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Simple Summary: The description of the vocal repertoire represents a critical step before deepening
other aspects of animal behaviour. Repertoires may contain both discrete vocalizations—acoustically
distinct and distinguishable from each other—or graded ones, with a less rigid acoustic structure.
The gradation level is one of the causes that make repertoires challenging to be objectively quantified.
Indeed, the higher the level of gradation in a system, the higher the complexity in grouping its
components. A large sample of Indri indri calls was divided into ten putative categories from
the acoustic similarity among them. We extracted frequency and duration parameters and then
performed two different analyses that were able to group the calls accordingly to the a priori categories,
indicating the presence of ten robust vocal classes. The analyses also showed a neat grouping of
discrete vocalizations and a weaker classification of graded ones.

Abstract: Although there is a growing number of researches focusing on acoustic communication,
the lack of shared analytic approaches leads to inconsistency among studies. Here, we introduced
a computational method used to examine 3360 calls recorded from wild indris (Indri indri) from
2005–2018. We split each sound into ten portions of equal length and, from each portion we extracted
spectral coefficients, considering frequency values up to 15,000 Hz. We submitted the set of acoustic
features first to a t-distributed stochastic neighbor embedding algorithm, then to a hard-clustering
procedure using a k-means algorithm. The t-distributed stochastic neighbor embedding (t-SNE)
mapping indicated the presence of eight different groups, consistent with the acoustic structure of the
a priori identification of calls, while the cluster analysis revealed that an overlay between distinct call
types might exist. Our results indicated that the t-distributed stochastic neighbor embedding (t-SNE),
successfully been employed in several studies, showed a good performance also in the analysis of
indris’ repertoire and may open new perspectives towards the achievement of shared methodical
techniques for the comparison of animal vocal repertoires.
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1. Introduction

