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Simple Summary: Broiler chickens are frequently exposed to a variety of stress factors in the poultry
industry. To simulate these factors, lipopolysaccharide (LPS) from E. coli is commonly used as
a research model to stimulate inflammatory and oxidative stresses in broilers. LPS can reduce
growth performance parameters by negatively affecting broilers’ immune response to inflammation.
Feed additives that could mitigate those detrimental effects are often demanded. The present
study evaluated the impact of hydroxytyrosol supplementation on the growth performance, gut
morphometry, and anti-inflammatory and antioxidant parameters of broilers challenged with LPS.
Hydroxytyrosol improved the growth performance, gut morphometry, and oxidative status of
broilers challenged with LPS. Therefore, hydroxytyrosol supplementation is a powerful nutritional
intervention for mitigating the detrimental effects of LPS.

Abstract: This study assessed the effects of hydroxytyrosol (HT) on 8- to 20-day-old broilers chal-
lenged with lipopolysaccharide (LPS); 180 Cobb500™ male chicks were randomly assigned to 3 treat-
ment groups, each comprising 10 replicates with 6 birds per replicate. Treatments included a control
diet (CON), CON with LPS administration, and CON + LPS supplemented with 10 mg of HT/kg of
feed. LPS was administered intraperitoneally on days 14, 16, 18, and 20. Body weight (BW), body
weight gain (BWG), and the feed conversion ratio (FCR) were measured. On day 20, ten birds per
treatment were slaughtered for analysis. Bursa, spleen, and liver were collected, and their respective
relative weight was determined. The jejunum was destined for morphological analyses of villus
height (VH), crypt depth (CD), and their ratio (VH:CD), and for mRNA expression of nuclear factor
kappa B (NF-κB), catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and in-
terleukins 10 (IL-10), 1 beta (IL-1β), and 8 (IL-8). HT improved BW, BWG, and FCR, and reduced crypt
depth (CD) while increasing the VH:CD ratio in the jejunum. Moreover, HT downregulated mRNA
expression of CAT, GPx, IL-10, and IL-1β. In conclusion, HT enhances broiler growth performance,
mitigates jejunal mucosa damage from LPS, and modulates antioxidant and immune responses.

Keywords: antioxidant; feed additives; gene expression; jejunum; lipopolysaccharide

1. Introduction

In the poultry industry, broilers are frequently exposed to a variety of stress situ-
ations such as microbially contaminated feed, pathogen infection, and immunological
and oxidative stresses contributing to intestinal mucosa injury and reduction of growth
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performance [1–3]. Lipopolysaccharide (LPS), an integral component of the cell wall found
in Gram-negative bacteria, serves as a standard inducer of inflammatory and oxidative
stresses in broilers [4,5]. LPS-challenged broilers present an acute inflammatory response
and oxidative damage, such as a reduction in the expression and activity of antioxidant en-
zymes, elevated production of pro-inflammatory cytokines, increased weight of lymphoid
organs, and impaired digestion and absorption of nutrients due to morphological damage
in the intestine [1,3,6,7].

Plant polyphenols such as curcumin, resveratrol, and hydroxytyrosol (HT) have poten-
tial health effects. They are considered potent immunomodulators with many physiological
effects due to their antioxidant and anti-inflammatory activities, including for poultry
health [8–11]. HT is found in olives and has been shown to confer many health benefits [8].
It is one of the most powerful naturally known antioxidants and its antioxidant capacity can
be attributed to its ortho-dihydroxy configuration within its aromatic ring. According to
Bertelli et al. [12], HT’s antioxidant capacity surpasses green tea by tenfold and coenzyme
Q10 by twice the amount. Moreover, HT is acknowledged for its role as a scavenger of
reactive oxygen species (ROS). HT and its metabolites can reduce the intracellular and
extracellular accumulation of ROS and protect vascular endothelial cells from hydrogen
peroxide [13–15]. Other beneficial effects of HT include the promotion of immunity, anti-
inflammatory effects, and the promotion of gut health [7,12,16,17], but previous studies
with HT have not shown an increase in broiler growth performance [18–20].

