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Simple Summary: This study addresses a major challenge in small- to medium-scale pig farming by
tackling the issue of limited reference population data in breeding programs. To enhance the accuracy
of genomic estimated breeding values, this research explores the benefits of combining reference
populations of varying sizes. Specifically, focusing on Yorkshire pigs, this study examined the impact
of different population combinations on the accuracy of genomic selection for key traits related to the
growth and lean meat percentage. The findings reveal that predicting a population using data from
two other populations significantly improves accuracy, offering a promising strategy for small- and
medium-sized pig herds. This innovative approach has the potential to enhance genomic selection
accuracy, providing valuable insights for pig farmers facing resource constraints. Ultimately, this
study underscores the importance of incorporating population combinations in genetic models for
predicting breeding values, contributing to more efficient and effective pig farming practices.

Abstract: The need for sufficient reference population data poses a significant challenge in breeding
programs aimed at improving pig farming on a small to medium scale. To overcome this hurdle, in-
vestigating the advantages of combing reference populations of varying sizes is crucial for enhancing
the accuracy of the genomic estimated breeding value (GEBV). Genomic selection (GS) in populations
with limited reference data can be optimized by combining populations of the same breed or related
breeds. This study focused on understanding the effect of combing different reference group sizes on
the accuracy of GS for determining the growth effectiveness and percentage of lean meat in Yorkshire
pigs. Specifically, our study investigated two important traits: the age at 100 kg live weight (AGE100)
and the backfat thickness at 100 kg live weight (BF100). This research assessed the efficiency of ge-
nomic prediction (GP) using different GEBV models across three Yorkshire populations with varying
genetic backgrounds. The GeneSeek 50K GGP porcine high-density array was used for genotyping.
A total of 2295 Yorkshire pigs were included, representing three Yorkshire pig populations with
different genetic backgrounds—295 from Danish (small) lines from Huaibei City, Anhui Province,
500 from Canadian (medium) lines from Lixin County, Anhui Province, and 1500 from American
(large) lines from Shanghai. To evaluate the impact of different population combination scenarios on
the GS accuracy, three approaches were explored: (1) combining all three populations for prediction,
(2) combining two populations to predict the third, and (3) predicting each population independently.
Five GEBV models, including three Bayesian models (BayesA, BayesB, and BayesC), the genomic best
linear unbiased prediction (GBLUP) model, and single-step GBLUP (ssGBLUP) were implemented
through 20 repetitions of five-fold cross-validation (CV). The results indicate that predicting one
target population using the other two populations yielded the highest accuracy, providing a novel
approach for improving the genomic selection accuracy in Yorkshire pigs. In this study, it was found
that using different populations of the same breed to predict small- and medium-sized herds might
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be effective in improving the GEBV. This investigation highlights the significance of incorporating
population combinations in genetic models for predicting the breeding value, particularly for pig
farmers confronted with resource limitations.

Keywords: growth traits; genomic selection; multi-population; best single-step genomic linear
unbiased prediction

1. Introduction

The use of genomic selection (GS) has led to the transformation of breeding practices
across animal and plant industries, which rely on factors such as reference population size,
marker density, and trait heritability for precision [1–3]. High-precision genomic predictions
for select candidates necessitate a substantial reference population comprising individuals
with both genotypic and phenotypic data [2]. Nevertheless, collecting such extensive
reference populations proves challenging, particularly with limited animal resources. An
alternative strategy involves combining populations of different breeds to enhance the
precision of genomic prediction [4,5]. Previous studies [6] have found that the Bayesian
model accuracy for merged populations with different populations of the same species in
simulated data is better than the GBLUP and ssGBLUP models’ accuracies. This study was
conducted to verify whether the conclusions were consistent with the simulated data using
real data.