Recent technological innovations in many areas of animal behavioral research, allow the collection
of huge, complex, and often high-dimensional data sets. These can be daunting to be analyzed
and may fail to satisfy the assumptions required by common statistical models [1]. Still, despite
the high-dimensionality, because of the redundancy and multicollinearity of variables, data can be
reduced and represented by fewer features [1]. The data reduction, indeed, allows the decrease of
the storage amount and that of computational time, an easier understanding of data distribution,
the improvement of visualization, classification and clusterization of high dimensional data [1,2].
Moreover, the dropping of uninformative attributes may help to highlight the best predictors and
to improve the model’s accuracy [1,3]. Dimensionality reduction can be performed with different
kinds of procedures [1,2]: Classical methods like the metric multi-dimensional scaling (MDS) [4]
and the principal components analysis [5] are fast and efficient but they may fail to identify the real
structure of datasets when they contain a nonlinear configuration [6]. Both techniques also embed
a cost function more reliable with the modeling of large dissimilarities rather than the small ones.
Therefore, they may not provide a good visualization of data [6,7]. More recent methods, such as the
stochastic neighbor embedding (SNE) [8] or the local linear embedding (LLE) [9], aim to represent
the similarity structure of objects by involving a two-dimensional visualization, where the higher
the similarity between pairs, the less the distance between them [7]. The SNE foundation is the
modeling of pairwise similarities by transforming Euclidean distances into likelihoods of selecting
neighbors [2] and, being centered on a probabilistic model, it uses different bi-dimensional spaces and
combines them into a single model of similarity, therefore leading to a good visualization of data [7].
Still, albeit the latter, massive use of the SNE is prevented because of its “crowding problem” (the
tendency to pack points together in the center of the plan) and because it uses a cost function difficult
to be optimized [10]. We used a variation of stochastic neighbor embedding [8] the t-distributed
stochastic neighbor embedding (t-SNE) [10] that differs from the first one by using a symmetrized
variant of the SNE cost function with simpler gradients as introduced by Cook, J.A. et al [7]. It
also uses a Student’s t-distribution to compute the pairwise dissimilarities in low-dimensional space,
instead of a Gaussian distribution [10]. The t-SNE heavy-tailed distribution allows confining both
the optimization and the crowding problem of SNE, producing notably improved visualization [10].
Since its introduction, due to its flexibility, efficiency, and accuracy, various studies successfully
applied the t-SNE and its extensions to the visualization and the classification of different kinds of
objects: Paintings [11], single nucleotide polymorphisms (SNPs) [12], data collected by computer-aided
diagnosis systems (CADx) [13], and high-dimensional cytometry data in mouse tumors [14]. t-SNE
has also been employed in several studies investigating a wide range of acoustic aspects: To solve
problems in the estimation and characterization of pitch content in musical audio [15], to examine
similarities among words and phrases in natural language processing [16], to visualize relevant selected
features of audio data [17], to characterize singing styles and to discriminate vocal and non-vocal
contours [18], and to perform a dimensionality reduction in the building of an efficient technique
of speaker recognition [19]. Still, this promising technique has hitherto rarely been applied to the
study of animal behavior in general (stereotyped behavior of freely moving fruit flies, Drosophila
melanogaster) [20], and never to investigate animals’ vocal behavior. However, vocal repertoires may
represent an ideal model for this kind of analysis. Indeed, the sounds investigation often implies the
analyses of huge, high-dimensional datasets [21]. We used t-SNE to analyze the vocal repertoire of Indri
indri, the largest living lemur and the only one producing coordinated vocal displays. Nonetheless, the
particular song is not the only noteworthy trait of the species, which also possesses an interesting vocal
repertoire. Non-human primates’ vocal repertoires have been usually classified either as discrete (e.g.,
Macaca fuscata [22]; Macaca Sylvanus [23], with acoustically distinct call types clearly distinguishable
from each other, or graded (e.g., Cercopithecus diana [24]; Cercopithecus nictitans [25]), when the acoustic
structure of the vocalizations does not show neat boundaries between call types [26–28]. Yet, the
dividing line between these two categories is not always clear and the classification of a whole repertoire
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as either continuous or discontinuous, may constitute an oversimplification [27,29], as repertoires may
show both graded and discrete features (e.g., Papio ursinus [29]; Cercopithecus neglectus, Cercopithecus
campbelli, Cercocebus torquatus, [30]), and the differentiation within vocal types may occur to varying
degrees [31,32]. Traditionally, a large number of studies relied on the comparison of sounds similarity
using clustering methods [33] based on acoustic features extracted from spectrograms. Still, although
these algorithms showed good results in the classification of sounds, they could fail to describe the
graded transition of call types that may occur in vocal repertoires [29]. Moreover, the gradation level
is precisely one of the main reasons for the lack of consistency in vocal repertoire sizes assessments.
Indeed, the higher the level of gradation, the higher the potential for information diffusion but also the
higher the complexity in grouping the components of a system [28]. We expected to find a repertoire
containing both graded and conspicuous signals [29,30] and, according to the call social function
hypothesis, an acoustic variation of calls associated with their function [27,28,30,34]. Calls related
to social contexts show the highest variation level when associated with affiliative value, while the
highest level of stereotypy is associated with agonistic contexts (Cercopithecus campbelli [35]); alarm calls
show an intermediate gradation level. Hence, we expected to find great flexibility in those calls having
an affiliative social function, a rigid structure of signals associated with negative contexts, and an
intermediate variation in the alarm calls. Accordingly, in agreement with Peckre and colleagues [28],
we expected to find a clearer clusterization of discrete calls and a weaker grouping accuracy of graded
ones. Finally, in agreement with the “social complexity–vocal complexity hypothesis” [30] and the
social complexity hypothesis for communicative complexity [28], we expected indris to possess a
small repertoire size if compared to that of other lemurs [21] or other primates [36] living in larger
social groups.

