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Simple Summary: The roe deer is a very common wild species in Italy and shows peculiar
reproductive characteristics. Sexually-mature males, called bucks, show a complete interruption
in spermatogenesis during the cold seasons. The mechanisms behind such interruption are still
partially unknown. Hair is a good biological sample, easy to obtain while minimizing stress, for
endocrinological analyses that may provide information regarding such mechanisms. The aim of
the work was to quantify and compare hair concentrations of testosterone and cortisol in wild roe
deer bucks hunted during the pre- and post-rut period (mating season). The secondary objective
was the evaluation of possible correlations of such hair concentrations with blood and morphometric
parameters of the testes. Testosterone significantly increased from the pre- to post-rut period, while
cortisol significantly decreased. The correlations with blood and testicular parameters resemble
what is already described in the literature. Overall, this study represents a first report of the
quantification of testosterone and cortisol in roe deer hair, and may provide interesting insights
into their reproductive physiology.

Abstract: The roe deer is a seasonally breeding species with a reproductive cycle regulated by
endogenous rhythms and photoperiod-sensitivity. Sexually mature bucks show hormonal and
testicular activation during the reproductive season, with a peak in the rut period, and following
gradual involution. Hair is a good matrix for non-invasive endocrinological analyses that provide
long-term information without being influenced by the hormones’ pulsating release patterns in blood.
The aim of the work was to quantify hair concentrations of testosterone and cortisol in wild roe
deer bucks hunted during the pre- and post-rut period, using a radioimmunoassay methodology,
and to look for differences between the two periods. The secondary objective was the evaluation
of possible correlations of such hair concentrations with blood and morphometric parameters of
the testes. Both hormones showed statistical differences, with opposing trends, when comparing
the two periods: testosterone increased while cortisol decreased. The correlation analysis was in
agreement with existing literature regarding metabolism/actions of these hormones and testicular
morphometric parameters. This study represents the first report of the use of radioimmunoassay
techniques to quantify testosterone and cortisol in roe deer hair, and may provide interesting insights
into their reproductive physiology.
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1. Introduction

Mammalian species living in the Northern hemisphere have developed different strategies in
order to ensure successful breeding as an adaptation to the cycling environmental conditions of their
habitats [1]. A good example of this adaptive process can be found in the seasonal reproductive
cycle of the roe deer (Capreolus capreolus L., 1758), a European wild ruminant. Its reproductive season
is characterized by three periods: pre-rut (mid-May/mid-July), rut (mid-July/mid-August) and
post-rut (mid-August/September) [2], and is regulated by endogenous rhythms and high sensitivity to
photoperiod [1]. Right before the pre-rut period (from the beginning of April), bucks show aggressive
behaviors as they fight each other in order to establish hierarchy and territoriality [3]. In the same
period, the first of the two annual sheddings takes place, with the complete substitution of the
winter coat [4]. Once sexually mature, bucks show highly synchronized testicular cycles including
transitions from totally arrested to highly activated spermatogenesis [5]. Spermatogenesis is directly
linked to growth and involution patterns of the testicular mass [6]; indeed, during the rut period, an
increase in diameters of the seminiferous tubules (up to 220 µm), and a proliferation of spermatogenic
cells is observed [1]. On the other hand, at the end of the reproductive season, spermatogenesis is
inactivated with seminiferous tubules that decrease in diameter up to 90 µm and lower cell density;
at this stage, spermatogonia and Sertoli cells represent the only epithelial cellular components of
the testis [7]. These cycling reproductive patterns are strictly related to blood and intra-testicular
levels of steroid hormones, in particular testosterone (TEST): high levels are indeed necessary for
successful spermatogenesis, good functionality of accessory sex glands, and mating outcome [1].
In bucks, TEST reaches its intra-testicular [6] and peripheral blood [8] peaks during the rut period, and
decreases to basal levels starting from October [5]. The same trend applies to other sexual steroids
including progesterone, androstenedione, and estradiol [8]. Another important steroid hormone is
cortisol (CORT), generally used as stress marker for wildlife animals alongside corticosterone [9], since
stress can impair reproductive efficiency and performances. One of the biggest limitations to hematic
CORT quantification lies in the ultra-fast activation of the hypothalamic-pituitary-adrenocortical (HPA)
system during stressful events [10], making it almost useless when assessing environmental chronic
stressors. This is the reason why in the last decades, alternative biological matrices for CORT and other
stress-related hormones quantification were investigated, including hair and feces [11,12]. Amongst
the others, hair proved to be one of the best, if not the best, matrix to gain information regarding
chronic and environmental stressors in different mammalian species [13–17], including humans [18].
Indeed, it is relatively easy and non-invasive to collect and less subject to deterioration [19]. Regarding
the roe deer, alternative matrices such as feces were used to assess CORT concentrations [20], but hair,
to the best of the authors’ knowledge, has never been taken into account. In the light of the cycling
reproductive pattern of this species and its strong relationship with the environment, the evaluation of
hair steroid hormones may provide interesting insights to further characterize this process. Therefore,
the aim of the present work was to quantify hair concentrations of testosterone and cortisol in wild roe
deer bucks hunted during either pre- or post-rut period, and to compare the results. The secondary
objective was the evaluation of any possible correlations of such hair concentrations with blood and
morphometric parameters of the testes.

