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Simple Summary: Information on linkage disequilibrium (LD) and the extent of effective population
size (Ne) has important implications for exploring the degree of biological diversity, for predicting
underlying selection pressure, and for designing animal breeding programs. In this study, we assessed
LD, Ne, and the distribution of minor allele frequency in six goat populations. Accordingly, the results
of LD and Ne using a single nucleotide polymorphism (SNP) panel (Caprine SNP 50K BeadChip,
Lincoln, NE, USA) are helpful for the sustainable conservation, proper management, and utilization
of Chinese goat populations.

Abstract: Genome-wide linkage disequilibrium is a useful parameter to study quantitative trait locus
(QTL) mapping and genetic selection. In many genomic methodologies, effective population size is
an important genetic parameter because of its relationship to the loss of genetic variation, increases in
inbreeding, the accumulation of mutations, and the effectiveness of selection. In this study, a total of
193 individuals were genotyped to assess the extent of LD and Ne in six Chinese goat populations
using the SNP 50K BeadChip. Across the determined autosomal chromosomes, we found an average
of 0.02 and 0.23 for r2 and D’ values, respectively. The average r2 between all the populations varied
little and ranged from 0.055 r2 for the Jining Grey to 0.128 r2 for the Guangfeng, with an overall
mean of 0.083. Across the 29 autosomal chromosomes, minor allele frequency (MAF) was highest
on chromosome 1 (0.321) and lowest on chromosome 25 (0.309), with an average MAF of 0.317,
and showing the lowest (25.5% for Louping) and highest (28.8% for Qingeda) SNP proportions at
MAF values > 0.3. The inbreeding coefficient ranged from 0.064 to 0.085, with a mean of 0.075 for all
the autosomes. The Jining Grey and Qingeda populations showed higher Ne estimates, highlighting
that these animals could have been influenced by artificial selection. Furthermore, a declining recent
Ne was distinguished for the Arbas Cashmere and Guangfeng populations, and their estimated
values were closer to 64 and 95, respectively, 13 generations ago, which indicates that these breeds
were exposed to strong selection. This study provides an insight into valuable genetic information
and will open up the opportunity for further genomic selection analysis of Chinese goat populations.

Keywords: goat; effective population size; linkage disequilibrium; minor allele frequency; SNP

1. Introduction

Goats (Capra hircus) are animals that are highly adaptable to diverse environmental conditions,
are raised all over the world for meat, milk, skin, fibre, and manure production, and are the sole source
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of livelihood for many rural people and landless laborers [1,2]. Although they present reasonable
reproductive and productive performance, it is necessary to improve their production efficiency to
become more competitive with other livestock industries. In this regard, genetic selection plays a vital
role and substantial genetic gain has been achieved using traditional breeding methods.

The commercial application of genomic selection implies that relatively large numbers of important
breeding animals are genotyped using dense marker covering [3], which opens up the possibility of
performing quantitative trait loci (QTL) mapping studies with greater power and precision. In genomic
studies, identifying traits of interest and genomic polymorphisms are required. In most whole genome
marker data sets, the causal variants are usually not included but the effects of quantitative loci are
reflected by markers that are in linkage disequilibrium (LD) with the causal loci [4]. Determining
the extent and decay of LD within a population will provide new opportunities to determine the
number of markers that are required for uncovering the genetic basis of relevant traits in livestock
populations [5]. Most researchers define LD as a nonrandom association between alleles of different
loci in a given population, used in order to achieve high-accuracy marker-assisted selection and to
reduce breeding strategy errors [6]. The pattern of LD between adjacent markers is generally high,
decreases with increasing marker distance, and is affected by various factors, including genetic drift,
population growth/structure, mutation, artificial/natural selection, and the recombination rate. LD can
be variable among populations and loci [6]. LD could be the most widely important measurement of
connectedness between allele pairs and haplotype block structures across a given population [7].

The presence of LD patterns and the extent of Ne are important population genetic parameters
that have recently received a great deal of research attention [8], determining population demographic
development [9] and demographic processes such as migration and admixture [10], and having
profound implications for understanding the architecture of the animal genome [6,11]. The Ne is
widely regarded as one of the most critical population parameters because it measures the rates of
genetic drift and inbreeding and affects the efficacy of systematic evolutionary forces such as mutation,
selection, and migration [12]. It also helps to discover population demographic history, and allows
one to predict the behavior of genetic diversity through time. The Ne is estimated using the r2

coefficient and measures the observed range and the amount of genetic variation within a frame of
population genetics. It also provides information on the degree of inbreeding of the population under
consideration [13]. The Ne determines the amount of genetic variation, genetic drift, and linkage
disequilibrium (LD) in populations [6].