No studies have been carried out on chickens exposed to LPS and HT. Consequently,
there is a lack of knowledge and understanding of how HT influences the immune re-
sponse, intestinal health, and growth performance of LPS-challenged broiler chickens. We
hypothesized that HT has an anti-inflammatory effect, and its dietary supplementation
could mitigate the detrimental effects of LPS challenge on broilers’ growth performance.
Therefore, this research aimed to evaluate the effects of HT on immune and antioxidant
responses, as well as intestinal mucosa regulation through measurement of growth perfor-
mance, morphological changes in the jejunum, and gene expression of antioxidant enzymes
and inflammatory parameters.

2. Materials and Methods
2.1. Animals, Experimental Design, and Diets

The study was conducted at the Unit of Study and Research in Poultry Production
and Nutrition of the Department of Animal Science, Federal University of Viçosa, Viçosa,
Minas Gerais, Brazil.

Cobb500™ male broiler chicks were purchased from a commercial hatchery (Rivelli
Alimentos SA, Matheus Leme, MG, Brazil). At the hatchery, all chicks were vaccinated
against Marek and Newcastle diseases and infectious bronchitis. Before reaching 8 d, broiler
chicks were reared in accordance with the guidelines outlined by Cobb500®. During this
period, they had unrestricted access to water and a diet formulated with corn and soybean
meal under the guidelines established by Rostagno et al. [21].

Following, 180 Cobb500™ male chicks (230.9 g ± 3.44 g) were accommodated in metal-
lic cages (600 cm2/bird) and assigned randomly to 3 treatment groups with 10 replicates of
6 birds each, from 8 to 20 days old. Every cage was equipped with a nipple drinker and a
trough feeder, ensuring unrestricted access to water and feed throughout the experimental
period. The temperature was maintained at 28 ◦C at the beginning of the experiment, and
it was gradually reduced to 22 ◦C by 20 days of age. Birds were daily exposed to 18 h of
continuous light during the experimental period.

The treatments consisted of a control diet (CON), a CON with LPS administration
(CON + LPS), and a CON supplemented with 10 mg of hydroxytyrosol/kg of feed with
LPS administration (HT + LPS). The experimental diets were formulated based on corn and
soybean meal to fulfill the nutritional requirements of the birds according to the guidelines
provided by Rostagno et al. [21], without the addition of antibiotics or anticoccidial (Table 1).
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1-HT® hydroxytyrosol (>98% purity) used in this study was biologically manufactured and
provided by Nova Mentis Ltd., Dublin, Ireland.

Table 1. Components and nutritional calculation of the basal diets (as-fed basis).

Ingredient 8 to 20 Days, %

Corn, 7.88% 50.38
Soybean meal, 45.0% 41.12

Soybean oil 4.58
Dicalcium phosphate 1.67

Limestone 0.84
Salt 0.52

DL-Methionine, 99% 0.32
L-Lysine, 78% 0.15

L-Threonine, 98.5% 0.05
Choline chloride, 60% 0.10

Phytase 0.01
Antioxidant (BHT) 3 0.01

Mineral Premix 1 0.13
Vitamin Premix 2 0.13

Calculated nutritional composition 4

Crude Protein, % 22.3
Metabolizable Energy, kcal/kg 3000

Calcium, % 0.980
Available Phosphorus, % 0.480

Sodium, % 0.220
Digestible Lysine, % 1.240

Digestible Methionine, % 0.470
Digestible Methionine + Cysteine, % 0.929

Digestible Threonine, % 0.810
Digestible Tryptophan, % 0.267

1 Composition per kg of product: Manganese, 58.36 g; Iron, 41.68 g; Zinc, 54.21 g; Copper, 8.31 g; Iodine, 0.84 g;
Selenium, 0.25 g. 2 Composition per kg of product: Vitamin A, 9,638,000 IU; Vitamin D3, 2,410,000 IU; Vitamin
E, 36,100 IU; Vitamin B1, 2.60 g; Vitamin B2, 6.45 g; Vitamin B6, 3.61 g; Vitamin B12, 15.9 mg; Vitamin K3,
1.94 g; Pantothenic Acid, 12.95 g; Nicotinic Acid, 39.20 g; Folic Acid, 0.90 g; Biotin, 89.80 mg. 3 Antioxidant
Butylhydroxytoluene. 4 Calculated following Rostagno et al. [21].

