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Simple Summary: The domesticated yak is among the most important livestock species on
the Qinghai-Tibet Plateau. Breeders have the task of developing varieties that provide growth
performance and disease resistance. Traditional breeding processes rely on complete family pedigree
information and large numbers of data records. However, there are inevitably records that are missing,
including incomplete pedigrees and long-term data tracking, resulting in prolonged breeding cycles,
reduced breeding efficiency, and the lack of economic benefit. Genome selection (GS), also known as
whole genomic selection (WGS), can significantly reduce the selection cycle of quantitative traits and
accelerate genetic progression while displaying appropriate prediction accuracy (PA). It combines
a reference population and single nucleotide polymorphism (SNP) loci rather than pedigrees to
estimate the effect of all SNPs. Then breeding values of target traits are predicted. The key for GS is
genomic prediction (GP) and an assessment of PA.

Abstract: The aim of this study was to explore the possibility of applying GP to important economic
traits in the domesticated yak, thus providing theoretical support for its molecular breeding.
A reference population was constructed consisting of 354 polled yaks, measuring four growth
traits and eight hematological traits related to resistance to disease (involved in immune response
and phagocytosis). The Illumina bovine HD 770k chip was used to obtain SNP information of all the
individuals. With these genotypes and phenotypes, GBLUP, Bayes B and Bayes Cπ methods were used
to predict genomic estimated breeding values (GEBV) and assess prediction capability. The correlation
coefficient of the association of GEBV with estimated breeding value (EBV) was used as PA for each
trait. The prediction accuracy varied from 0.043 to 0.281 for different traits. Each trait displayed
similar PAs when using the three methods. Lymphocyte counts (LYM) exhibited the highest predictive
accuracy (0.319) during all GP, while chest girth (CG) provided the lowest predictive accuracy (0.043).
Our results showed moderate PA in most traits such as body length (0.212) and hematocrit (0.23).
Those traits with lower PA could be improved by using SNP chips designed specifically for yak,
a better optimized reference group structure, and more efficient statistical algorithms and tools.

Keywords: domesticated yak (Bos grunniens); genomic prediction; growth performance; disease
resistance; prediction accuracy
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1. Introduction

The polled yak is a newly cultivated breed that provides meat, milk, and other products to local
people on the Qinghai-Tibet Plateau [1]. Compared with the common domesticated yak, they exhibit a
hornless trait with better growth performance [2]. Due to the disappearance of horns, evolutionarily
used for self-defense and in competition for a mate, the polled yak is suitable for large-scale production
and resource management [3].

The majority of important economic traits of yaks are affected by multiple genes [4].
Conventional breeding depends mainly on an assessment of appearance, measurement of performance,
pedigree, and assessment of phenotypes to estimate breeding values [5]. These methods have resulted
in great progress in yak breeding in the past. However, the yak has a long generation interval with a
low rate of reproduction. Furthermore, important economic traits are difficult to measure, which in
any case are too costly, thus making improvements to livestock traits relatively slow [6].

In recent years, with the development of molecular genetics, molecular markers have been defined
for marker-assisted selection (MAS) in the breeding of cattle to improve the accuracy of selection [7].
However, it has been found that the number of major effect genes affecting economic traits are limited [8].
In view of the poor performance of MAS in many economically-valuable animals, Meuwissen et al.
proposed a genome-wide marker-assisted selection method in 2001, the whole genome selection
method [8]. With the publication of the bovine genome-wide sequence, high-density, high-throughput
commercial SNP chips were subsequently developed, resulting in improved genotyping efficiency at a
reduced cost [9].

Genomic selection has been utilized on a large scale in major economic animals such as dairy
cattle [10], pig [11], sheep [12] and beef cattle [13] since it was proposed by Meuwissen et al. [8].
The focus of genome selection is the prediction of individual GEBV and accuracy of genomic prediction
in the experimental population. Common statistical methods, including genomic best linear unbiased
prediction (GBLUP), Bayesian methods (Bayes A, Bayes B, Bayes Cπ, etc.), single step BLUP (ssBLUP),
and other algorithms were considered for genomic selection and prediction [14]. In this study,
three statistical methods (GBLUP, Bayes B, and Bayes Cπ) were selected for the prediction of the GEBV
of four growth traits and eight hematological traits according to previous genome-wide association
analysis (GWAS) results [15].