Accordingly, LD and Ne provide substantial genomic selection accuracy in goat breeding [14].
In recent decades, several studies have demonstrated the usefulness of LD and Ne features by applying
advanced technologies, such as the single nucleotide polymorphism (SNP) Chip panel and whole
genome sequencing in various livestock species including goat [14], cattle [13], sheep [6,8], and pig [15].
The application of genomic SNP will provide an opportunity to identify a high resolution of LD and to
understand the effectiveness of selection in an individual breed. However, information about LD and
Ne using SNP 50K data in Chinese goat populations is generally unexploited. China is a big country
with complex geographical borders (Qinling Mountains, Huaihe River Line), Plateaus, river systems, a
dynamic geological history, and diverse domestic goat breeds; these goat breeds exhibit enormous
genetic variation in terms of production, reproduction, hypoxia, and heat tolerance performance.
Therefore, the objective of this study was to characterize genome-wide LD and the extent of Ne in six
Chinese goat populations using the Caprine SNP50 BeadChip, which is essential for conservation and
for designing new breeding strategies.

2. Materials and Methods

All animal work was conducted according to the guidelines for the care and use of experimental
animal survival established by the Ministry of Agriculture of China and given by the animal ethics
committee of Institute of Animal Science, Chinese Academy of Agricultural Sciences (IAS-CAAS-AE-03).
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2.1. Animals and Sampling Units

The dataset included the genotypes of 193 animals representing the Nanjiang (n = 23), Qingeda
(n = 24), Arbas Cashmere (n = 58), Jining Grey (n = 39), Louping (n = 24), and Guangfeng (n = 24)
breeds. These breeds are mainly found in five Chinese provinces (Table 1).

Table 1. Summary of breed name, sample code, sample size, and physical distribution of six Chinese
indigenous goat populations.

Breed Name Sample Code Sample Size (n) Province

Nanjiang NJ 23 Xinjiang
Qingeda QGD 24 Xinjiang

Arbas Cashmere AC 59 Inner Mongolia
Jining Grey JN 39 Shandong

Louping LP 24 Yunnan
Guangfeng GF 24 Jiangxi

To minimize the likelihood of studying related individuals, samples were collected from different
areas to capture a representative sample of within-breed genetic diversity. The geographic distribution
of Chinese breeds sampled in this study is depicted in Figure 1.
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Figure 1. Geographic distribution and provinces of the six Chinese goat populations.

Whole blood samples were used to extract genomic DNA. Blood samples of approximately 10 mL
were drawn out from the jugular vein into a tube. Extracted DNA was put in the safe area and
stored at −20 ◦C and/or at 4 ◦C. DNA extraction was conducted at the laboratory of the Institute
of Animal Science, Chinese Academy of Agricultural Sciences, using Promega Kits according to
the manufacturer’s procedures. The DNA concentrations for all samples were measured using a
Nano-DNA spectrophotometer (ND-1000), considering the A260/A280 absorbance ratio. The quantity
and quality of genomic DNA were measured using 1% agarose gel electrophoresis (Merck & Co.,
Kenilworth, NJ, USA) and a Qubit® 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Genotyping and Quality Control

All DNA samples were genotyped using the Illumina goat SNP 50K Bead Chip (Illumina,
San Diego, CA, USA) containing 53,347 single nucleotide polymorphisms (SNPs). To ensure data
quality, quality control (QC) was performed across the six goat populations by removing any SNPs
with call rate <95%, MAF <0.05 and Hardy–Weinberg equilibrium (HWE) (p < 10−5) using PLINK v.
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1.07 [16]. Moreover, samples with more than 10% missing genotypes were removed from the data
set. Finally, SNPs that had high linkage disequilibrium (LD) were pruned using the indep-pairwise
command parameters (SNP window size: 50, SNPs shifted per step: 5, r2 thresholds: 0.2) by the
PLINK software, as recommended in the PLINK manual [16]; this left 39,552 SNPs for further analysis.
Pruning is essential to produce a better comparison between populations because some stretches of
SNPs have a low MAF.