2. Materials and Methods

2.1. Data Collection

We recorded spontaneous vocalizations of 18 groups of indris at four different forest sites:
Six groups (1R, 2R, 3R, 5R, 6R, and XR) were recorded in Analamazaotra Special Reserve (18◦56′ S,
48◦25′ E), one group (1M) in Mantadia National Park (18◦28′ S, 48◦28′ E), three groups (ASF, YSF, and
WSF) in Mitsinjo Forest Station (18◦56′ S, 48◦24′ E), eight groups (1MZ, 2MZ, 3MZ, 4MZ, 5MZ, 6MZ,
8MZ, and 10MZ) in Maromizaha Forest New Protected Area (18◦56′ S, 48◦27′ E). Data from all forest
sites, apart from Maromizaha, were collected from 2005–2008. Indris inhabiting the Maromizaha forest
were sampled from 2008–2018. Recordings were collected using a Sennheiser shotgun ME 66 and ME 67
(Sennheiser electronic GmbH & Co. KG, Wedemark, Hanover, Germany) and AKG CK 98 microphones
(AKG Acoustics, Harman International Industries, Vienna, Austria). The signals were recorded at
a sampling frequency rate of 44.1 kHz using a solid-state digital audio recorder: Marantz PMD671
(Marantz, Kew Gardens, NY, USA), SoundDevices 702 (Sound Devices, LLC, Reedsburg, WI, USA),
Olympus S100 (Olympus Corporation, Shinjuku, Tokyo, Japan), or Tascam DR-100MKII 24 bit/96 kHz
(TEAC Corporation, Montebello, CA, USA), with a 16-bit amplitude resolution. Vocalizations were
recorded at a distance from 2–10 m since all the study groups were habituated, and all efforts were made
to ensure that the microphone was oriented toward the vocalizing animal. Focal animal sampling [37]
and the presence of individual-specific natural marks, allowed the attribution of each vocalization to a
signaler. Only spontaneous utterances were recorded, avoiding the use of playback stimuli.

2.2. Acoustical Analysis

We visually inspected all recordings using spectrograms (Praat 6.0.28) (Phonetic Sciences,
University of Amsterdam, Amsterdam, The Netherlands) [38] and then cut high-quality vocal
emissions, normalized, saved into single files (n = 3360), and assigned to nine putative categories
on the basis of their acoustic and spectrographic evaluation, according to the vocal types identified
in a previous study [39]: Clacsons (n = 622), grunts (n = 1145), hums (n = 418), kisses (n = 296),
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long tonal calls (n = 31), roars (n = 62), short tonal calls (n = 44), wheezes (n = 150), and wheezing
grunts (n = 297). Moreover, all indris within a familiar group participate in a chorusing song, mainly
consisting of harmonic frequency modulated notes [40]. We also isolated units from the songs and
grouped them in a tenth category (songbits, n = 295). Eight vocal types and 1275 vocalizations out of
3360 were included in a previous analysis [39]; wheezing grunts were previously identified [41] but not
detected by Maretti and colleagues [39], and song units were not considered in that former repertoire
description. For each call, we extracted spectral coefficients using a custom-made script in Praat [38].
The script first calculated the overall duration of a sound and then split it into ten portions of equal
length. For each portion, the frequency range between 50 Hz and 15,000 Hz was divided into sets of
frequencies called bins or bands (e.g., 50–500 Hz, 501–1000 Hz, 1001–1500 Hz, and 2001–2500 Hz).
For each bin, we extracted the energy value using the function ‘Get band energy’ in Praat. The resulting
dataset contained 3360 samples with 151 attributes for each; one hundred and fifty parameters were
frequency parameters, the last was the duration of sounds.