While prior investigations on genomic selection in pigs have focused primarily on
similar or closely related genetic backgrounds [7], limited research has been conducted
on genomic selection in pigs utilizing populations characterized by diverse genetic back-
grounds. It has been shown that crossing populations does not improve the accuracies of
genome predictions because differences in allele substitution effects between populations
reduce the accuracies of the genome predictions across populations [8]. Additionally, com-
pared to those among dairy cattle, the consistency of linkage disequilibrium patterns among
different pig populations is lower, prompting questions about the substantial improvement
in dairy cattle. Traits crucial for genomic selection in pigs, such as feed intake, carcass
characteristics, and meat quality, pose challenges in establishing sufficiently large reference
populations. Hence, it is imperative to investigate the potential benefits of amalgamating
reference groups of diverse sizes to augment the accuracy of genomic estimated breeding
values in pigs.

The Yorkshire pig breed, acclaimed for its traits, such as effective utilization of feed,
fast growth, valuable slaughter characteristics, and favorable lean meat composition, holds
prominence in pig production. Two critical traits, namely, age at 100 kg live weight
(AGE100) and backfat thickness at 100 kg (BF100), are of particular significance, with
AGE100 serving as a pivotal genetic marker for the rate of growth [9] and BF100 being
crucial for assessing the lean meat rate [10,11]. These economically crucial traits offer a
holistic perspective on the necessity of integrating genetically estimated breeding values for
growth rate and fat deposition traits in Yorkshire pigs with diverse genetic backgrounds.

In this study, we explored the impact of combining different breeds of Yorkshire pig
populations on the precision of genomic estimated breeding values (GEBVs) for the AGE100
and BF100 traits. Our findings indicate that combining different populations can enhance
GEBV accuracy under specific conditions. Bayesian models displayed superior performance
compared to GBLUP and ssGBLUP models when applied to combined populations, while
the latter models proved effective in predicting genomic estimated breeding values (GEBVs)
within individual populations. In addition, combining the other two populations resulted
in a significant third-population accuracy for the GEBV, highlighting the need for further
research into the potential factors leading to this enhancement.
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2. Materials and Methods
2.1. Husbandry Management of Experimental Animals

This study included 2295 pigs from three distinct regions, representing three Yorkshire
pig populations: 295 Danish, 500 Canadian, and 1500 American Yorkshire pigs, and both
boars and sows were selected. All data were recorded successively from 2015 to 2020. The
Danish and Canadian pigs were from regions with a temperate monsoon climate, while the
American pigs were from a subtropical climate. All Yorkshire pigs under investigation were
in the fattening stage and resided in expansive facilities. The housing conditions maintained
a feeding density ranging from 0.8 to 1.2 m2 per pig and with a parameter adjusted
according to their respective weights. Automated feeding troughs ensured continuous
access to food without interruptions. Standard disinfection procedures were applied to all
the experimental animal buildings, and all the animals were vaccinated.

2.2. Trait-Corrected Models for Experimental Animals

Swine across all pig populations were meticulously chosen for analysis, specifically
targeting individuals aged approximately 160 days and subjected to uniform feeding
conditions, ensuring both health and freedom from disease. The swine underwent a
standardized feeding regimen, and individual measurements were conducted at an av-
erage weight of 100 kg. Backfat thickness was assessed using ultrasound and measured
during the same weighing interval between the eleventh and twelfth rib. The mea-
surements for AGE100 were computed using the appropriate correction equations [12]:
AGE100 = measured age +

100 kg−measured age
CF , where CF is the correction factor (refer-

ring to the National Program for Swine Genetic Enhancement in China), CFmale =
measured weight

measured age × 1.826, and CFfemale =
measured weight

measured age × 1.715. Those for BF100 were cal-

culated as follows [13]: BF100male = measured backfat × 12.402
12.402+0.106×(measured weight−100)

and BF100female = measured backfat × 13.705
13.705+0.119×(measured weight−100) .