2. Materials and Methods

2.1. Animals and Sampling

Twenty-eight sexually mature roe deer bucks, 1 to 7 years old with body weights between 20.0 and
31.4 kg, were sampled during the 2017 hunting season between 1 June and 15 July (pre-rut, n = 14) and
15 August and 30 September (post-rut, n = 14). Animals were hunted in the South-Western Bologna
Apennines (Italy) according to the regional hunting plan (Resolution No. 473 of the Emilia Romagna
Regional Executive, 10 April 2017). Upon death, all the animals were immediately transferred to the
pertinent biometrical center. Animals found dead within the territory during the hunting periods
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were not included in the study to avoid biases related to possible pathological conditions. Ages were
assessed upon analyses of teeth eruption and wear patterns.

Upon arrival, the personnel of the centers collected blood from the jugular vein in sterile
Lithium-heparin tubes, hair from the dorsal-caudal region and scrotums, including testes and
epididymis. The samples were refrigerated (5 ± 1 ◦C) and transferred, using a cooler to maintain
temperature, within 24 h to the physiology laboratories (ANFI-ASA) of the Department of Veterinary
Medical Sciences of the University of Bologna (Ozzano dell’Emilia, Italy) [6]. Blood was centrifuged
for 15 min at 1500× g to separate plasma which was divided into aliquots and stored at −20 ± 2 ◦C.
It was previously demonstrated how steroids are stable in whole blood if kept refrigerated until
centrifugation, which in the present case happened within 24 h [21,22]. Hair samples were stored
at 5 ± 1 ◦C until analyses, while scrotums were immediately evaluated. Blood samples showing
macroscopical alterations such as clots and scrotums damaged during collection were excluded from
the study.

Since all the biological specimens analyzed in this study were obtained from hunted animals
(in accordance with the hunting plan in force), no ethical approval was necessary.

2.2. Testicular Analysis

Testes were isolated from the scrotums and weighed using a lab scale (FCB 12K1, KERN & SOHN
GmbH, Balingen, Germany) after epididymis ablation. For each animal, the weights of the two testes
were averaged.

To perform the morphometric evaluations, each testis was sectioned longitudinally and the major
and minor axes were measured. The axes measures of the two testes were averaged for each roe deer.
Finally, the mean value between the major and minor axes of the single animal was divided by two
and used as the radius (r). To get the final measurement of the testicular volume (V), the following
formula was applied:

V = 4π
(

r3/3
)

2.3. Steroids Extraction from Plasma and Hair

For plasma, steroids were extracted by mixing 0.2 mL of each sample with 5 mL of diethyl ether
(Merck KGaA, Darmstadt, Germany) for 30 min on a rotary mixer as previously described [23]. Tubes
were then centrifuged at 2000× g for 15 min and the supernatants evaporated to dryness at 37 ◦C in a
fume hood.

Hair samples were handled and analyzed as previously described by Bacci et al. [14]. Briefly, hair
was washed with water and propanol-2-ol (Carlo Erba Reagents s.r.l., Cornaredo, Italy) in order to
remove any organic residue from the surface. Once fully dried, hair was finely pulverized, and 180 mg
of each pulverized sample was incubated overnight with 6 mL of methanol (Carlo Erba Reagents s.r.l.,
Cornaredo, Italy) for steroids extraction. After centrifugation at 1500× g for 30 min, methanol was
collected and evaporated to dryness under an air-stream suction hood.

