
capacity, neophobia, and fear; all of these alterations increase the probability of being
attacked by a dog or suffering vehicle collisions, two main causes of admission of pudus
in Chilean rehabilitation centers. Recently, evidence of T. gondii infection has increased
risk behavior towards culling in red deer, supporting its role as a facilitator of predation
risk [146].

The findings of the present study confirm previous evidence from studies in captive
pudus on the susceptibility of this species to livestock diseases such as Pestivirus, Leptospira
interrogans (serovars hardjo and Pomona) and provide new evidence on susceptibility to
other livestock pathogens such as Neospora caninum and Chlamydia abortus. These results
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represent the first finding in Latin America and the Caribbean of a wild ruminant species
with evidence of pathogen pollution by anthropogenic causes.

It is recommended to deepen epidemiological studies to characterize the role of pudu
in the transmission dynamics of these pathogens as well as to develop studies to determine
if they are pathogenic for the pudu. Additional factors to evaluate in these new studies
are whether there is an influence of climate change and/or invasive exotic species, such as
wild boar, red deer, or fallow deer, that share habitat with pudus in some areas throughout
their distribution. All these factors can have a direct impact on the presence and abundance
of several pathogens in wildlife and livestock species [147]. It is also recommended to
inform communities that consume pudu meat about the risks of toxoplasmosis. Finally,
it is suggested as a health surveillance tool to carry out studies on under-human-care
wild species in zoos and hatcheries within their country of distribution as sentinels to
determine the susceptibility of native species to infectious agents about which there is no
epidemiological information.

5. Conclusions

This study represents the first multipathogen serological evaluation in pudu. The
noticeable seroprevalence of livestock diseases such as Pestivirus and Leptospira Hardjo
in wild pudus confirms the contact and transmission of livestock diseases to wildlife in
Chilean template forest. According to our results, pudus may have a role as a wild reservoir
of Leptospira interrogans serovar Hardjo and Pestivirus, and perhaps also for Ch. Abortus and
Toxoplasma gondii. More research will be necessary for SARS-CoV-2 and Hepatitis E Virus,
since the number of samples analyzed was so low.
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