2.3. DNA Extraction and Genotyping

Blood samples were transferred to sterile tubes and centrifuged at 3000 rpm for 10 min.
The buffy coat layer containing leukocytes was carefully aspirated and transferred to a
clean tube. Red blood cells were lysed by adding an equal volume of RBC lysis buffer
(10 mM Tris-HCl, 10 mM NaCl, 1 mM EDTA, pH 8.0) and incubating at room temperature
for 10 min. After the leukocyte pellet was washed with phosphate-buffered saline (PBS),
cells were lysed using a commercial cell lysis buffer containing proteinase K. The lysate was
incubated at 55 ◦C for 2–4 h to ensure complete lysis. Following the cell lysis, proteinase K
was inactivated via heat treatment at 95 ◦C for 10 min. RNase A (20 µg/mL) was added to
the lysate to degrade RNA, and the mixture was further incubated at 37 ◦C for 30 min. DNA
was purified using a Tiangen DNA extraction kit, following the manufacturer’s instructions.
Briefly, the lysate was mixed with binding buffer and transferred to a spin column. After
centrifugation, the DNA was bound to the column while contaminants were removed
through washing steps. Finally, purified DNA was eluted in sterile water or TE buffer.

All individuals with phenotypes were genotyped using the GeneSeek GGP porcine
HD array. According to Sus scrofa version 10.2, the SNP chip consisted of 50,915 probes,
and autosomes were further upgraded to the latest version of the porcine genome—Sus
scrofa version 11.1. The final remaining autosomal SNPs were 34,150 Kb for the Canadian
line, 34,543 Kb for the Danish line, and 34,497 Kb for the American line.

Quality control was performed through PLINK (V1.90; http://www.cog-genomics.
org/; accessed on 16 March 2023). Pigs with call rates < 0.9 were excluded, and SNPs
with minor allele frequencies (MAFs) below 0.05 and call rates < 0.9 were excluded in each
population species.

http://www.cog-genomics.org/
http://www.cog-genomics.org/
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2.4. Genomic Analysis of the Population

Eigenvalues and eigenvectors were acquired through PLINK (v1.90; http://www.cog-
genomics.org/; accessed on 16 March 2023), with a subsequent execution of a principal
component analysis (PCA) on the remaining SNPs [14]. Furthermore, linkage disequilib-
rium (LD, represented as r2) was computed for each population. In this investigation, SNeP
software (v1.1; https://bioinformaticshome.com/tools/descriptions/SNeP.html#gsc.tab=0;
accessed on 25 March 2023) was employed to determine the population effect size (Ne) [15].

2.5. Scenarios of Combining References

The scenarios of combining references were as follows: (1) combining all three popula-
tions (Danish, Canadian, and American lines) for prediction; (2) combining two populations
to predict the third, e.g., combining the American (large-scale) and Canadian (medium-
scale) lines to predict the Danish (small-scale) population or combining the American
(large-scale) and Danish (small-scale) lines to predict the Canadian (medium-scale) popula-
tion; and (3) predicting each population independently.

2.6. Statistical Analysis
2.6.1. Bayesian A and Bayesian B

In 2001, Meuwissen [3] proposed the concept of GS, concurrently proposing two
Bayesian models, named Bayesian A and Bayesian B, for predicting genomic estimated
breeding values. The general framework for a Bayesian regression model is outlined as
follows:

y = Xb + ∑m
k=1 Zigi + e,

where y represents the vector of phenotypes, b signifies the vector of fixed effects, including
variables such as sex, X denotes the corresponding design matrix, Zi denotes the genotype
of the i-th locus (coded as 0/1/2), gi represents the effect value linked to the i-th locus, and
e is indicative of the random residual effect vector.

The Bayesian A model assumes that all markers contribute to the genetic effect, with
the impact of genetic markers following a Gaussian distribution, gi ∼ N

(
0,σ2

g

)
, while the

variance adheres to an inverse chi-square distribution, σ2
gi

∼ χ−2(v, S), where v represents
the degree of freedom, and S denotes the scale parameter.