The relationship between relevant blood traits and the resistance of yak to disease has been
discussed in earlier studies and therefore will not be repeated here. Production performance and
hematological traits play vital roles in the process of intensive farming of the domesticated yak [16].
However, genomic selection in the yak population has not been utilized. Hence, the possibility of
utilizing GP to select for four performance traits and eight disease resistance traits was explored in
this study.

In this study, by selecting a reference population and obtaining SNP chip genotyping, the genomic
prediction of a yak growth performance index and blood biochemical index was conducted to verify
the application of GS in the yak population and to explore related optimization methods.

2. Materials and Methods

This study was approved by the Chinese Academy of Agricultural Sciences Laboratory Animal
Ethics Review with accession number CAAS 2017-115. All procedures were in compliance with the
guidelines for the care and use of experimental animals. The experiment station, Qinghai Datong
Breeding Farm is located in Datong County, Xining City, Qinghai Province, China (36◦52’ N, 101◦23’ E),
with an average elevation of 3450 m. Datong County has a plateau continental climate and an average
annual temperature of 4.9 ◦C.
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2.1. Experimental Population Selection

The animal population used in this study comprised of 354 polled yaks selected from the Datong
breeding farm in Qinghai Province, China. They were all healthy female individuals born between
March and May 2017. These yaks were scattered across three breeding farms and were grazed naturally.

2.2. Phenotype Data Acquisition and Processing

The phenotypic traits of the 18-month-old yak reference population were obtained in October
2018, including direct measurement of performance data, withers height, body length, body weight,
chest girth (WH, BL, BW, CG) and eight hematological traits obtained from non-anticoagulated blood,
namely, red blood cell count, hemoglobin, hematocrit, platelet count, lymphocyte count, medium white
blood cell count, distribution of platelet width, and mean platelet volume (RBC, HGB, HCT, PLT, LYM,
OTHR, PDW, and MPV), as described in a previous study [15]. Twelve phenotypic traits were tested
for normality and those values falling more than 3 standard deviations from the mean were removed
using SAS (version 9.2) (SAS Institute INC, North Carolina, NC, USA) [17].

2.3. SNP Chip Genotyping and Quality Control

Genomic DNA was extracted and genome-wide single nucleotide polymorphism (SNP) loci
scanned using an Illumina Bovine HD 770K chip, as described in detail in a previous study [18].
PLINK software (version 1.90) (Purcell laboratory, Boston, MA, USA) was used to perform quality
control [19]. All SNPs with minor allele frequencies <0.01, an SNP detection rate <0.05 and HWE
<10−6 were removed. Those individuals with an individual detection rate <0.1 and Mendelian errors
>5% were also removed. Only SNPs and individual yaks that satisfied the quality control requirements
described above were selected for subsequent research and analysis.

2.4. Method of Calculation of GP

Methods of calculation of genome prediction are divided into two categories. One is the method
of directly estimating breeding value, based on the genetic relationship matrix (G matrix) that
predicts genomic breeding value [20]. The other is a method that indirectly estimates breeding
value, by accumulating the effects of all SNPs in order to predict genomic estimated breeding values
(GEBV) [21].

The technique used for directly estimating genomic breeding value is the genomic best
linear unbiased prediction (GBLUP) method, based on the best linear unbiased prediction (BLUP)
method [22]. Genome-wide SNPs are combined into a G-matrix instead of a pedigree matrix (A-matrix),
which is substituted into a mixed model equation for solving, to finally estimate individual GEBVs.
Additionally, the GBLUP effectively reduces the size of the estimation matrix and so reduces
computational intensity [23]. The statistical model for GBLUP is as follows:

y = Xb + Zg + e (1)

where y, X, b, Z, g, and e are the phenotype vector, matrix relating the fixed effects to each animal,
fixed effects vector, correlation matrix of random additive genetic effects, random additive genetic
effects vector (that is, the individual genotype breeding value), and the residual vector, respectively.
Prediction of GEBVs and the assessment of accuracy of GBLUP were conducted using the GAPIT
function set [24] in R project software (www.r-project.org) [25].