2.3. Acoustic Embedding and Classification Procedure

We embedded the spectral features vectors into a bi-dimensional space using t-distributed
stochastic neighbor embedding [10] with a Barnes-Hut implementation, using the Rtsne package [42]
in R (R Core Team 2018; version 3.5.1, R Foundation for Statistical Computing, Vienna, Austria) [43].
We then used the t-SNE model (perplexity = 40, theta = 0.5, dims = 2) to group the cases, using
k-means clustering [44]. t-SNE was also used for data visualization. We then used the WEKA 3.8
(Waikato Environment for Knowledge Analysis) [45] machine learning tool for the implementation of
two classification algorithms. We applied multi-layer perceptron (MLP) [46,47], for the quantitative
categorization of both the cluster assignment and the vocal type prediction, using the 67% of the dataset
to train the neural network. We then computed two mean confusion matrices, one from the vocal
types assigned a priori and the classes predicted by the MLP, the other one from the cluster assigned
with the t-SNE procedure and the classes predicted by the network. Finally, to compare the results
of the t-SNE cluster assignment to that of a k-means clustering (with k = 7, calculated through an
average silhouette width) performed on a dataset reduced with a principal components analysis (and
indicating six principal components), we applied a third network for the quantitative categorization of
the cluster assignment.

3. Results

3.1. t-SNE Mapping

The t-SNE algorithm identified eight clouds (Figure 1a), we, therefore, performed a k-means
clustering with k = 8. As highlighted in Figure 1a,b, the analysis recognized eight different clusters;
all groups but three were consistent with the acoustic structure of the a priori identification. Cluster one,
two, and three exclusively contain a vocal type each: Wheezing grunts (Figure 2f, Figure S1e), songbits
(Figure 2i, Figure S2c), and clacsons (Figure 2j, Figure S2b), respectively (Table 1). Kisses and wheezes
(Figure 2d,e, Figure S1c,d) were grouped in cluster five (66.37% and 33.63%, respectively), while grunts
and hums (Figure 2b,c, Figure S1a,b) were both included in clusters four, seven, and eight. Specifically,
cluster four contained mainly grunts (85.04%) and a small percentage of hums (14.96%); cluster seven,
just as cluster four, comprised mostly grunts (99.00%). Conversely, cluster eight included a great
portion of hums (82.06%) and a smaller part of grunts (17.94%). Short tonal (Figure 2g, Figure S1f),
long tonal calls (Figure 2h, Figure S2d), and roars (Figure 2k, Figure S2a), although emerging as single
clouds in the map, were grouped together in cluster six (respectively, 22.63%, 45.36%, and 32.12%,
Table 1).



Animals 2019, 9, 243 5 of 13

Animals 2019, 9, x FOR PEER REVIEW 5 of 12 

 

6th 0.00 0.00 0.00 0.00 0.00 22.63 45.26 0.00 32.12 0.00 

7th 0.00 99.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

8nd 0.00 17.94 0.00 82.06 0.00 0.00 0.00 0.00 0.00 0.00 

 

Figure 1. Bi-dimensional representation of the whole sample of sounds obtained initializing the t-

distributed stochastic neighbor embedding (t-SNE) algorithm with perplexity = 40 and theta = 0.5. (a) 

Output of the t-SNE mapping combined with the k-means clustering results. (b) Remapping of the t-

SNE output with the a priori classification and distribution of the vocal types in the clouds identified 

by the algorithm (cl = clacsons, gr = grunts, grh = wheezing grunts, hu = hums, ki = kisses, lt = long 

tonal calls, ro = roars, sb = songbits, st = short tonal calls, and wh = wheezes). 

Figure 1. Bi-dimensional representation of the whole sample of sounds obtained initializing the
t-distributed stochastic neighbor embedding (t-SNE) algorithm with perplexity = 40 and theta = 0.5.
(a) Output of the t-SNE mapping combined with the k-means clustering results. (b) Remapping of the
t-SNE output with the a priori classification and distribution of the vocal types in the clouds identified
by the algorithm (cl = clacsons, gr = grunts, grh = wheezing grunts, hu = hums, ki = kisses, lt = long
tonal calls, ro = roars, sb = songbits, st = short tonal calls, and wh = wheezes).
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Figure 2. (a) Distribution of the vocal types in the clouds identified by the t-SNE map and their
spectrographic representation: (b) Grunt, (c) hum, (d) wheeze, (e) kiss, (f) wheezing grunt, (g) short
tonal call, (h) long tonal call, (i) songbit, (j) clacson, and (k) roar. Almost all classes (except kisses and
wheezes and hums and grunts) were well separated. Spectrograms—frequency (kHz) on the y-axis
and time (s) on the x-axis—were obtained with a Hanning window, 512 samples, 0% overlap, and no
zero-padding using the Seewave package [48,49].