Escherichia coli LPS (serotype O55:B5, Sigma Chemical Co., St. Louis, MO, USA) was
reconstituted in saline solution at a concentration of 1.0 mg/mL and administered to the
birds intraperitoneally at a dose of 1 mL/kg of body weight on days 14, 16, 18, and 20.
Birds from the control group received the same amount of saline solution (0.9% sodium
chloride) via intraperitoneal to guarantee similar handling and stress conditions induced
in the ones that received LPS administration.

2.2. Growth Performance

At the start and end of the experimental period, which occurred at 8 and 20 days,
respectively, the birds and their feed were weighed. Data were collected to measure
body weight (BW, kg/bird), BW gain (BWG, kg/bird), feed intake (FI, kg/bird), and feed
conversion ratio (FCR, kg/kg). In cases of mortality, the remaining feed was weighed to
adjust the FI measurement.

2.3. Samples Collection

At 20 days old, one bird with BW closest to the average weight of the experimental
unit was chosen for sample collection (totaling 10 birds per treatment). Four hours after the
first LPS application, the bird was slaughtered by cervical dislocation for sample collection.
Jejunum was identified using Meckel’s diverticulum as a reference, and aseptically removed
and separated into two different samples to evaluate intestinal morphometry and determine
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mRNA content. Furthermore, the liver, spleen, and bursa were removed to determine their
relative weights.

2.3.1. Relative Organ Weights

Before slaughtering, the birds selected were weighed. After slaughtering and eviscera-
tion, the liver, spleen, and bursa were removed and weighed. Relative organ weight (ROW)
was calculated in relation to the birds’ live weight.

2.3.2. Intestinal Morphometry

Samples of the jejunum (≈3 cm length) were obtained and rinsed using a sterile saline
solution (0.9% sodium chloride) to clear any luminal contents. The segments were longitu-
dinally incised and affixed to the cardboard using staples, where the serosa remained in
contact with the cardboard to not distend or harm its structures [22]. Samples were labeled
and preserved in sterile plastic containers filled with a 10% buffered formalin solution.
Afterward, the samples underwent dehydration by immersing them in a series of increas-
ing alcohol concentrations, followed by clarification in xylene, and finally embedding in
liquid paraffin at 60 ◦C. The segments were submitted to microtomy to produce semi-serial
cross-sections with a thickness of 5 µm. These sections were then stained with hematoxylin
and eosin, following Luna’s method [23]. Five 5 µm thick cross-sections were placed on
every microscope slide. The slides were observed and photographed using an optical
microscope (EVOS® XL Core) with 10× magnification. Subsequently, measurements of
villus heights (VH), crypt depths (CD), and the villus height to crypt depth ratio (VH:CD)
were performed using ImageJ 1.50i Software, java1.6.0_20 (National Institutes of Health,
Bethesda, MD, USA). A total of 20 villi and their crypt were measured for each experimental
unit (200 villi and crypt per treatment).

2.3.3. mRNA Extraction and Gene Expression

A second sterile portion of jejunum was obtained, individually stored in cryogenic
tubes, and preserved in liquid nitrogen until further analysis. Total RNA extraction was
conducted by employing Trizol® (Invitrogen, Carlsbad, CA, USA) following the man-
ufacturer’s instructions. RNase-free silica membrane columns (PureLink™ RNA Mini
Kit—Invitrogen TM) were used to wash and isolate the RNA. The resulting precipitate
was rehydrated using 30 µL of UltraPure® DNase/RNase-Free water. The RNA concentra-
tion was estimated using a NanoDrop™ Lite spectrophotometer (Thermo Fisher Scientific,
Beverly, MA, USA) with purity verified by observing A260/A280 ratios within the range
of 1.8 to 2.0. RNA integrity was assessed on a 1% agarose gel. Subsequently, the samples
underwent DNase treatment and were reverse transcribed into cDNA using the High-
Capacity cDNA Reverse Transcription Kits (Applied Biosystems, Thermo Fisher Scientific,
Beverly, MA, USA) according to the manufacturer’s instructions.