In a previous study, a number of SNP loci associated with eight hematological traits were explored
through GWAS [15]. Differing from the assumption of Bayes A, the assumption of Bayes B is that a
small number of SNP loci have an effect but the majority of loci do not, across the whole genome [26].
The GEBV is calculated using the following formula:

y = Xb + Σm
i=1Zi gi + e (2)

www.r-project.org
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where y is a phenotypic vector, X is a fixed-effect correlation matrix, b is a fixed effect vector, gi is the
effect value of i SNPs, m is the total number of SNP sites, and e is the random residual effect vector. Z is
a haplotype correlation matrix of n × m, where n is the number of individuals. In fact, the number of
quantitative trait loci (QTLs) affecting the target trait is also limited, consistent with the theoretical
hypothesis of the Bayes B method [27].

Bayes Cπ is an improvement on the Bayes B method. In a Bayes A-based model, the mean of the
inverse chi-square distribution can be determined by information such as additive genetic variance
of the trait, thereby estimating the ratio π of the non-effector site [28]. Similar to Bayes B, Bayes Cπ

assumes that some SNP loci have an effect and the ratio of their effect values is 1-π. The effects are
described by a normal distribution and the effect variances are assumed to be the same.

The π in the Bayes Cπ model is not a constant, but assumes that the prior distribution obeys a uniform
distribution denoted as Uniform (0,1) and that its posterior distribution is a beta distribution [29,30]. In this
study, Bayes B and Bayes Cπ models were used to calculate the GEBV using lme4 [31] and BGLR [32]
packages in the R project. By adding all SNP locus effect values, the genomic breeding values of all
individuals could be calculated.

2.5. Evaluation of Genetic Parameters in Yak Population

In this study, the mrMLM package (version 3.1) (Nanjing Agricultural University, Nanjing, China)
available in R project software was used to evaluate genetic parameters, including the additive genetic
effect, the error effect and the fixed effect [33]. Different kinship was treated solely as a fixed effect
because all individuals were female and of the same age. Heritability (h2) was obtained by dividing
the additive genetic variance by the total variance. The genetic parameters model is as follows:

Phenotype = additive effect + fixed effect + error effect (3)

2.6. Assessment of Accuracy of Various Models

In general, calculation of accuracy is required in order to evaluate the predictive capability in
different models and different traits [34]. In this study, the correlation between phenotype y* corrected
by the validation population and GEBV was divided by the square root of the heritability of the trait.
Accuracy of the estimation of genomic breeding value for each method was evaluated as a parameter
(r, Realized Accuracy) [35]. Accuracy r is calculated as follows:

rGEBV =
Cor (y∗, GEBV)

√

h2
(4)

Five-fold cross validation was performed to assess the accuracy of GP in this study. All individuals
were randomly divided into 5 groups on average, of which 4 were used as a training group to estimate
parameters, and the other group used to test the group (validation group).

3. Results

3.1. Quality Control Results for Genotype Data

From the filtering process described above, the following quality control (QC) results were
obtained, as shown in Table 1:



Animals 2019, 9, 927 5 of 10

Table 1. Statistical summary of all single nucleotide polymorphism (SNP) loci and individuals before
and after quality control (QC).

Description Count

Original SNPs 777,962
Original Individuals 354
SNPs left after QC 96,087

Individuals after QC 354

After filtering, the 96,087 SNP loci and 354 individuals remaining were used for GS.

3.2. Basic Statistics of Phenotype Data

All phenotype data were processed as described above, displaying a symmetric distribution,
as detailed in Table 2.

Table 2. Summary statistics of the 12 phenotypic traits.

