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Abstract: Knowledge of the stratigraphic architecture and geotechnical properties of surficial soil
sediments is essential for geotechnical risk assessment. In the Saguenay study area, the Quaternary
deposits consist of a basal till layer and heterogeneous post-glacial deposits. Considering the
stratigraphic setting and soil type heterogeneity, a multistep stochastic methodology is developed
for 3D geological modelling and quantification of the associated uncertainties. This methodology
is adopted for regional studies and involves geostatistical interpolation and simulation methods.
Empirical Bayesian kriging (EBK) is applied to generate the bedrock topography map and determine
the thickness of the till sediments and their uncertainties. The locally varying mean and variance of
the EBK method enable accounting for data complexity and moderate nonstationarity. Sequential
indicator simulation is then performed to determine the occurrence probability of the discontinuous
post-glacial sediments (clay, sand and gravel) on top of the basal till layer. The individual thickness
maps of the discontinuous soil layers and uncertainties are generated in a probabilistic manner.
The proposed stochastic framework is suitable for heterogeneous soil deposits characterised with
complex surface and subsurface datasets.

Keywords: soil variability; 3D modelling; kriging; geostatistical simulation

1. Introduction

The soil stratigraphy and geotechnical characteristics are important factors in geotech-
nical risk evaluations over a region. The two factors and their uncertainties are key elements,
especially for probabilistic seismic risk assessment. The regional properties of soil deposits
are heterogeneous due to the differences in deposition geometry and process. Soil hetero-
geneity is attributed to two main sources: one is rooted in the lithology and the other is
the inherent spatial soil variability [1]. The so-called lithological (soil type) heterogeneity
is related to the substantial differences in the mineralogy, grain size and others, within a
relatively uniform soil mass. This heterogeneity is qualified using descriptive terms (i.e.,
soil types), such as sand, clay and stiff/soft soil layers. The second source of heterogeneity
is rooted in the inherent spatial soil variability, which modifies the spatial variation of soil
properties due to different deposition conditions and different loading histories [1].

The spatial variation of soil properties has been modelled using random field theory,
where the spatial variation of a given soil unit is decomposed into a deterministic trend
function and residuals [2–5]. Residuals represent the inherent spatial soil variability de-
scribed by the coefficient of variation and the scale of fluctuation [3]. Using this approach,
predictions are made separately for the trend and the residuals of geotechnical quantitative
parameters (shear strength, cone resistance, shear modulus, etc.). Recently, some methods
have been developed to model the random field directly from sparse and nonstationary
data [6,7]. In soil and rock engineering practices, investigations use geostatistical tech-
niques to estimate soil (or rock) geotechnical/geomechanical properties and capture the
heterogeneity [8–11].
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In seismic hazard assessment, local soil conditions tend to modify the amplitude and
frequency content of the incoming seismic waves. This condition is known as the site
effect, which depends on geotechnical (soil type, shear modulus, damping ratio, etc.) and
geometrical (3D stratigraphy, basin topography, soil thickness, etc.) properties of the soil
deposits. A 3D geological model offers solutions to determine the geometrical properties
and provides a basis for the spatial prediction of geotechnical properties, particularly the
soil shear wave velocity (Vs) [12]. A 3D model helps determine the seismic site parameters,
including the average Vs value of the top 30 m of soil (Vs,30), the average Vs of all of the soil
deposits (Vs,avg) and the fundamental site period (T0) or frequency (f 0) [13,14]. In Eastern
Canada, Rosset et al. [15] developed three different models for the Montreal region using
predictive equations for Vs as a function of depth: a single-layer model based on the total
thickness of soft soils, a four-layer model based on geological and geotechnical information
from borehole data and a composite model that included the characteristics of the two
former models. Nastev et al. [16] in the Ottawa and St. Lawrence Valleys and Foulon
et al. [17] in the Saguenay City region assigned a typical Vs depth function for post-glacial
sediments and a single Vs value to glacial sediments and bedrock units. These studies
used a deterministic 3D geological model for mapping the spatial distribution of Vs,avg
and T0. They analysed the uncertainty propagated to site parameters using the first-order,
second-moment approach, and they considered only the statistical uncertainty related to
the Vs of soil deposits. This approach ignores the spatial uncertainties related to the 3D
geological model. Considering the uncertainties related to the type and thickness of the
soil layers certainly helps the development of reliable seismic hazard maps.