Table 1. Distribution of the vocal types in the eight clusters (expressed in %). Cl: clacsons; GR: grunts;
GRH: wheezing grunts; HU: hums; KI: kisses; LT: long tonal calls; RO: roars; SB: songbits; ST: short
tonal calls; WH: wheezes.

Cluster CL GR WG HU KI LT RO SB ST WH

1st 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2nd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
3rd 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4th 0.00 85.04 0.00 14.96 0.00 0.00 0.00 0.00 0.00 0.00
5th 0.00 0.00 0.00 0.00 66.37 0.00 0.00 0.00 0.00 33.63
6th 0.00 0.00 0.00 0.00 0.00 22.63 45.26 0.00 32.12 0.00
7th 0.00 99.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
8nd 0.00 17.94 0.00 82.06 0.00 0.00 0.00 0.00 0.00 0.00

3.2. Call Recognition

For the quantitative categorization of both the cluster assignment and the vocal type prediction,
the network we selected, trained for 500 iterations yielded the best performance by using a learning
rate = 0.2 and momentum = 0.2. The correct attribution for the vocal type prediction achieved the
85.57% (n = 949, kappa statistic: 0.820; mean absolute error: 0.034; root mean squared error: 0.157;
Table 2). The network recognized all vocal categories with percentages of correct classification ranging
from 58.76% for the wheezing grunts to 100.00% for the long tonal calls and roars. Clacsons and
songbits were almost totally correctly classified (99.03% and 98%, respectively). The classification
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of grunts achieved lower performances (84.25%), hums (84.56%), kisses (77.89%), short tonal calls
(75.00%), and wheezes (78.57%, Table 3).

Table 2. Vocal type assignment detailed accuracy by class. TP rate: Rate of true positives; FP rate:
Rate of false positives; precision: Proportion of instances that are truly of a class divided by the total
instances classified as that class; F-measure: Combined measure for precision and recall; ROC area:
Receiver operating characteristics measurement area; PRC area: Precision recall area.

Vocal Type TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

CL 0.99 0.00 0.99 0.99 0.99 0.988 1.00 1.00
GR 0.82 0.08 0.84 0.82 0.83 0.74 0.94 0.88

GRH 0.71 0.04 0.59 0.71 0.64 0.61 0.96 0.65
HU 0.83 0.02 0.85 0.83 0.84 0.81 0.98 0.90
KI 0.79 0.02 0.78 0.79 0.78 0.76 0.98 0. 87
LT 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
RO 0.81 0.00 1.00 0.81 0.90 0.90 1.00 0.98
SB 1.00 0.02 0.98 1.00 0.99 0.99 1.00 1.00
ST 0.69 0.00 0.75 0.70 0.72 0.72 0.98 0.76

WH 0.75 0.01 0.79 0.75 0.77 0.76 0.95 0.84
Weighted Average 0.86 0.04 0.86 0.86 0.86 0.82 0.97 0.90

Table 3. Confusion Matrix on vocal type prediction. Cl: clacsons; GR: grunts; GRH: wheezing grunts;
HU: hums; KI: kisses; LT: long tonal calls; RO: roars; SB: songbits; ST: short tonal calls; WH: wheezes.