Traits Abbreviation Values 1 Counts 2

Body length (cm) BL 101.613 ± 5.683 320
Body weight (kg) BW 122.39 ± 12.397 259
Chest girth (cm) CG 137.803 ± 8.784 315

Withers height (cm) WH 101.765 ± 5.816 319
Red blood cell count (1012/L) RBC 10.124 ± 1.083 308

Hemoglobin (g/L) HGB 137.136 ± 16.794 310
Hematocrit (%) HCT 0.430 ± 0.052 306

Platelet count (109/L) PLT 326.193 ± 169.875 311
Lymphocyte count (109/L) LYM 4.475 ± 1.5478 273

Medium white blood cell count (109/L) OTHR 4.550 ± 1.426 267
Platelet distribution width (%) PDW 8.776 ± 1.310 169

Mean platelet volume (fl) MPV 7.146 ± 0.624 171
1: Values are shown in mean ± standard error of the mean. 2: The number of recorded individuals.

3.3. Estimation of Genetic Parameters

By using the mrMLM package in the R project with exisiting data, all genetic parameters were
estimated, as summarized in Table 3.

Table 3. Summary of the genetic parameters of different traits.

Trait F + E 1 Phenotype 2 Additive 3 Heritability (h2) 4

BL 21.002 33.141 12.140 0.366
BW 83.011 168.709 85.698 0.508
WH 15.434 37.590 22.156 0.589
CG 66.251 101.141 34.890 0.345

RBC 0.909 1.182 0.273 0.231
HGB 175.259 279.663 104.404 0.373
HCT 0.002 0.003 0.001 0.444
PLT 15,282.669 28,121.015 12,838.346 0.457
LYM 1.147 2.140 0.993 0.464

OTHR 1.099 2.038 0.939 0.461
PDW 0.737 1.576 0.839 0.533
MPV 0.149 0.383 0.233 0.610

1: Including fixed effect variance and error effect variance; 2: Total phenotypic effect variance; 3: Addictive effect
variance; 4: The ratio of the additive effect variance to the total phenotypic variance.
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3.4. GP Results Using the Three Methods

In this study, GBLUP, Bayes B, and Bayes Cπ were selected as methods to predict the GEBVs of 12
target traits with processed data, including phenotype and genotype data. The accuracy of prediction
of GBLUP, Bayes B, and Bayes Cπ is listed in Table 4.

Table 4. Statistical summary of the accuracy of prediction of the 12 target traits.

Trait Prediction Accuracy Using Individual SNPs

GBLUP 1 Bayes B 2 Bayes Cπ 3

BL 0.212 0.225 0.237
BW 0.246 0.247 0.264
WH 0.185 0.191 0.196
CG 0.043 0.044 0.046

RBC 0.068 0.072 0.081
HGB 0.091 0.098 0.102
HCT 0.23 0.244 0.253
PLT 0.095 0.096 0.104
LYM 0.281 0.297 0.319

OTHR 0.197 0.197 0.205
PDW 0.228 0.238 0.246
MPV 0.154 0.16 0.173

1: Genomic best linear unbiased prediction; 2: Bayesian method B; 3: Bayesian method Cπ.

As can be seen from Table 4, prediction capability acquired from 5-fold cross validation differs
among the 12 target traits. LYM had the highest prediction accuracy using Bayes Cπ (0.319) while
CG had the lowest in GBLUP (0.043). Several traits, such as BW and HCT, displayed moderate
predictive accuracy (0.154–0.319) while CG and RBC exhibited quite a poor predictive accuracy (<0.1),
regardless of the method used. Interestingly, a slight improvement in predictive accuracy was found for
HGB and PLT, reaching a moderate level (>0.1) when using Bayes Cπ. GBLUP, Bayes B, and Bayes Cπ

showed similar prediction capability in any of the 12 traits (Table 4 and Figure 1). However, Bayes Cπ

represented the method with the best prediction capability across the 12 target traits and should be
selected as the optimal method (Figure 1).Animals 2019, 9, x 7 of 10 
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4. Discussion