2.3. Population Analyses

To assess the population stratification of the data, we carried out principal component analysis
(PCA) implemented in PLINK v1.09 [16]. Additionally, level of admixture was analyzed through a
model-based clustering using ADMIXTURE v.1.3 [17]. After CV errors were estimated for each K-value,
the K-value with the lowest CV error was chosen as optimal. Neighbor-joining tree was constructed
based on Nei’s genetic distance between pairwise individuals and were performed by PowerMarker
v3.25 [18].

2.4. Minor Allele Frequncy and Inbreeding Coefficient

PLINK v1.07 [16] was used for the estimation of minor allele frequency (MAF) under the default
settings [16] for all autosomal SNPs. The distribution of MAF in each population was represented as a
proportion of all the SNPs used in the analysis, and then five categories were established, representing
the proportion of SNPs with MAF values that fell within the following ranges: 0.0–0.1, 0.1–0.2, 0.2–0.3,
0.3–0.4, and 0.4–0.5. The results were plotted for comparison between all the populations, using
Microsoft Excel. The inbreeding coefficient was calculated as a function of the expected and observed
homozygote difference, using the following equation:

FIS =
(Oi − Ei)

(Li − Ei)
(1)

where FIS is the assessed inbreeding coefficient of the ith animal, Oi is the number of homozygous
loci observed in the ith animal, Ei is the number of homozygous loci expected and Li is the number of
genotyped autosomal loci [16].

2.5. Linkage Disequilibrium (LD) Analysis

The standard descriptive LD parameters r2 and D’ were estimated as previously described by [19]
and [20], respectively. LD is the squared correlation coefficient between the two loci [21]. The average
r2 and D’ values were calculated for each chromosome via Haploview software [19]. The LD was
estimated genome-wide for each breed, respectively. The decay of LD (r2) values were then sorted by
inter-SNP distance and binned into different inter-SNP intervals (0–10 kb, 10–20 kb, 20–40 kb, 40–60
kb, 60–80 kb, 80–100 kb, 100–200 kb, 200–500 kb, 500 kb–1 Mb, 1–2 Mb, and >2 Mb), followed by an
analysis of mean LD within each bin.

2.6. Effective Population Size (Ne)

Effective population size (Ne) was estimated based on the following equation: Ne = 1
4c

(
1

E(r2)
− 1
)

[22],

where Ne is the effective population size, c is the genetic distance in morgans, and E
(
r2
)

is the expected
r2 for distance c, implemented in the software SNeP v1.1 [23]. Time points representing the number
of generations ago (T) was calculated as: T = 1

2c [24]. Ne was estimated for each chromosome and
generation in the past.



Animals 2019, 9, 350 5 of 13

3. Results

3.1. Descriptive Statistics

In the present study, 53,347 SNPs were used before quality control. About 5946 SNPs were
removed, leaving 47,401 of the loci distributed over 29 autosomal chromosomes, which were used for
downstream analysis. About 2663 SNPs were removed due to having a MAF of <0.05. About 1568
and 1715 SNPs were removed on the basis of their results for Hardy–Weinberg Equilibrium (<10−5)
and call rate (<0.95), respectively. About 7849 SNPs were removed using LD-based pruning when
an r2 threshold of 0.2 was exceeded. After filtering, 39,552 SNPs (74.14%) were used for LD analysis.
The SNPs spanned approximately 0.43 GB of the caprine autosomal genome. The total SNP numbers
per each chromosome (CHI) are summarized in Figure 2, ranging from 777 for CHI 25 to 2916 for CHI 1.
The total chromosome length was 2466.19 Mb, with an average of 85.04 Mb. Chromosome 1 was
found longer and chromosome 25 was shortest with 157.4 Mb and 42.86 Mb, respectively. The average
distance between marker pairs for this analysis was 259.22 kb, with the distance between markers
ranging from 257.51 kb to 260.25 kb.
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3.2. Population Genetic Structure and Admixture

