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Abstract: Saturated hydraulic conductivity (Ks) of soil, especially of the upper soil layer, is a basic
parameter for modeling water infiltration and solute transport in the soil. In the present study, spatial
and temporal variability of Ks in the upper soil layer of a loam soil, which was covered by native
vegetation for 20 years and had not undergone any cultivation treatment, is investigated. Saturated
hydraulic conductivity of 76 undisturbed soil samples, taken twice a year at the dry (37 soil samples)
and rainy periods (39 soil samples), was measured using a constant head method. The study reveals
that Ks values exhibit significant spatial variability over the two time periods of measurement and
follow a lognormal distribution with a coefficient of variation greater than 70%. On the contrary,
there was no statistically significant seasonal variability of Ks between summer (dry period) and
winter (rainy period) sampling (p > 0.05), and, therefore, there was no significant temporal variability
of Ks. The outcome of this study indicated that hydrological models have to include more process
understanding in terms of natural variability.

Keywords: saturated hydraulic conductivity; spatial variability; temporal variability

1. Introduction

Saturated hydraulic conductivity (Ks) expresses the soil’s ability to transport water
under saturated conditions and is a key parameter in water movement and solute transport
models in soil. In addition, the Ks of the upper soil layer plays an important role in the
distribution of rainwater infiltration and surface runoff [1].

Usually, in hydrological modeling, the value of Ks is considered constant. However,
hydraulic conductivity depends on soil structure, which could vary in both space and time.
Any change in the surface soil layer caused by natural factors, such as rainfall, growth and
decay of plant roots, shrinking and swelling, or human interventions, such as cultivation
treatments, wheel-traffic compaction, etc., can lead to changes in soil porosity. These
changes can seriously affect hydraulic conductivity and consequently soil water storage.
Especially, efforts to incorporate the temporal variability of soil hydraulic properties in
modeling studies are quite rare [2,3].

The various cultivation treatments in the surface soil layer can significantly affect the
pore size distribution with a direct effect on its hydraulic properties, mainly in a relatively
small water pressure heads range close to saturation [4–8]. Many researchers have reported
that the soil cultivation treatment leads to an increase in the hydraulic conductivity [9–11],
while others reported that it leads to a decrease [5,12–14]. The type of cultivation treatment
plays a crucial role in which trend will prevail in the soil.

For the determination of Ks in the field or the laboratory, various techniques and
devices are used. Regardless of the measurement method, the value of Ks is representative
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of the specific place and time at which the measurement was carried out. Saturated
hydraulic conductivity measurements have been observed to change spatially following
lognormal distribution [8,15–18]. However, the relationship between Ks and other soil
properties, such as soil texture, soil bulk density, and organic matter, is not strong enough
to permit accurate estimations of Ks [19].

With regard to the temporal variability of Ks, many researchers came to the conclusion
that, in agricultural soils, Ks has a seasonal variation, meaning that it is expected to decrease
as cultivation progresses and soil is compacted and pores are blocked [18,20,21].

Some of the research studies have investigated the seasonal behavior of Ks (temporal
variability) based only on one-year measurements [17,18], assuming that Ks follows a
constant circular pattern, where influencing factors may change periodically. However,
when the measurements of Ks are taken for many years, a periodic behavior occurs only in
certain cases [22,23], while more often, a clear and constant periodicity is absent [16,23,24].

Strudley et al. [25] studied 80 papers on the effects of several factors that affect the
hydraulic properties of agricultural soils (e.g., cultivation, soil compaction, irrigation, soil
texture, soil organic matter, residue management, climate, and topography) and concluded
that a general rule cannot be applied, since studies results are too contradictory. Strudley
et al. [25] proposed that the data collection should be strengthened in order to clarify spatial
and temporal trends, and that seasonal/annual measurements should be performed to
clarify short-term changes. In addition, he indicated that other secondary factors may affect
Ks measurements. Among those secondary factors, there are some related to soil biological
activity, which is relatively unexplored and could partly explain the observed temporal
variability of Ks. Indeed, the growth of roots, the decomposition of dead roots, and the
earthworms affect the networks of macro-pores, which can significantly change the Ks in
space and time [26–28]. Finally, there are indications that soil biochemical activity due to
bacteria, roots, and fungi can significantly affect the hydraulic behavior of soil [28–31].

While many studies have investigated the effect of different types of soil cultivation
treatments on the spatial and temporal variability of Ks, the effect of various natural non-
anthropogenic factors on Ks in the case of uncultivated agricultural soils has not been
investigated in depth.