Classified As A B C D E F G H I J

CL 99.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.76
GR 0.00 84.25 38.14 14.09 10.53 0.00 0.00 0.00 0.00 4.76

GRH 0.00 4. 99 58.76 0.00 4.21 0.00 0.00 0.00 0.00 0.00
HU 0.00 6.30 1.03 84.56 0.00 0.00 0.00 0.00 0.00 2.38
KI 0.00 3.15 1.03 0.67 77.89 0.00 0.00 0.00 16.67 9.52
LT 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
RO 0.97 0.00 0.00 0.00 0.00 0.00 100.00 2.00 0.00 0.00
SB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.00 0.00 0.00
ST 0.00 0.79 0.00 0.67 0.00 0.00 0.00 0.00 75.00 0.00

WH 0.00 0.52 1.03 0.00 7.37 0.00 0.00 0.00 8.33 78.57

The model built for the cluster assignment showed better results. A total of 1109 instances were
correctly classified in 1059 cases (95.49%, kappa statistic: 0.947; mean absolute error: 0.016; root mean
squared error: 0.088; Table 4). The network recognized all clusters with high percentages of correct
classification (Table 5). Five groups (clusters 1, 3, 5, and 6) were entirely correctly classified, with a rate
of correct assignment of 100%. The last three groups’ classification showed almost as good results.
The lowest performance was achieved by cluster 4 that was correctly classified in 85.35% of cases.
Cluster 7 and cluster 8 showed the highest results: The first was correctly classified in 96.92%, while
the second reached 95% of correct assignation. These groups, containing almost the totality of cases
misclassified with respect to the clustering assignment, corresponded to the clusters showing a less
homogeneous composition (Table 1): Cluster 4 and 7, contained mainly grunts (85.04% and 99.00%,
respectively) and smaller percentages of hums (14.96% and 1%, respectively). On the other side, cluster
8 included a great portion of hums (82.06%) and a smaller part of grunts (17.94%). The third model,
built using the PCA-based clustering as class, showed slightly weaker results when compared to the
t-SNE model (93.05% vs. 95.49%; kappa statistic: 0.897; mean absolute error: 0.02; root mean squared
error: 0.13).
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Table 4. Cluster assignment detailed accuracy by class. TP rate: Rate of true positives; FP rate: Rate of
false positives; precision: Proportion of instances that are truly of a class divided by the total instances
classified as that class; F-measure: Combined measure for precision and recall; ROC area: Receiver
operating characteristics measurement area; PRC area: Precision recall area.

Cluster TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

3rd 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
1st 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
4th 0.96 0.05 0.85 0.96 0.90 0.88 0.99 0.97
7th 0.83 0.00 0.97 0.83 0.90 0.88 1.00 0.98
8th 0.88 0.01 0.95 0.88 0.92 0.91 1.00 0.98
5th 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
6th 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
2nd 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

Weighted Average 0.95 0.01 0.96 0.95 0.95 0.95 1.00 0.99

Table 5. Confusion Matrix on cluster assignment.

Classified as A B C D E F G H

3rd 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1st 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
4th 0.00 0.00 85.35 3.08 5.00 0.00 0.00 0.00
7th 0.00 0.00 9.16 96.92 0.00 0.00 0.00 0.00
8th 0.00 0.00 5.49 0.00 95.00 0.00 0.00 0.00
5th 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
6th 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
2nd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

4. Discussion

We described the use of a computationally simple but powerful method applied in the automatic
recognition of acoustic signals. The t-SNE embedding and the use of MLP allowed an efficient analytical
performance: Our results indicate that it was possible to automatically identify vocal types by using
a dataset consisting of high-dimensional vector representations of objects, assigning similarities
between those objects as conditional probabilities [10]. Still, although both t-SNE [15–19] and neural
networks [50,51] are widely used to analyze acoustic characteristics in a wide range of research fields,
ours represents the first attempt to combine these kinds of computational tools and apply them to the
identification of vocal repertoire in nonhuman primates. Our findings support what was found in
a previous analysis on indris’ vocal repertoire [39]. Indeed, our analysis confirmed the presence of
the eight call types emerged in the study, but we also identified two further categories: The songbits,
consisting of all units given by an indri during the choral song of the group, were not considered to the
purposes of the qualitative assessment of Indri indri vocal repertoire; and the wheezing grunts [41],
particular vocalizations given after agonistic physical interactions (pers. obs.), were not detected by
Maretti and colleagues [39]. Albeit our analysis allowed us to easily distinguish the different vocal
types, the algorithm’s map contained some points clustered within the wrong class. Most of these
points correspond to sounds belonging to vocal classes showing a certain degree of gradation one
another and therefore may be difficult to be identified [29]. In particular, we found an overlay between
hums and grunts and kisses and wheezes. Hums (also known as weak grunts) [52] and grunts are both
low-frequency and low-intensity calls; hums show a more defined harmonic structure when compared
to grunts that, in contrast, show a clearer and low-pitched pulsed structure [39].