In this study, GBLUP, Bayes B, and Bayes Cπ methods were used for GS and assessment of PA in
a yak population. A bovine HD chip was used to scan the yak genome and all SNPs were cleaned
through a defined process [19]. As can be seen from Table 1, fewer genotyped SNPs (96,087) were
obtained from the 777,962 contained in the Bovine HD chip, the proportion of SNPs removed being
87.64%. We re-examined the QC processes again and found that the total genotyping rate was 0.973008.
A total of 44,585 SNPs was removed due to missing genotype data (>0.05) and 1001 SNPs removed due
to the results of the Hardy–Weinberg exact test (<1 × e−6). In addition, 636,289 SNPs were removed
due to the minor allele frequency that is less than 0.01 (<0.01) in the majority of all removed SNPs.
Furthermore, all yaks had less than 10% missing genotype data so no one was removed. The fact
that so many loci with a minor allele frequency of less than 0.01 were removed may be because of
the use of bovine chips instead of a specific yak chip and that these SNP genotypes are rare in the
entire population.

When estimating the effect of an SNP, it is necessary to combine observed phenotypes and
genotypes. However, various errors may occur in actual situations. Using probability theory, the greater
the number of experiments performed, the more frequently these errors occur [36]. Therefore, it is
necessary to record more individual phenotypic information to reduce measurement error. In other
words, larger numbers of reference groups result in a more accurate estimation of the effect of a marker.
Meuwissen et al. concluded through simulation experiments that accuracy was greatest if animals
per population was greater than 2000 for estimating the breeding value of a trait with a heritability
of 0.3 [8]. According to Goddard et al., the lower the heritability of traits, the more animals are
required, and traits with a heritability of 0.1 require more than 10,000 animals per sample to ensure an
accuracy of 0.4 [37]. A study by Habier et al. demonstrated that the accuracy of GP decreases with
increasing generations between the reference and validation populations [38]. In the present study,
12 phenotypic traits with medium heritability were studied in a reference population consisting of
354 polled yaks from 3 family lineages for genome prediction, with a maximum accuracy of 0.319.
Accuracy of prediction is expected to be improved after expanding the size of the reference population
and considering population structure.

The premise of GS is that it predicts quantitative traits from multiple linkage disequilibria (LD)
for each quantitative trait locus (QTL), which is influenced by the number of SNPs in a gene chip.
That is to say, the greater the number of markers, the higher the accuracy. Calus et al. believe that the
larger the rate of linkage, the greater the accuracy [39]. That is, increased chip density and capacity can
improve accuracy. Although a 770K high-density chip was used in this study, the number of SNPs
after filtration decreased to 96K due to the species differences between the yak and cattle, which may
result in some specific SNP loci in the yak population not being detected. However, the use of gene
filling technology to increase the resolution of low-density chips into medium- or high-density chips
can improve the accuracy of GPs while controlling costs [40].

For simulation studies of different species, Bayes methods have been demonstrated to be better
than GBLUP. The results of this study confirm this conclusion. Sun et al. analyzed the simulation
data from the 14th QTL-MAS Workshop, the results indicating that the accuracy of Bayes Cπ was
approximately 6% higher than that of GBLUP [41,42]. Edriss et al. used 4429 Danish Holstein bulls
and 50K chip data to estimate breeding values and the results also showed that Bayes Cπ was more
accurate than GBLUP [43]. Niu. H et al. used a 770k high-density chip to predict slaughter traits of
Chinese Simmental cattle, utilizing a 10-fold average of cross-validation as accuracy of prediction.
The results indicated that Bayes Cπ had the greatest accuracy and GBLUP the lowest [44]. Lin. et al.
conducted genome prediction analysis on simulated data of the backfat of pigs and came to the same
conclusion [45]. In the studies of Edriss, Niu. H and Lin, Bayes Cπ showed the highest predictive
capability despite the different species and traits they studied. The results of the studies described
above are consistent with the present study.
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5. Conclusions

The present study was the first time GP has been applied to the domesticated yak population,
which assessed prediction accuracies of 12 important traits using GBLUP, Bayes B, and Bayes Cπ.
The three methods presented approximate prediction capability. Several traits such as BL, WH, and BW
exhibited moderate prediction accuracy (>0.1), demonstrating that it is possible to apply GP/GS in yak
breeding. Unfortunately, GP/GS demonstrates a tiny effect on CG and RBC, with low accuracy (<0.1).
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