Fuentes et al. [24] found that Ks values in a natural prairie in the Palouse region of
Washington State were much higher than those from soils that had undergone conventional
tillage and no-tillage, and the temporal variability of Ks was pronounced. This phenomenon
was attributed to the expansion of soil pores caused by wetter soil conditions.

Zhou et al. [32] examined four different land uses in four land series in the USA and
found that in the case of woodland treatment, there was no obvious temporal change of
Ks compared to the other three uses and attributed this situation to the absence of human
intervention and existence of permanent vegetation.

Bormann and Klaassen [17] examined three land uses (grassland, crops, and forest)
in two typical Northern German soil types: Podzol and Stagnosol, in relation to their
hydraulic and hydrological properties. Among these properties was the saturated hydraulic
conductivity. The seasonal variability of the soil hydrological characteristics was estimated
using four sampling replications in 2006. The results showed that land use affects the
KS value, and significantly, spatial variability of Ks was observed. Regarding seasonal
variability of Ks, this was not statistically significant at the 5% probability level but was
significant at the 10% level in 50% of all cases.

From the abovementioned, it seems that the issue of temporal variability of Ks remains
open, especially in the cases of agricultural soils covered by local native vegetation, which
are met in farmlands left uncultivated.

In the present study, the spatial and temporal variability of Ks of the upper soil layer of
a loam soil covered by native vegetation without any cultivation treatment is investigated.
The saturated hydraulic conductivity measurements on undisturbed soil samples taken
twice a year, during the dry and rainy periods (summer and winter), were conducted in
the laboratory using a constant head method.
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2. Materials and Methods
2.1. Study Area and Sampling

Experiments were conducted in the experimental field of the Laboratory of Agri-
cultural Hydraulics of Agricultural University of Athens (Greece). The soil was flat and
characterized as loam soil with soil texture: 38.8% sand, 39.5% silt, and 21.7% clay. The soil
may be classified as a loam of the Typic xerofluvent [8].

During the experiments, the soil was covered by native vegetation. The species
encountered were Malva Sylvestris, Tribulus Terrestris, Galium Aparine, Sinapis Arvensis,
Convolvulus arvensis, Lolium spp. The soil had been left uncultivated without any
treatment (irrigation, fertilization, plowing, cutting) for approximately 20 years, and native
vegetation grew freely.

An experimental plot with sampling grid dimensions of 16 × 35 m, with 4 × 5 m, was
established on the study field, and soil samples from the edges of sampling grids were
taken.

Two samplings were performed, 1 during the dry season (summer) on 13 July 2015
and the other during the rainy season (winter) on 11 December 2015. Before sampling,
plant residues on the soil surface were taken away. Soil cores of 5.6 cm diameter and 8 cm
depth were received with a manual hammer-driven core sampler. Similar sample sizes
are widely used for Ks measurement [33–35]. However, the small soil samples may not be
representative of the soil examined. Jafari et al. [36] reported that larger sample diameters
may provide more representative results by reducing edge effects, soil compaction, and
deformation of soil structure. In total, 37 and 39 undisturbed soil samples were taken
during the dry and rainy season, respectively.

The mean soil bulk density values during the dry and rainy period samplings were
1.11 g cm−3 and 1.16 g cm−3, respectively, and soil porosity was 0.53 cm3 cm−3.

In the following figure (Figure 1), the distribution of monthly precipitation during the
sampling year is depicted. The data of precipitation height were recorded by a rain gauge
established in the experimental field. As shown, the annual precipitation was 457.6 mm
and approximately half of this (204.6 mm) was recorded between samplings (Figure 1).
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Figure 1. Distribution of monthly precipitation during the sampling year 2015.

The mean antecedent soil water content value during the sampling of the dry and
rainy period was 0.02 cm3/cm3 and 0.137 cm3/cm3, respectively. The soil water content
values were measured by a dielectric sensor ML2 [37].

2.2. Saturated Hydraulic Conductivity Determination Method

Saturated hydraulic conductivity measurements on undisturbed soil samples were
conducted using a constant head method [38]. Before Ks measurement, soil cores were
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prepared by saturating from the bottom with a degassed solution of 5 mM CaSO4 for
48 h [24].

2.3. Statistical Analysis

In order to determine significant differences of Ks between the 2 samplings (at summer
and winter) a paired t-test was performed. The Shapiro–Wilk W test was applied to
determine whether measured values were normally distributed. In addition, the Coefficient
of Variation (CV) was calculated for assessing the spatial variability of Ks. For all tests, the
significance level was set at 0.05. Statistical analysis was performed using the statistical
package Statgraphics Centourion (version 16.1).