The target genes evaluated in jejunum were nuclear factor kappa B (NF-κB), catalase
(CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD1), and interleukins 1β
(IL-1β), 10 (IL-10), and 8 (IL-8). β-actin (β-ACT) was chosen as the endogenous gene for
data normalization because of its high expression level and stability (Table 2).

The real-time quantitative PCR (RT-qPCR) analyses were conducted in duplicate on
a QuantStudio 3 Thermocycler (Applied Biosystems™, Foster City, CA, USA), utilizing
the Relative Quantification approach. Detection was achieved with the SYBR® Green
system (Applied Biosystems, Foster City, CA, USA), and the GoTaq® qPCR Master Mix kit
(Promega Corporation, Madison, WI, USA) was used. The PCR followed a specific cycling
protocol: an initial denaturation at 95 ◦C for 2 min, followed by 40 amplification cycles
of denaturation at 95 ◦C for 15 s each, and an annealing and extension phase at 60 ◦C for
1 min. After amplification, the threshold cycle (Ct) values were normalized employing
the ∆Ct method, comparing against Ct values derived from the endogenous control gene
β-ACT. The quantification of relative gene expression levels was performed employing the
2−∆Ct method as elucidated by Livak and Schmittgen [24].
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Table 2. Sequences of primers utilized in gene expression analysis.

Gene GenBank Sequence

NF-κB NM_205129.1
F: 5′-GTGTGAAGAAACGGGAACTG-3′

R: 5′-GGCACGCTTGTCATAGATGG-3′

CAT NM_001031215.2
F: 5′-ACTGCAAGGCGAAAGTGTTT-3′

R: 5′-GGCTATGGATGAAGGATGGA-3′

GPX NM_001277853.2
F: 5′-GACCAACCCGCAGTACATCA-3′

R: 5′-GAGGTGCGGGCTTTCCTTTA-3′

SOD1 NM_205064.1
F: 5′-AGGGGGTCATCCACTTCC-3′

R: 5′-CCCATTTGTGTTGTCTCCAA-3′

IL-10 NM_001004414.2
F: 5′-CATGCTGCTGGGCCTGAA-3′

R: 5′-CGTCTCCTTGATCTGCTTGATG-3′

IL-1β NM_204524.1
F: 5′-GCTCTACATGTCGTGTGTGATGAG-3′

R: 5′-TGTCGATGTCCCGCATGA-3′

IL-8 HM179639.1
F: 5′-GGCTTGCTAGGGGAAATGA-3′

R: 5′-AGCTGACTCTGACTAGGAAACTGT-3′

β-ACT NM_205518.1
F: 5′-TGCTGTGTTCCCATCTATCG-3′

R: 5′-TTGGTGACAATACCGTGTTCA-3′

2.4. Statistical Analysis

Analysis of the data was conducted using one-way ANOVA executed through the
ExpDes.pt package in R statistical software (version 4.0.4), with the Tukey test applied for
mean comparison. A significance level was set at α = 0.05, and each replicate was regarded
as an independent experimental unit.

3. Results
3.1. Growth Performance

The birds that received the LPS challenge without HT supplementation (CON + LPS)
showed worse BWG, BW, and FCR, compared to the CON and HT + LPS groups (p < 0.001)
(Table 3). There were no differences between the treatments on FI (p = 0.09).

Table 3. Feed intake (FI), body weight gain (BWG), body weight (BW), and feed conversion ratio
(FCR) of broilers from 8 to 20 days.