Diverging from the Bayesian A approach, the Bayesian B model introduces an indicator
variable represented by π, indicating the effect of the SNP. This variable operates under
the assumption that most markers exhibit negligible impact (scaled by π), whereas only a
limited subset of markers manifests an effect (scaled by 1 − π). Furthermore, the variance
associated with this specific subset of markers with an impact is characterized by an inverse
chi-square distribution. {

σ2
gi
= 0, π

σ2
gi

∼ χ−2(v, S), 1 − π.

The Bayesian A model can be conceptualized as a particular instance of Bayesian B,
where the parameter π is set to 0. In this research, both the Bayesian A and Bayesian B
models were applied through the utilization of the R BGLR package [16].

2.6.2. BayesC

The formulation for BayesC [17] was as follows:

y = 1µ+ ∑i Iixisi + e.

In this representation, y denotes a vector representing yield deviations, 1 signifies a
vector of ones, µ represents the overall mean, and xi stands for a vector of genotypes for
SNP i, incorporating −2pi for individuals with identical alleles, 1–2pi for heterozygotes,

http://www.cog-genomics.org/
http://www.cog-genomics.org/
https://bioinformaticshome.com/tools/descriptions/SNeP.html#gsc.tab=0
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and 2–2pi for the alternative homozygote genotype, with pi denoting the allele frequency
of the SNP i. The indicator variable Ii determines whether SNP i is included in the model
during the specific MCMC cycle (0/1), where the prior probability of Ii being equal to 1 is
denoted by π. The SNP effect si is modeled to follow a normal distribution: si ∼ N

(
0,σ2

m
)
.

The residual e follows a normal distribution: e ∼ N
(
0, Dσ2

e
)
.

2.6.3. GBLUP

The GBLUP model can be delineated as follows:

y = µ+ Xb + Zg + e,

where y represents the vector of phenotypic values, b denotes the vector of fixed effects,
including variables such as sex, X stands for the corresponding design matrix, µ signifies
the overall mean, Z is the design matrix establishing the link between genetic value (g) and
y, and e is a vector encompassing stochastic residuals. It was hypothesized that

g ∼ N
(

0, Gσ2
g

)
and e ∼ N

(
0, Iσ2

e

)
,

where σ2
g is the additive genetic variance, and σ2

g is the random residual variance. The
genomic relationship matrix (G), as outlined by [18], was derived through the computation
of the SNPs:

G =
(M − P)(M − P)′

2 ∑m
k=1 pk(1 − pk).

In this formulation, M represents an n ∗ m matrix, where n denotes the number of
individuals, and m represents the number of SNPs; pk signifies the minor allele frequency
of the ith SNP; and P is a matrix where the elements of the k-th column are 2pk. In this
investigation, GBLUP was performed through the utilization of the R qgg package [19].

2.6.4. ssGBLUP

The univariate ssGBLUP model can be delineated as follows:

y = Xb + Za + e.

In this framework, the incidence matrix X establishes the relationship between fixed
effects b and the effect of sex, while the incidence matrix Z establishes connections between
breeding values (a) and the corresponding observations in vector y, and e represents the
random residual vector. It is postulated that Var(e) = Iσ2

e, where I denotes the identity
matrix. The same matrix is employed in GBLUP, or a diagonal matrix incorporating
weights [18]. In ssGBLUP, the breeding values exhibit a specified covariance structure in
which Var(a) = Hσ2

e, with σ2
e denoting the genetic variance and H incorporating information

from both genomic (G) and pedigree (A) relationship matrices [18,20].

2.7. Evaluation of the Accuracy of Genomic Prediction

In this investigation, predictive accuracy was assessed utilizing 5-fold cross-validation
(CV) on actual genomic data. The genotyped individuals were randomly distributed
into five nearly equitably sized subgroups. Within this framework, one subgroup was
exclusively designated as the validation population, while the remaining four subgroups
constituted the reference population. This cross-validation procedure was iterated five
times, with each subgroup serving as the validation set once. To ensure robustness, the
5-fold CV was repeated 20 times, resulting in 20 averaged predictive accuracies.
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3. Results
3.1. Assessment of Population Stratification

To analyze the genetic diversity within the three Yorkshire pig populations, we per-
formed a principal component analysis (PCA). The outcomes revealed substantial variations
in the genetic composition among Yorkshire pigs originating from the Danish, Canadian,
and American lineages. In particular, PC1 was instrumental in emphasizing the genetic
variations among these Yorkshire populations (Figure 1).
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Figure 1. Principal component analyses revealed the association between the primary components
(PC1 and PC2) and the proportion of genetic variance explained, specifically, the percentage of
variation elucidated within the American, Canadian, and Danish pig lines.