2.4. Radioimmunoassay (RIA) for Testosterone and Cortisol

The dry extracts were stored at −20 ± 2 ◦C until reconstitution in assay buffer for measurement
of TEST (20 µL plasma equivalent, 28 mg hair equivalent) or CORT (10 µL plasma equivalent, 28 mg
hair equivalent) by radioimmunoassay. Tritiated TEST (30 pg/100 µL; 83.4 Ci/mmol; PerkinElmer
Inc., Boston, MA, USA) or tritiated CORT (30 pg/100 µL; 94.6 Ci/mmol PerkinElmer Inc., Boston, MA,
USA) were added, followed by rabbit anti-TEST serum (0.1 mL, 1:50,000; antiserum produced in our
laboratory) or rabbit anti-CORT serum (0.1 mL, 1:20,000; produced in our laboratory), respectively.
After incubation and separation of antibody-bound and antibody-unbound steroid by charcoal-dextran
solution (charcoal 0.25%, dextran 0.02% in phosphate buffer), tubes were centrifuged (15 min, 3000× g),
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the supernatant was decanted and radioactivity immediately measured using a β-scintillation counter
(Packard C1600, Perkin Elmer, Boston, MA, USA).

The sensitivity of the TEST assay was 1.70 pg/100 µL, and the intra-assay coefficients of variation
were 5.7%. The sensitivity of the CORT assay was 5.18 pg/100 µL, and the intra-assay coefficients
of variation were 4.9%. Cross-reactions of various steroids with antiserum raised against TEST were:
testosterone (100%), dihydrotestosterone (25.44%), androstenedione (0.6%), progesterone, and cortisol
(<0.0001%). Cross reactions of various steroids with antiserum raised against CORT were: cortisol 100%,
cortisone 5.3%, 11α-deoxycortisol 5.0%, corticosterone 9.5%, 20α-dihydrocortisone 0.4%, prednisolone
4.60%, progesterone <0.001%, and testosterone <0.001%.

In order to determine the parallelism between hormone standards and endogenous hormones in
roe deer hair, a pooled sample containing high concentrations in CORT and TEST was serially diluted
(1:1–1:8) with assay buffer. A regression analysis was used to determine parallelism between the two
hormone levels in the same assay. A high degree of parallelism was confirmed by regression test
(r2 = 0.98, p < 0.01). The recovery of extraction was performed on five replicates by adding 250, 500,
or 1000 pg of 3H-testosterone or 3H-cortisol to 180 mg of hair, incubating for 18 h and extracting as
described above. The mean percentage of recovery was 94.6 ± 2.4% and 94.3 ± 1.8%, respectively.

The assay results for both hormones were expressed as ng/mL for plasma and as pg/mg for hair.

2.5. Statistical Analyses

Statistical analyses were performed using the software R 3.0.3 (The R Foundation for Statistical
Computing). All data were tested for normal distribution by means of the Shapiro-Wilk test.

Descriptive statistics were calculated and expressed as means, standard deviations, and min/max
values. Comparisons between the pre- and post-rut groups were performed by means of a
non-parametric Kruskal-Wallis test. Outliers values were identified as values smaller than the lower
quartile minus 3 times the interquartile range, or larger than the upper quartile plus 3 times the
interquartile range. In order to evaluate the relationships between the different analyzed parameters, a
non-parametric Spearman rank correlation test was performed. The statistical significance was set at
p < 0.05 (95% C.I.).

3. Results

The results of the descriptive statistics are shown in Table 1.

Table 1. Descriptive statistics of the analyzed parameters for both pre- and post-rut animals.

Parameter
Pre-Rut Post-Rut

Mean (SD) Min–Max N Mean (SD) Min–Max n

Testicular Weight g 26.2 (7.5) 18.0–43.0 12 16.6 (6.9) 6.5–29.5 10
Testicular Volume cm3 34.63 (7.14) 23.62–49.65 12 24.72 (12.04) 11.01–54.36 11

Blood TEST ng/mL 2.26 (1.42) 0.88–4.59 8 0.15 (0.09) 0.02–0.28 8
Blood CORT ng/mL 1.79 (2.57) 0.41–8.10 8 3.32 (5.44) 0.01–16.32 8

Hair TEST pg/mg 1.48 (0.39) 0.93–2.49 14 2.89 (0.77) 1.62–4.16 14
Hair CORT pg/mg 8.72 (15.07) 0.36–51.47 14 0.49 (0.42) 0.21–1.51 14

TEST: testosterone; CORT: cortisol.

The differences between pre- and post-rut groups are reported in Figure 1 for the testicular
morphometric parameters, and in Figure 2 for blood hormones levels. Testicular volume (Figure 1a)
and weight (Figure 1b) significantly decreased in the post-rut group (p = 0.0089 and p = 0.0056,
respectively); the same trend was noted for blood TEST concentrations (p = 0.0008, Figure 2a). Blood
CORT levels (Figure 2b) did not show any statistical difference between the two groups (p = 0.8336).
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Figure 1. Differences between pre- and post-rut groups for the testicular morphometric parameters. 