CON CON + LPS HT + LPS p Value SEM

FI, kg/bird 0.934 0.926 0.910 0.09 0.005
BWG, kg/bird 0.741 a 0.704 b 0.736 a <0.001 0.005
BW, kg/bird 0.973 a 0.932 b 0.967 a <0.001 0.005
FCR, kg/kg 1.262 a 1.317 b 1.238 a <0.001 0.010

a,b Letters differing within the same row indicate significant differences according to the Tukey Test (α = 0.05).
SEM: standard error of the mean.

3.2. Relative Organ Weight

Birds challenged with LPS, with or without HT supplementation, had an increase in
liver ROW (p = 0.001) and in spleen ROW (p < 0.0001) compared to CON (Table 4). There
were no differences between the treatments for Bursa ROW (p = 0.997).

Table 4. Relative organ weight (ROW) of liver, spleen, and Bursa of broilers at 20 days old.

CON CON + LPS HT + LPS p Value SEM

Liver, % 2.494 b 3.038 a 2.853 a 0.001 0.067
Spleen, % 0.099 b 0.167 a 0.150 a <0.0001 0.007
Bursa, % 0.214 0.213 0.213 0.997 0.009

a,b Letters differing within the same row indicate significant differences according to the Tukey Test (α = 0.05).
SEM: standard error of the mean.
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3.3. Intestinal Morphometry

Birds from CON + LPS showed an increase in CD (p < 0.001) and decreased the VH:CD
ratio of jejunum (p = 0.004) when compared to birds in the CON and HT + LPS treatment
groups (Table 5). However, there was no difference in VH among the treatment groups
(p = 0.324). To visualize the effects, images can be found in Figure S1.

Table 5. Villus height (VH), crypt depth (CD), and villus: crypt ratio (VH:CD) of jejunum from broiler
chickens at 20 days old.

CON CON + LPS HT + LPS p Value SEM

VH, µm 2100.85 1972.55 2108.57 0.324 40.91
CD, µm 477.77 a 582.77 b 448.81 a <0.001 15.28
VH:CD 4.453 a 3.417 b 4.879 a 0.004 0.198

a,b Letters differing within the same row indicate significant differences according to the Tukey Test (α = 0.05).
SEM: standard error of the mean.

3.4. mRNA Expression

Birds from the HT + LPS treatment group showed lower gene expression of CAT
(p = 0.03) and GPx (p = 0.0004) when compared to CON (Figure 1A,B). Birds challenged
with LPS but without dietary HT showed higher gene expression for IL-10 (p < 0.0001)
(Figure 1C). Furthermore, birds treated with HT + LPS had lower gene expression of IL-1β
compared to CON (p = 0.022) (Figure 1D). No significant differences were observed in the
gene expression levels of IL-8 (p = 0.213), NF-κB (p = 0.633), and SOD1 (p = 0.315) among
the treatment groups (Figure 1E–G).

Figure 1. Effects of hydroxytyrosol supplementation on mRNA expression in the jejunum of broilers at
20 days old: (A) CAT, p value = 0.03; (B) GPx, p value = 0.0004; (C) IL-10, p value < 0.0001; (D) IL–1β,
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p value = 0.022; (E) IL–8, p value = 0.213; (F) NF–κB, p value = 0.633; and (G) SOD, p value = 0.315.
Bars with different letters, along with their corresponding standard errors of the mean, differ from
each other by the Tukey test. CON: control diet; CON + LPS: CON with LPS administration; HT + LPS:
CON supplemented with 10 mg of hydroxytyrosol/kg of feed with LPS administration. CAT: catalase;
GPx: glutathione peroxidase; IL–10: interleukin 10; IL–1β: interleukin 1β; IL–8: interleukin 8; NF–κB:
nuclear factor kappa B; SOD: superoxide dismutase.