3.2. The Accuracy of the Danish (Small) Line

In this study, the Danish lines represented a smaller population within the Yorkshire
pig breed, and their accuracy improved when data from the Canadian, American, and
Danish lines were combined rather than relying only on the data of Danish lines to predict
breeding values associated with the BF100 trait. Among the evaluated models, the ssGBLUP
model demonstrated superior accuracy in predicting breeding values across combined
populations. The Bayesian model consistently exhibited a superior predictive performance
compared to the GBLUP and ssGBLUP models when predicting Danish lines with data
derived from the Canadian and American lines, albeit without statistical significance in
the observed differences. In addition, the Bayesian B model was the most accurate of the
Bayesian models in relative terms (Figure 2, Table 1).
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Animals 2024, 14, 1098 7 of 14

Table 1. Accuracy of prediction for the BF100 trait in the Danish line.

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP

Combined American, Canadian, and
Danish populations 0.10850 0.10687 0.10595 0.13385 0.14336

Combined American and Canadian
populations 0.65999 0.66093 0.64634 0.11604 0.12715

Danish populations individually 0.04895 0.04387 0.04385 0.05784 0.05588

However, when examining the AGE100 trait, combining data from all three popula-
tions for predicting the Danish population resulted in greater accuracy than exclusively
relying on genetic estimates from the Danish population for breeding values. Among the
five models tested, no statistically significant differences were detected, although the ssG-
BLUP model displayed a relatively greater accuracy. In forecasting the Danish population
using both the Canadian and American lines, the Bayesian models consistently surpassed
the BLUP models, with the Bayesian A model demonstrating the highest overall accuracy
(Figure 3, Table 2).
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Figure 3. Accuracy of prediction for the AGE100 trait in the Danish cohort. (a) A combination
of American, Canadian, and Danish populations was used to predict the prognosis of Danish
populations. (b) The use of combined American and Canadian populations to predict Danish
populations. (c) Individual Danish populations.

Table 2. Accuracy of prediction for the AGE100 trait in the Danish line.

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP

Combined American, Canadian, and
Danish populations 0.32526 0.32599 0.32159 0.31096 0.32953

Combined American and Canadian
populations 0.70134 0.68404 0.69489 0.30901 0.32876

Danish populations individually 0.25057 0.24194 0.23761 0.18266 0.19131

3.3. The Accuracy of the Canadian (Medium) Line

In this study, the Canadian line, representing the medium-sized population of York-
shire pigs, showed elevated breeding values for BF100 traits when integrating data from the
Danish, Canadian, and American Yorkshire pig populations rather than relying solely on
the Canadian line data. The GBLUP and ssGBLUP models exhibited the highest accuracies
within the combined population. When forecasting the Canadian line using data from
the Danish and American lines, the Bayesian models consistently outperformed the BLUP
models, although these differences lacked statistical significance. Notably, the Bayesian C
model emerged as the most accurate in relative terms (Figure 4, Table 3).
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Table 3. Accuracy of prediction for the BF100 trait in the Canadian line.