(a) Testicular volume; (b) testicular weight. ○ outlier; * p < 0.05. 

 

Figure 2. Differences between pre- and post-rut groups for the blood steroid hormone concentrations. 

(a) Testosterone; (b) cortisol. ○ outlier; * p < 0.05. 

Regarding hair analyses (Figure 3), the results of the Kruska-Wallis test between the two groups 

showed statistical differences for both analyzed hormones. Figure 3a represents TEST concentrations, 

which significantly increased in the post-rut period (p = 0.00003), while Figure 3b shows an opposite 

trend, again statistically significant, for CORT (p = 0.0014). 

 

Figure 3. Differences between pre- and post-rut groups for the hair steroid hormone concentrations. 

(a) Testosterone; (b) cortisol. ○ outlier; * p < 0.05. 

  

Figure 1. Differences between pre- and post-rut groups for the testicular morphometric parameters.
(a) Testicular volume; (b) testicular weight. # outlier; * p < 0.05.
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Figure 2. Differences between pre- and post-rut groups for the blood steroid hormone concentrations.
(a) Testosterone; (b) cortisol. # outlier; * p < 0.05.

Regarding hair analyses (Figure 3), the results of the Kruska-Wallis test between the two groups
showed statistical differences for both analyzed hormones. Figure 3a represents TEST concentrations,
which significantly increased in the post-rut period (p = 0.00003), while Figure 3b shows an opposite
trend, again statistically significant, for CORT (p = 0.0014).
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Figure 3. Differences between pre- and post-rut groups for the hair steroid hormone concentrations.
(a) Testosterone; (b) cortisol. # outlier; * p < 0.05.

Table 2 shows the correlation coefficients (ρ) between the analyzed parameters. Hair TEST
concentrations were correlated to every parameter except for blood CORT (ρ = −0.07; p = 0.8115),
while hair CORT was only correlated with hair TEST (ρ = −0.56; p = 0.0019). Blood TEST, testicular
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volume, and testicular weight correlated with each other; blood CORT was the only parameter that
did not show any correlation.

Table 2. Spearman rank correlation coefficients (ρ) table with p values (95% C.I.) for all the
analyzed parameters.

Hair
TEST

Hair
CORT

Blood
TEST

Blood
CORT

Testicular
Volume

Testicular
Weight

Hair TEST −0.56
p = 0.0019

−0.75
p = 0.0007

−0.07
p = 0.8115

−0.58
p = 0.0040

−0.57
p = 0.0072

Hair CORT 0.40
p = 0.1287

0.33
p = 0.2168

0.14
p = 0.5264

0.26
p = 0.2500

Blood TEST 0.07
p = 0.8075

0.72
p = 0.0037

0.76
p = 0.0044

Blood CORT −0.18
p = 0.5468

0.00
p = 0.9914

Testicular Volume 0.96
p < 0.001

Testicular Weight

TEST: testosterone; CORT: cortisol.

4. Discussion

As previously stated, the male roe deer reproductive physiology has several peculiarities
including a strong cycling pattern, with total functional blockage of the spermatogenesis influenced
by season [1,5,6]. The involution/recrudescence alternation of the testes is directly related to the
circulating blood levels of TEST [2,7], and the results of the present study regarding testicular weight,
testicular volume, and blood TEST were in accordance with this, showing a significant decrease in
the post-rut period (Figures 1 and 2a) and a mutual correlation (Table 2). Indeed, low levels of TEST
determine a decrease in meiotic and mitotic activity of the germ cells and involution of Leydig cells’
cytoplasmic volume and activity [1,5]. The same decreasing trend has already been reported for
other sexual steroids in this species, including estradiol, progesterone, and androstenedione [8,24].
On the other hand, blood levels of CORT did not show any statistical difference between pre- and
post-rut periods (Figure 2b). This finding may be explained by the fact that the release of cortisol
has an ultradian pulsatile rhythm [25] and is influenced by a wide variety of factors, often unrelated
to reproductive physiology, and is, for example, immediately increased in case of stressful events,
such as hunting [26]. Moreover, blood cortisol has high intra-individual variations [27], proving to be
unreliable unless related to a wider panel of analyses. Indeed, the best way to gain accurate information
regarding long-term levels of CORT is to extend analyses to different matrices such as feces, urine, and
hair [25]. Despite the fact that all the above-mentioned matrices still need in depth investigations [13],
hair samples appear to be the most reliable, due to the lipophilic nature of the substances characterizing
its sebum that permits the binding and accumulation of circulating CORT [28] and TEST [29] in the
hair shafts.