4. Discussion

Gram-negative bacteria have LPS, an endotoxin, as a main component of their cell wall.
The release of LPS during bacterial death or rapid growth is associated with the release of
pro-inflammatory cytokines and can be harmful to broiler development [25,26]. Previous
studies showed that challenges with LPS affected feed intake and weight gain of broiler
chickens [3,5,27]. Similarly, in the current study, LPS administration caused a reduction
in BWG and BW and increased FCR. However, in the current study, when birds were fed
dietary HT, those parameters were not negatively affected when compared to birds in
the control treatment. In previous research, supplementation of HT had no influence on
broiler growth performance when they were reared under normal conditions [18–20]. These
previous findings together with the findings of the current study suggest that HT may
modulate the inflammatory response, caused by LPS administration, and thus, decrease the
diversion of nutrients required to support the immune system due to its anti-inflammatory
activity [7], instead of directly promoting broiler growth performance.

The liver, spleen, and bursa of Fabricius play crucial roles in general metabolism
and serve as immune organs in broilers. Also, they are LPS target organs, being relevant
during the acute-phase immune response [6,28]. The ROW of these organs is a useful
parameter to evaluate the immune function of poultry [3]. Several studies have shown that
LPS administration caused an increase in the ROW of the liver and spleen, which may be
explained by the increase in the production of pro-inflammatory cytokines and recruitment
of inflammatory cells to these organs, resulting in its mass growth [6,29–31]. We observed
that birds that received LPS administration had an increase in ROW of the liver and spleen,
regardless of the use or non-use of HT in diets, when compared to birds from the control
group. This suggests that dietary HT was not capable of reducing liver and spleen ROW.

The barrier formed by the intestinal mucosa is crucial for maintaining gut balance and
acts as the initial defense line against pathogens, facilitated by the digestion and absorption
of nutrients [32]. The small intestine is the primary site for nutrient absorption, but it is
also a targeted organ for LPS [33,34]. Intestinal mucosa dysfunction is characterized by
histological changes such as villus necrosis, reduced VH, and increased CD in the mu-
cosa [35]. An increase in CD and a decrease in VH can impair nutrient absorption, increase
the secretion of electrolytes and water in the gastrointestinal tract, and can consequently
worsen broiler growth performance [36]. A deeper crypt may imply faster tissue turnover
to facilitate the renewal of villi, indicating that the host’s intestinal response mechanism
is attempting to compensate for regular sloughing or atrophy of the villus caused by in-
flammation from pathogens and their toxins [17,37]. Therefore, a high VH:CD ratio is
considered a reliable marker of mucosal turnover and is linked to an enhanced capacity
for digestion and nutrient absorption [38,39]. The results showed negative effects of LPS
administration on intestinal morphometry, evidenced by increasing CD and decreasing
VH:CD, consistent with previous findings [2,3,40]. However, dietary HT could attenuate
intestinal morphometric damage by decreasing CD and increasing the VH:CD ratio, which
consequently could be observed in increased broiler growth performance. These findings
could be explained by HT’s role through a direct biological activity in the gastrointesti-
nal tract before being absorbed and also acting on intestinal flora regulation, where HT
improves microbial community disturbance and protects intestinal wall integrity [7,41].

LPS initiates the inflammatory process via a Toll-like receptor (TLR4), which is ex-
pressed on the cell membrane of leukocytes. After LPS activates TLR4, NF-κB accesses the
nucleus and modulates the release of pro-inflammatory cytokines [42–45]. The interleukin
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IL-1β plays a pivotal role in regulating the innate immune response in birds [1]. In our
study, the LPS challenge did not alter the gene expression of NF-κB and IL-8, while it was ob-
served that the expression of IL-1β was lower in the LPS + HT treatment, compared to CON,
but not different from CON + LPS. Therefore, the effects of HT as an anti-inflammatory
agent could not be determined in the present study. Moreover, the expression of IL-10
decreased in the LPS + HT treatment when compared to the CON + LPS. IL-10 is known
to be a potent anti-inflammatory cytokine that regulates the host immune response to
minimize unintended host cell damage during inflammation [46]. The reduction in both
interleukins was also observed by Kaiser et al. [47] for vitamin E and Zhang et al. [48] for
α-tocopherol succinate supplementations. These results could be attributed to a mechanism
of homeostasis in which the appropriate balance of the cytokine network is maintained
uniformly for both pro- and anti-inflammatory cytokines.