A neighbor-joining (NJ) tree clustering method represents relationships based on Nei’s genetic
distance. The NJ tree showed four major clades: the Louping and Arbas Cashmere goats clustered
separately at distinct clades (Figure 3a). The Qingeda and Nanjiang goats clustered together in one
clade, while Jining Grey and Guangfeng goat breeds form one group in the other clades. Similarly
to the results of the NJ tree, principal component analysis (PCA) showed four different clusters
(Figure 3b) corresponding to their origin. Principal components analysis 1 and 2 together accounted
for 19.81% of the total genetic variation. These components clearly revealed four different clusters,
which corresponded to their genetic distance and relatedness between populations. The first principal
component explained 11.18% of the observed global variation and divided the samples into three
clusters. Qingeda and Nanjiang breeds were cloth clustered and Jining Grey and Guangfeng breeds
were also grouped together, while the Louping breeds were separately positioned. The second principal
component accounted for 8.63% of the total variance and separated Arbas Cashmere independently.
To provide additional insight into the genetic variation and admixture of the studied goat breeds,
ADMIXTURE software was used to conduct model-based clustering of all individuals. Based on the
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lowest cross validations error, K = 3 was the optimal number of ancestral populations and separated the
populations corresponding to their origin (Figure 3c). This analysis revealed a high level of admixture
in the NJ, QGD, and GF populations, whereas the Arbas Cashmere, Louping, and Jining Grey breeds
revealed relatively low levels of admixture, which is in accordance with the clustered results shown
by PCA and the neighbor-joining tree. The admixture revealed the six breeds according to their
geographical distribution and historic origins.
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Figure 3. Population genetic structure and admixture analysis of six Chinese goat populations:
(a) Neighbor-joining (NJ) tree. (b) Principal component analysis. (c) Level of admixture among the six
goat breeds [25].

3.3. Minor Allele Frequency, Linkage Disequilibrium, and Inbreeding Coefficient

In the current study, the mean MAFs for all the autosomal SNPs were 0.276 (AC), 0.308 (QGD),
0.284 (NJ), 0.314 (JN), 0.255 (LP), and 0.258 (GF), as indicated in Table 2. The distributions of MAF
across the populations are presented in Figure S1. The LP (26.5%) showed the highest proportion of
SNPs in the lowest MAF interval compared to the proportion of SNPs observed in the higher MAF
intervals. The LP and QGD goats showed the lowest and highest SNPs proportions in the MAF >0.3
intervals. The proportion of SNPs for the AC, JN, and QGD populations was found to be higher with
increasing MAF interval, and showed a decrease at the last interval. However, no clear pattern was
observed for the GF and NJ populations.

Table 2. Summary of MAF in the six goat populations.

Breed Name Code MAF < 0.05

Nanjiang NJ 0.284
Qingeda QGD 0.308

Arbas Cashmere AC 0.276
Jining Grey JN 0.416

Louping LP 0.353
Guangfeng GF 0.366
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The descriptive statistical results for each chromosome of LD between adjacent markers and the
FIS are shown in Table 3. The average mean r2 and D′ values estimated between adjacent SNPs for
the 29 autosomal chromosomes were 0.02 and 0.23, respectively. The average r2 results were lowest
for the JN group (0.055) and highest for the GF group (0.128), with an overall mean of 0.083. The r2

measure is known to be a more robust parameter for bi-allelic marker analysis, and therefore requires
a smaller sample size for accurate LD estimation than D’ [26]. The average LD (r2) decreased with
genetic distance for all groups (Figure 4). The observed values of r2 for all the populations, with the
SNPs for each bin separated by intervals of 0–10 kb, 10–20 kb, 20–40 kb, 40–60 kb, 60–80 kb, 80–100 kb,
100–200 kb, 200–500 kb, 500 kb–1 Mb, 1–2 Mb, and >2 Mb are presented in Table S1.

Table 3. Summary of analyzed markers and average linkage disequilibrium (r2 and D’) separated by
different distances across the 29 autosomal chromosomes.

CHR SNP (n) Size (Mb) D’ r2 FIS MAF Distance (Mb)