The present study, to the best of the authors’ knowledge, represents the first report regarding the
analysis and quantification of steroid hormones in the hair of the roe deer (Capreolus capreolus). The
above RIA technique, already used for the same determinations in other mammalians’ species [14],
proved to be reliable and capable of robust results. The rabbit anti-Testosterone antibody used in the
present study was produced in our laboratories and guarantees a very good sensitivity and linearity in
the used RIA system. The partial cross-reactivity with DHT, active metabolite of testosterone, has to be
acknowledged, but, according to the authors, it does not compromise the aim of the study. Indeed, the
outcome of the androgen analysis, TEST in this case, still shows strong statistical differences.
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The lack of existing reference values and nature of sampling does not allow for paired pre-
and post-evaluations in the same animal, making the interpretation of the results quite challenging.
Nonetheless, since the summer shedding of this species takes place in April [4], the hair samples
analyzed in this study (collected starting from June) should represent steroid levels and subsequent
accumulation during the preceding months. Unfortunately, as we are talking about wildlife, specific
data regarding hormone accumulation rates and hair growth are not available. This might represent
a limitation when interpreting data, but the hypothesis seems to be realistic in light of the chemical
nature of the investigated molecules and specific literature regarding other animals [14]. Overall, the
resulting trends and correlations of the analyzed parameters still provide interesting insights into the
reproductive and behavioral physiology of the roe deer.

Hair TEST levels of the post-rut group were almost double the pre-rut levels, which is in complete
contrast to the blood level trends. Testosterone reaches its blood peak during the rut period [8];
therefore, it is likely that high hair post-rut values are the direct reflection of high blood pre-rut values,
since steroid hormones accumulate, with a temporal delay, in hair according to blood levels. This
hypothesis is further validated by the inversely proportional pattern of the correlation between hair
and blood TEST (ρ = −0.75). As expected, the same correlation pattern was noticed with the testicular
parameters (Table 2).

The results of hair CORT showed a statistically significant decrease in the post-rut period
(p = 0.0014). Hair CORT levels can be influenced by environmental temperature, with lower hormone
values present during warmer months [14,30]. Therefore, higher levels in the pre-rut group may be
related to the relatively lower temperatures during springtime. In addition to temperature, during
springtime, bucks fight each other to establish and maintain territoriality [3] and therefore suffer from
significant stress. Out of the 14 animals analyzed during pre-rut, three bucks showed extremely high
values up to 51.47 pg/mg. It is impossible to give a specific explanation for this finding in light of
the peculiar nature of CORT and the absence of individual behavioral information from each deer.
Indeed, alongside the aforementioned high intra-individual variation of this hormone, it is not possible
to rule out a chronic stress condition probably related to aggressive/territorial behavioral pattern.
The Spearman’s correlation analysis performed between hair CORT and TEST showed an inversely
proportional trend (ρ = −0.56; Figure 3). When discussing this finding, different factors need to be
taken into consideration [31]: one being that androgens, for example, seem to inhibit the stress-induced
levels of CORT [32]. This possible explanation does not hold true for the blood results, since no
correlation (ρ = 0.07) between blood concentrations of CORT and TEST were noticed. The authors
hypothesize that the correlation between hair TEST and CORT may be spurious, since both hormones
are highly influenced by seasonality in an inversely proportional way.

5. Conclusions

In conclusion, the present work represents a first report regarding the use of an RIA technique
to quantify testosterone and cortisol in roe deer hair. This technique is relatively cheap and easy to
perform, and its validation broadens the spectrum of available analytical tools for environmental,
welfare, and reproductive studies in the roe deer. As already stated, it is pivotal to investigate
alternative biological matrices especially in wildlife animals, where blood collection presents several
limitations. Hair can be collected easily and is more stable than other biological samples if adequately
stored [19]. Such procedures may be applied by several biometrical centers, with the ultimate goal
of obtaining data from a broader population of animals. Lastly, it is important to acknowledge that
cortisol and testosterone are not the only hormones that can be investigated by means of RIA on hair,
helping to deepen the physiological knowledge of this peculiar species.

The highlighted correlations seem to be in agreement with the existing literature regarding the
metabolism and actions of these hormones. Nonetheless, further studies are required to confirm and
better understand the cycling pattern of the reproductive physiology of this species.
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