Furthermore, hums serve as group-cohesion calls [39] and their gradation level is following
what was found in Campbell’s monkeys (Cercopithecus campbelli), where calls associated with high
affiliative social values show an elevated gradation level [35]. The great gradation in these calls
may allow for flexible usage and the encoding of multiple elements of information, in agreement
with the findings of Keenan and colleagues on Cercopithecus campbelli [27]. Overall, our results are in
line with findings on red-capped mangabeys (Cercocebus torquatus), whose contact calls show more
acoustic dissimilarity than long-distance and alarm signals [53], in contrast with findings on chacma
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(Papio ursinus), olive (P. anubis), and Guinea (P. papio) baboons, whose loud calls are more differentiated
than grunts [54]. Kisses and wheezes, on the other hand, are both brief medium-intensity vocalizations,
often uttered together (85% of cases) [39]. They are stress-related vocalizations that can be emitted
as contact-rejection call, before a song, or in response to anxiety-causing stimuli [39,41,55]. In our
analysis, the categories identification relied on a human visual assessment, and the vocal classes
grouping, although supported by our findings, may imply dissimilarities perceived by humans but not
necessarily by the species [56,57]. Moreover, in agreement with what was hypothesized, our results
indicated the presence of signals showing features of both conspicuousness and gradedness, as found
in other primate species [27,29,30] and the analysis showed a stronger accuracy in the classification
of discrete calls, than that of graded ones [28]. We expected the variation of calls to be associated
with their social function [35], with calls having affiliative value showing the highest variation level,
calls associated with agonistic contexts showing the highest stereotypy, and alarm calls showing an
intermediate gradedness. This prediction was not entirely supported by our results, as we found the
two alarm calls (roars and clacsons), well separated from one another. The result seems instead to be in
line with studies on calls referentiality [58–60]. Additionally, the roars were grouped together with
long tonal and short tonal calls; these three vocal types are the only with a chaotic component [39] and
the result may depend by their spectral features, known to affect the vocalization recognition [21,61].

Finally, in agreement with the social complexity–vocal complexity hypothesis [30] and the
social complexity hypothesis for communicative complexity [28], the vocal repertoire size is directly
proportional to the group size. We expected indris to possess a small repertoire size compared to
that of other lemurs [21] and other primates [36] living in larger social groups. A ten-categories vocal
repertoire and an average group size of four to six individuals, seemed not to be in line with this
theory, in accordance with findings on Eulemur rubriventer, owning a vocal repertoire of 14 vocal
types and a group size of about three individuals [21]. Notably, both species also show a stable social
monogamous organization [62,63], in agreement with the hypothesis stating that the diversity in
communication signals may be favored by an egalitarian social structure or a stable social group [64].
These findings are also in agreement with the studies on Asian colobines Pygathrix nemaeus [65] and
Nasalis larvatus [66,67], showing a repertoire size smaller or similar to that of indris, compared to an
average group size sometimes even significantly higher.

5. Conclusions

As earlier hypothesized, the vocal repertoire structure may be determined by both the species’
environment and social structure [68]. This could also be for the indris’ case, where the presence of loud
and discrete calls, like alarm calls [27,68] and even the song, may have evolved to cope with a noisy
environment and poor visual ranges, like that of dense rainforests, to reduce the misinterpretation of
signals in the long-distance and even in inter-group communication. On the other side, contact calls
and in general vocalizations that may serve the intra-group and short-range communication, do not
have to face such kinds of obstacles and may show a more graded structure.
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