1 2916 157.4 0.225 0.023 0.072 0.324 0.260
2 2502 136.51 0.225 0.023 0.075 0.327 0.260
3 2109 120.04 0.233 0.022 0.079 0.316 0.259
4 2190 120.74 0.229 0.023 0.064 0.319 0.259
5 2027 119.02 0.229 0.022 0.072 0.318 0.259
6 2161 117.64 0.235 0.023 0.073 0.318 0.259
7 1981 108.43 0.237 0.024 0.069 0.320 0.260
8 2064 112.67 0.226 0.022 0.085 0.321 0.259
9 1706 91.57 0.234 0.022 0.073 0.315 0.259
10 1846 101.09 0.223 0.021 0.079 0.319 0.259
11 1914 106.23 0.234 0.023 0.073 0.314 0.259
12 1543 87.28 0.229 0.023 0.073 0.318 0.259
13 1463 83.03 0.228 0.022 0.074 0.313 0.259
14 1719 94.67 0.231 0.022 0.080 0.312 0.260
15 1470 81.90 0.227 0.022 0.068 0.312 0.260
16 1406 79.37 0.237 0.024 0.083 0.312 0.260
17 1275 71.14 0.234 0.023 0.081 0.315 0.259
18 1165 67.28 0.223 0.021 0.070 0.318 0.259
19 1074 62.52 0.229 0.023 0.078 0.318 0.260
20 1362 71.78 0.224 0.022 0.072 0.320 0.259
21 1271 69.43 0.225 0.022 0.084 0.317 0.258
22 1040 60.28 0.231 0.023 0.077 0.317 0.259
23 922 48.87 0.212 0.020 0.064 0.321 0.259
24 1171 62.31 0.239 0.024 0.070 0.317 0.260
25 777 42.86 0.232 0.021 0.077 0.309 0.258
26 920 51.42 0.223 0.022 0.070 0.324 0.258
27 828 44.71 0.218 0.020 0.084 0.319 0.259
28 822 44.67 0.224 0.022 0.082 0.316 0.260
29 876 51.33 0.227 0.023 0.074 0.316 0.260

LD, r2, and D’ were estimated on a per-chromosome basis and are summarized in Table 3. Moreover,
as shown in Figure 4 and Table S1, the mean existing r2 decreased more slowly with increasing physical
distance between SNPs (the values continued to decline, just more slowly). The mean LD (r2) showed
the most rapid decline in the first five bins. Overall, the JN, QGD, and NJ goat breeds displayed the
lowest LD values across all intervals as compared to AC, GF, and LP populations. For each of the
29 autosomal chromosomes, the inbreeding coefficient ranged from 0.064 to 0.085 with an average
of 0.075.

3.4. Effective Population Size (Ne)

Historical and recent effective population sizes for the studied goat populations are presented in
Figure 5. Figure 5a shows that the historical Ne declined between 1000 and 100 generations ago across
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the six studied goat populations. In total, the estimated Ne had decreased in AC (from 2289 to 95),
NJ (from 3908 to 109), (JN from 5695 to 164), LP (from 3469 to 121), QGD (from 5630 to 140), and GF
(from 2308 to 64) at 13 generations ago, which reflected a downward trend in Ne for all breeds due to
selection. A rapidly decreasing recent Ne was observed in the GF and AC, while the JN and QGD had
a slow Ne decline trend (Figure 5b).
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4. Discussion

In our previous study, we revealed the genetic diversity and population structure of goat
populations [25]. Considering this fact, here, we estimated genome-wide linkage disequilibrium
and the extent of effective population size in six Chinese goat populations using a 50K SNP panel.
The measures of LD demonstrate some allele frequency dependence in the finite sample sizes [27].
The MAF is important because LD, independent of the metric used, is a function of allelic frequency.
A low MAF may correspond to a larger difference in the allele frequency of coupled alleles, which
can result in lower estimates of LD as measured by either r2 or D’ [28]. Accordingly, filtering QC
criteria and thresholds can affect the distribution and extent of LD [29], since there is an important
association between high levels of LD and a higher proportion of SNPs with high MAF values.
Across the 29 autosomal chromosomes, MAF was highest on chromosome 1 (0.321) and lowest on
chromosome 25 (0.309), with an average MAF of 0.317, and showing the lowest (25.5% for LP) and
highest SNP proportion (28.8% for QGD) at MAF values of >0.3. These results are comparable with the
values reported for different Ethiopian goats [30] and Sahiwal cattle types [31]. However, our study
found values higher than the reported MAF values of 0.27 (Drakensberger), 0.26 (Bonsmara), 0.28
(Angus), and 0.28 (Holstein) cattle [32]. The inbreeding coefficient measures the percent of increase in
homozygous gene pairs in an individual relative to the average of the breed [33]. In the current study,
across the autosomal chromosomes, the inbreeding coefficient ranged from 0.064 to 0.085 with an
average mean of 0.075. These results are similar to the previous report of FIS = 0.04 for Brazilian Santa
Inês sheep [11], but are lower than the 0.29 value found in various South African cattle breeds [32].