3. Results and Discussion

The results of statistical analysis of experimental Ks values for the two sampling peri-
ods are presented in Table 1. The values of asymmetry, skewness, and kurtosis were used
to determine whether the experimental values exhibited normal distributions. Specifically,
if these statistical parameters were outside of the range −2 to +2, they indicate significant
deviations from normality. As shown in Table 1, the skewness values for both dry and rainy
period samplings were outside of the abovementioned normal range, while the kurtosis
value was outside the normal range only in the case of the rainy period sampling.

Table 1. Statistical parameters of experimental values of saturated hydraulic conductivity (Ks) during
the two sampling periods (dry and rainy).

Statistical Parameters Dry Period Rainy Period

Number of samples 37 39
Average (cm min−1) 1.70 1.68

Standard deviation(cm min−1) 1.22 1.31
Coefficient of variation (%) 72.15 77.65

Minimum value (cm min−1) 0.25 0.16
Maximum value (cm min−1) 5.59 5.75

Range (cm min−1) 5.34 5.59
Standardized skewness 3.08 4.02
Standardized kurtosis 1.78 3.22

In Figure 2, the density functions of dry and rainy period sampling are depicted,
and it is clearly shown that they are not symmetrical because the data follow lognormal
distributions. In addition, a normality distribution check was carried out using the Shapiro-
Wilk W test (p < 0.001), which also confirmed that the spatial variability of Ks cannot be
described by a normal distribution. Similar results have been observed by other researchers
who studied the spatial variability of Ks in different cases of soils [39,40]. Then, the
assessment of temporal variability was performed by applying the paired t-test using the
log-transformed values of Ks. The results showed that the Ks values between the two
sampling periods did not differ significantly (p = 0.67).

In Figures 3 and 4, the Box and Whisker plots of measured Ks values (Figure 3) and
log-transformed Ks values (Figure 4) are presented. The red crosses are the average values,
and the vertical blue lines within the rectangular shapes are the medians values. As
shown, there were no statistically significant differences between the dry and rainy periods
(summer and winter, respectively).
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Overall, it appears that experimental Ks values showed high spatial variability in
both dry and rainy periods with CV values of 72.15% and 77.65%, respectively, following
lognormal distributions, while there was no significant temporal variability of Ks (p > 0.05).
These CV values indicate a high spatial variability since they are greater than 50% [41,42].

From experiments carried out in both field, e.g., [17,32] and laboratory [39] in soils
covered by native vegetation without any cultivation treatment, significant spatial vari-
ability of Ks has been recorded, regardless of the device and measurement method, and
no significant temporal variability has been recorded in some case studies [32]. It is worth
noting that in the case of forest land use, where there is no human intervention, and the soil
is covered by the same vegetation almost all throughout the year, no significant temporal
variability of Ks has been observed as opposed to other land uses in which there is human
intervention [17,32]. The case of forest land use may be considered similar to the case of
farmlands left uncultivated, as in our case study.

Probably, in the aforementioned case, the non-significant temporal variability of Ks
could be attributed to the existence of permanent natural vegetation, which on the one
hand, prevents the destruction of soil aggregates by heavy rainfall, and, on the other
hand, its root system maintains a relatively stable macropore system. The root system of
permanent natural vegetation may create some relatively stable sequences of macro-pores
with high hydraulic conductivity, significantly affecting the soil permeability and "hiding"
any temporal variability of small and medium soil pores. The temporal variability of soil
porosity in these cases can only be revealed when the unsaturated hydraulic conductivity
is measured. We acknowledge that we conducted only two experimental tests, which may
not completely represent the dynamic soil hydraulic properties in these two periods. For
safer conclusions, the study should be extended over a longer time period and conducted
several times within a year. It is also necessary to study cases with other types of natural
vegetation, which creates another type of root system.

4. Conclusions

The spatial and temporal variability of saturated hydraulic conductivity of the upper
soil layer of a loam soil of 560 m2, covered by native vegetation without any cultivation
treatment, was investigated.

Statistical analysis of the experimental Ks values measured using a constant head
method in undisturbed soil samples taken during the dry and rainy periods showed a high
spatial variability of Ks in both sampling periods since the coefficient of variation (CV) was
greater than 70%, while there was no significant temporal variability (p > 0.05).

Overall, it can be said that in the case of soils covered by natural vegetation without
any cultivation treatment and human intervention, the role of both the shoots and the root
system of vegetation is crucial in the variability of soil hydraulic conductivity. Thus, it is
important to investigate further the interactions between natural soil vegetation and the
soil hydraulic properties.
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