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP

Combined American, Canadian, and
Danish populations 0.19236 0.20061 0.20714 0.27130 0.27133

Combined American and Danish
populations 0.56656 0.56813 0.57448 0.28029 0.27973

Canadian population individually 0.13579 0.14652 0.14622 0.18004 0.18012

Nevertheless, when considering the AGE100 trait, amalgamating data from all three
populations improved the accuracy of the Bayesian models. Conversely, relying on solely
data from the Canadian line proved to be more accurate than combining the three popula-
tions, especially concerning both the GBLUP and ssGBLUP models. In this scenario, the
ssGBLUP model demonstrated the highest predictive accuracy. Specifically, the Bayesian C
model was the most accurate when utilizing both the Danish and American lines to predict
Canadian lineage populations. The Bayesian models surpassed the BLUP model in terms
of accuracy (Figure 5, Table 4).

Animals 2024, 14, x FOR PEER REVIEW 9 of 14 
 

 
Figure 5. Accuracy of prediction for the AGE100 trait in the Canadian cohort. (a) The use of 
combined American, Canadian, and Danish populations to predict Canadian populations. (b) The 
use of combined American and Danish populations to predict Canadian populations. (c) Individual 
Canadian populations. 

Table 4. Accuracy of prediction for the AGE100 trait in the Canadian line. 

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP 
Combined American, 
Canadian, and Danish 

0.41599 0.42777 0.42452 0.51505 0.52175 

Combined American and 
Danish populations 0.72887 0.74858 0.75569 0.51873 0.52609 

Canadian population 
individually 0.25572 0.24653 0.26800 0.52769 0.53372 

3.4. The Accuracy of the American (Large) Line 
In this investigation, the American line, which represented the large population of 

Yorkshire pigs, showed that although the accuracy of the combination of the other two 
populations was enhanced according to the Bayesian models, the accuracy of the use of 
only the American data in the ssGBLUP model was low (Figure 6, Table 5). 

 
Figure 6. Accuracy of prediction for the BF100 trait in the American line. (a) A combination of 
American, Canadian, and Danish populations was used to predict American populations. (b) 
Individual American populations. 

Table 5. Accuracy of prediction for the BF100 trait in the American line. 
Scenarios BayesA BayesB BayesC GBLUP ssGBLUP 

Combined American, Canadian, 
and Danish populations 0.34910 0.35499 0.36329 0.43341 0.43526 

Figure 5. Accuracy of prediction for the AGE100 trait in the Canadian cohort. (a) The use of
combined American, Canadian, and Danish populations to predict Canadian populations. (b) The
use of combined American and Danish populations to predict Canadian populations. (c) Individual
Canadian populations.



Animals 2024, 14, 1098 9 of 14

Table 4. Accuracy of prediction for the AGE100 trait in the Canadian line.

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP

Combined American, Canadian, and
Danish 0.41599 0.42777 0.42452 0.51505 0.52175

Combined American and Danish
populations 0.72887 0.74858 0.75569 0.51873 0.52609

Canadian population individually 0.25572 0.24653 0.26800 0.52769 0.53372

3.4. The Accuracy of the American (Large) Line

In this investigation, the American line, which represented the large population of
Yorkshire pigs, showed that although the accuracy of the combination of the other two
populations was enhanced according to the Bayesian models, the accuracy of the use of
only the American data in the ssGBLUP model was low (Figure 6, Table 5).
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Table 5. Accuracy of prediction for the BF100 trait in the American line.

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP

Combined American, Canadian, and
Danish populations 0.34910 0.35499 0.36329 0.43341 0.43526

American population individually 0.15793 0.14229 0.15109 0.43869 0.43978

With respect to the AGE100 trait, the predictions were more accurate when utilizing
the American group alone than when combining the other two groups. The ssGBLUP
model demonstrated the highest accuracy in this context (Figure 7, Table 6).

Table 6. Accuracy of prediction for the AGE100 trait in the American line.