LD varies among populations, genomic regions, and between pairs of markers in close
proximity [34]. The declining pattern of linkage disequilibrium in this population is consistent
with those reported by previous studies in different breeds of cattle [32] and buffalo [9]. The r2 and
D’ measures are important descriptive LD parameters [35]. The r2 is a more robust measure of LD
because it is less sensitive to allele frequency and a small sample size. The average r2 between all
the studied populations varied little and ranged from 0.055 for JN to 0.128 for GF, with an overall
mean of 0.083. The r2 values obtained in the current study were higher than the reported values of 0.11
for different South African, French, and Argentinian Angora goats [36], and the values ranged from
0.14 to 0.17 for South African commercial goats [37], and from 0.14 to 0.24 for different Canadian and
Australian goat breeds [38]. We observed that Chromosome 1 was the longest and chromosome 25 was
the shortest. Similar results were previously reported in different cattle breeds [39,40]. The lowest r2

observed between breeds and chromosomes might be due to differences in genetic drift, recombination
rates, and less intensive selection which resulted in a lower LD across the genome [41]. Generally, a
declining pattern of average r2 values was observed when moving from 10 to 200 kb. Consistent with
this study, a decreasing trend was previously reported for goats [36], sheep [6], cattle [12], and pigs [42],
with existing r2 remaining higher than approximately 0.4 for a distance up to 60–80 Kb. Furthermore,
D’ is a good measure to clarify the extent of LD in a population and the variation in LD over the
genome [43]. We estimated the average D’ value at 0.23 across the 29 chromosomes. These results were
lower than the previously reported values of 0.48 for various South African commercial goats [37], 0.55
for Sahiwal cattle [31], and the value ranged from 0.12 to 0.52 for Nellore cattle [40], which could be
due to the higher power for detecting LD when using markers with many alleles.

Effective population size (Ne) is a crucial population genetic parameter because of its relationship
to the loss of genetic variation, increases in inbreeding, the accumulation of mutations, and the
determination of the accuracy of genomic selection [3]. The current study observed a decreasing
trend in Ne from 1000 to 100 generations ago across the six studied populations. Interestingly, the JN,
QGD, NJ, and LP breeds showed higher Ne estimates after 13 generations ago, suggesting that these
animals could have been affected by selection. The rapid increase pattern in Ne may also include
bottlenecks associated with domestication, selection and breed formation, and the endangerment of
the breed [12]. Therefore, it is useful to consider our results in the context of the demographic history
of the goat population in China. This finding is consistent with our previous study of genetic diversity
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and population structure, in which it was discussed that the principal component and admixture
analysis clearly clustered the population corresponding to their geographic distribution and genetic
construction [25]. Comparatively, a decreasing recent Ne was observed for the AC and GF breeds, and
their estimated values were closer to 64 and 95 at 13 generations ago, suggesting that these animals
were strongly affected by selection pressure or genetic drift which resulted in population decline [44].
The AC goat breeds are among the most well-known Cashmere goat breeds, which have experienced
strong artificial selection for the production of a high Cashmere yield [45]. They are an important
breed for livestock husbandry in China due to their excellent cashmere traits such as coarse wool, hair,
softness, slender texture, and good gloss [46]. Otherwise, it is well known that a small Ne means the
reduction of genetic variation in the population, thereby hindering genetic progress. The Ne slope in
Figure 4b suggested that the AC and GF population sizes were consistently decreasing, signifying
that actions are needed to maintain sufficiently large Ne, such as the reduction of the widespread
use of artificial insemination, which introduces new bloodlines from exotic breeds, as well as smaller
progeny groups for elite sires and an increase in recorded goat buck numbers. Consistent with our
study, Ne values of about 67, 57, and 93 were reported for Argentinian, French, and South African goat
populations at ten generations ago [36]. Furthermore, a study by [14] revealed that the ecotype goat was
slightly higher in effective population sizes than the Tankwa and commercial breeds across generations.

5. Conclusions

In this study, we found low to moderate LD among the six populations, which indicates that the
Caprine SNP 50K BeadChip will likely be a feasible tool for the prediction of genomic breeding values
in goat populations. From the result showing a decline in LD with genetic distance, we inferred the
Ne values and showed a rapidly decreasing trend across the entire studied population. Moreover,
this study revealed a decreasing trend of Ne with the estimated values closer to 64 for AC and 95
for QGD at 13 generations ago, implying that the decline in the Ne of these goat breeds should be
avoided. Further confirmatory investigations for the current population are required on a larger
population dataset.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/6/350/s1,
Figure S1: Distribution of minor allele frequency (MAF) for each studied population. The percentage of SNP is
plotted for each frequency bin, Table S1: The average observed values of r2 were calculated for each bin in each
inter-SNP distance class.
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