The administration of LPS not only induces inflammation but also leads to oxidative
stress, which is related to inflammatory responses by the release of pro-inflammatory
cytokines [26,30,49]. The antioxidant system is composed mainly of SOD, CAT, and GPx,
which act as a scavenger of free radicals to decompose hydrogen peroxide (H2O2) [2,32].
SOD acts on superoxide anion, which is dismutated to H2O2, and subsequently is catalyzed
to H2O by CAT, GPx, or peroxiredoxins [50]. Interestingly, we found that dietary HT
reduced the expression of GPx and CAT in the jejunum. It suggests that HT may act
directly on H2O2, consequently reducing the need for GPx and CAT to catalyze it into H2O.
Similar to our finding, Zrelli et al. [13] reported that HT had a protective effect on vascular
endothelial cells against the cytotoxic effects of H2O2. The authors led an investigation
to understand the mechanisms involved in this protection and discovered that HT acted
through PI3K/Akt and ERK1/2 pathways. These enzymes often play a role in stimulating
cell multiplication and enhancing cell survival during oxidative stress [13].

Since the findings showed that HT supplementation decreased antioxidant enzyme
expressions, we hypothesized that HT could be acting through another pathway that was
not investigated in the present study. The literature shows that HT can modulate the
antioxidant response through the nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is
one of the major regulators of the antioxidant response and prevents oxidative damage [51].
It can regulate the expression of a diversity of genes related to antioxidant defense and
detoxification. Under normal circumstances, Nrf2 is bound to a cytoplasmatic protein called
KEAP1, which targets Nrf2 for ubiquitination and subsequent degradation, maintaining
low levels of Nrf2 in the cell. On the other hand, under stress conditions, like the LPS
challenge in the present study, KEAP1 undergoes a conformational change and thus, does
not target Nrf2 for degradation [13,52,53]. Nrf2 activation occurs after its translocation
into the nucleus, where it binds to the antioxidant response element (ARE) to promote
heme oxygenase 1 (HO-1) and other antioxidant gene expression [13,51,52]. HT has been
correlated with the ARE pathway, in which it promotes the activation of various genes
encoding ARE, including DNA-repair proteins or phase II detoxifying enzymes [14]. In
addition to the activation of PI3K/Akt and ERK1/2 pathways, HT induces the expression
of HO-1, a downstream phase II detoxifying enzyme, after Nrf2 activation [13]. HO-1
reduces intracellular ROS, therefore, contributing to the cytoprotective effects of HT against
oxidative stress [13]. According to Satta et al. [51], the Nrf2/HO-1 signaling pathway has a
pivotal role in decreasing oxidative stress levels in the organism.

In the present study, HT acted by reducing the oxidative stress in the broiler’s jejunum.
It could be related mainly to HT’s direct role against the cytotoxic effects of H2O2 as
previously discussed. Moreover, it might have induced an increase in HO-1 gene expression,
which acts to reduce intracellular ROS; however, it was not investigated.

Briefly, HT has an important role in the antioxidant response, in which the proper
mechanisms need to be further investigated to understand HT’s antioxidant capacity either
directly or indirectly.
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5. Conclusions

The supplementation of 10 mg of HT/kg of feed attenuates the reduced growth
performance and the jejunal mucosa damage caused by LPS challenge by increasing villus
height to crypt depth ratio and improving the oxidative response of broiler chickens. More
studies should be carried out to better elucidate if HT has anti-inflammatory effects on
broilers and to understand the proper mechanisms by which HT can enhance the oxidative
responses of broiler chickens.
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//www.mdpi.com/article/10.3390/ani14060871/s1, Figure S1: Images of jejunum to illustrate the
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20 days old, challenged or not by LPS.
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