Scenarios BayesA BayesB BayesC GBLUP ssGBLUP

Combined American, Canadian, and
Danish populations 0.23780 0.24182 0.24619 0.31689 0.32331

American population individually 0.25502 0.25556 0.26096 0.32570 0.33130
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4. Discussion

The present study aimed to evaluate different models for the genetic estimation of
breeding values and different scenarios for combined populations of Yorkshire pigs origi-
nating from distinct genetic backgrounds—namely, Danish, Canadian, and American lines.
Our findings demonstrate that the amalgamation of Danish, Canadian, and American
populations significantly enhanced the precision of the Bayesian model, while the BLUP
model show marginal improvement in accuracy. These outcomes are consistent with our
earlier findings using simulated data [6]. It has been shown that the accuracy of Bayesian
variable selection models depends on the number of QTLs, with fewer QTLs resulting
in higher accuracy. This trend is more evident in cross-population genomic prediction.
Bayesian variable selection outperforms GBLUP when the number of QTLs is small but
loses its advantage when the number of QTLs is large [21]. As an adaptation of GBLUP,
several studies [7,22–24] have affirmed the superior performance of ssGBLUP over GBLUP.
Furthermore, the outcomes of this investigation suggest that this superiority becomes
more pronounced, particularly when dealing with a smaller reference population. In such
instances, the relative contribution of phenotype information from non-genotyped individ-
uals, specifically related to the selection candidates, becomes more pertinent. The ssGBLUP
model had a positive effect on medium-sized and small populations of Yorkshire Pig farms,
except for the AGE100 trait in the medium-sized population; in this case, the ssGBLUP
model alone was more accurate at predicting the genomic estimated breeding values for
the medium population itself. In addition, predicting genetic estimates of breeding values
by combining large, medium, and small populations improved the prediction when only
their populations were used to varying degrees for medium- and small-sized populations.
Overall, the heritability estimates for the studied BF100 trait ranged from moderate to
high [25], indicating a substantial genetic component and suggesting favorable respon-
siveness to selection. A large number of studies have shown that the ssGBLUP model is
more accurate in terms of genomic selection than are other models in most cases [26–30].
Furthermore, the increased heritability estimates observed with the utilization of ssGBLUP
compared to PBLUP may be attributed to the consideration of the Mendelian sampling
term. Genomic-based methodologies, such as ssGBLUP, use the Mendelian sampling term,
which pedigree-based approaches neglect. This term captures the variation among family
members within a half-sib or full-sib family surrounding the family’s mean relatedness [31].

The reference population plays a pivotal role in GS, with the accuracy of GS being
contingent upon both its size and its relationship to the selection of candidates. Establishing
the combined reference group, comprising animals from diverse populations with distinct
genetic backgrounds of the same breed, serves dual purposes: expanding the reference
size and enabling the utilization of a shared reference population for genomic selection
across diverse breeding populations. This strategy has been applied in various genomic
selection initiatives. For example, within the Euro Genomics Coöperative U.A. initiative
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based in Amsterdam, the Netherlands, a unified reference population was established
by amalgamating four closely affiliated populations of dairy cattle. The results indicated
a substantial improvement in the reliability of genomic predictions for bulls across the
four populations, showing an average increase of 10% compared to predictions based on
individual reference populations alone [32]. Analogous initiatives have been pursued in
beef cattle, where endeavors to form a unified reference group encompassing multiple
breeds showed that prediction equations developed in multibreed populations achieved
enhanced accuracy for subpopulations [33]. The enhancement of genomic prediction
accuracy is facilitated through the consolidation of individuals from the same species,
owing to the inherent relationship with their genealogical heritage [34]. Emre Karaman [35]
discovered that in mixed populations, achieving higher accuracies in genomic evaluation is
possible by amalgamating all available data from both purebred and admixed individuals.
This approach outperformed other methods by considering the breed origin of alleles
solely for selection candidates, along with utilizing breed-specific SNP effects estimated
independently in each pure breed.

In the realm of multi-population studies, previous research has revealed the efficacy
of employing individual SNP methods based on whole-genome sequencing data [36] or
haplotype methods based on chip data [37,38]. These methods, leveraging either the com-
prehensive information provided by whole-genome sequencing or haplotype-based insights
from chip data, enhance the capacity to capture LD between genetic variants and QTLs. The
utilization of such approaches has been shown to effectively increase the accuracy of GP in
multi-population settings. As shown in a large number of studies, high-density SNP mark-
ers and imputed data are not more accurate than medium-density markers. Therefore, this
study directly used more economical and convenient 50k chips [26,39]. The implications of
our findings hold significant relevance for the pragmatic aspects of Chinese pig breeding.
Positioned as the primary global producer and consumer of pork, the pig industry in China
is assumed to be of paramount importance in agricultural landscapes. However, a notable
challenge arises from the limited or absent genetic connectedness prevalent among most
Chinese pig breeding farms, stemming from infrequent genetic exchange. This deficiency
in genetic interconnectedness poses a substantial hurdle, hindering the successful execution
of comprehensive national or regional joint genetic evaluations thus far.

An in-depth analysis of the three Yorkshire populations in our study revealed pro-
nounced weakness in genetic connectedness when scrutinized based on pedigree data. No
shared ancestors or relatives were discerned among individuals from the Danish, Cana-
dian, or American Yorkshire populations. Moreover, the genetic connectedness within
the American Yorkshire population did not reach a sufficient level for the implementation
of joint genetic evaluations, as evidenced by undisclosed data. This predicament has led
to a deceleration and impediment in the genetic improvement of Chinese pig breeding,
despite boasting the largest nuclear herd globally. In response to these challenges, genomic
selection has emerged as a promising avenue for advancing Chinese pig breeding practices.
Our results underscore the potential of combining reference populations from disparate
genetic backgrounds, even in the absence of robust genetic connectedness, to significantly
enhance the accuracy of genomic predictions. This insight provides a prospective solution
that could propel genetic improvement in Chinese pig breeding, offering new possibilities
for leveraging genomic data in the absence of extensive genetic exchange networks.

In interpreting the enhanced accuracy observed when using the 1500- and 500-head
populations as the reference population and the 295-head population as the validation
population, it is plausible that the larger population (1500 + 500) contributed to a broader
spectrum of genetic diversity and a greater number of data points. This extended range
facilitated the capture of more comprehensive genetic information, thereby elevating the
prediction accuracy for smaller populations (295 heads). When incorporating a smaller
population (e.g., 295 heads) into a larger reference population, there is a risk of overfitting
the characteristics of the larger population, particularly if there are significant genetic
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differences between them. This could lead to a reduction in predictive accuracy when
applied to the validation population (i.e., the 295-head population).

Conversely, when all three populations are amalgamated, even though the volume
of information increases, the merger may introduce irrelevant genetic information if the
populations lack genetic relatedness. This influx of extraneous genetic data may contribute
to increased ‘noise’ in the model, ultimately diminishing prediction accuracy.

The Bayesian approach exhibits potential superiority over GBLUP in handling complex
genetic structures, offering greater flexibility in addressing varying effect sizes of different
genetic markers, especially in the presence of substantial nonadditive genetic variation. In
contrast, the GBLUP approach assumes equal effects for all genetic markers, potentially
lacking the required flexibility when dealing with datasets characterized by intricate genetic
backgrounds. The intricate kinship relationships, lack of relatedness, and distinct genetic
structures among the three populations resulted in the lower accuracies of the GBLUP and
ssGBLUP models compared to those of the Bayesian approaches.

5. Conclusions

In summary, our investigation highlights the benefits of incorporating diverse popula-
tions into genetic models to increase the accuracy of predicting breeding values. Overall,
our findings suggest that the Bayesian models outperform the GBLUP and ssGBLUP mod-
els when combining two populations to predict another, while the ssGBLUP model exhibits
higher accuracy when combining three populations (American, Canadian, and Danish).
Moreover, the amalgamation of two larger groups appears to significantly enhance the
accuracy of the GEBV in the smaller group, although the specific mechanisms driving
this improvement warrant further investigation. These findings emphasize the critical
significance of incorporating population combinations within genetic models to achieve
precise predictions of breeding values, especially in contexts where pig farmers contend
with resource constraints.
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