This study aims to develop a methodology for probabilistic regional 3D modelling
of soil deposits by considering soil type heterogeneity as the main source of uncertainty.
This methodology is adopted for regional studies and involves stochastic interpolation and
simulation methods. The capacities and advantages of the interpolation and geostatistical
methods applied in each step are discussed. The territory of Saguenay City is used as a
case study for the application of the methodology. Firstly, empirical Bayesian kriging (EBK)
is tested and validated to determine the bedrock topography map in terms of the total soil
thickness and the thickness of the till layer, that is, the basal glacial sediments. Available
surficial geological maps, borehole logs, rock outcrops (zero soil thickness) and shallow till
data are used in the interpolation processes. Secondly, sequential indicator simulation (SIS)
is conducted to predict the occurrence probability of the discontinuous post-glacial soil
layers on top of the till layer (e.g., clay, sand and gravel). Finally, the estimated probabilities
are applied to determine the consistent spatial distribution of discontinuous soil units, the
thickness maps and the associated uncertainties.

2. Methodology

With the rapid development of computational power and probabilistic methods,
developing 3D geological models from borehole data and providing valuable insights into
many engineering problems that traditionally rely on 1D and 2D assumptions, such as
continuous stratigraphic layers simplified in the geological sections, are possible. The
proposed methodology is adopted for regional study areas with variable soil thickness
of more than 100 m in which a basal layer overlies the bedrock. The methodology is
implemented in three phases (Figure 1): (I) data preparation, (II) mapping of bedrock and
basal soil topography and (III) developing the probabilistic 3D geological model.

The data preparation step (Figure 2) relies on the acquisition of available data from
various sources of information, as discussed below. Following the integration of the
available data, the next step in this phase is data verification. It is performed by examining
the consistency between borehole logs and geological maps and cross-sections, and between
borehole collars and topographic maps. The observation data are then divided into two
groups: the soil thickness data represented with points (x, y and thickness) and the soil
type data represented with 3D borehole data (x, y, z and soil units).
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Figure 1. Methodology for developing a regional 3D probabilistic geological model.

Figure 2. Phase I: workflow of data preparation.

Next, a decision has to be made on the type of predictive model. For a stratigraphic
soil unit that extends as a continuous layer, the thicknesses distribution can be modelled
using spatial interpolation methods (Figure 3). In the study region described below, the till
layer at the base of the Quaternary sequence is in contact with the bedrock and is assumed
to be spread all over the territory underneath the recent soil layers. An appropriate spatial
interpolation method should be selected in this phase corresponding to the preprocessing
results. The trend and parameters, such as skewness or asymmetry of the probability
distribution, and high or peak values, affect the stationarity and must be considered in
choosing the appropriate geostatistical method (details can be found in Sections 3 and 4). For
a soil layer that is discontinuous laterally but maintains a vertical relationship with other
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layers, a random function approach using geostatistical simulation is used; this condition is
the case for the sand and clay layers in the study region described below.

Figure 3. Phase II: workflow of the spatial interpolation of total soil thickness and thickness of the
continuous basal layer.

Multiple realisations of discontinuous soil types are generated using geostatistical
simulation. These realisations can then provide the occurrence probability of discontinuous
soil layers. The resulting probability values are used to create thickness maps of discontinuous
soil layers and their associated uncertainties at unsampled locations (Figure 4).

The development of a probabilistic 3D geological model must use a spatial prediction
approach that considers the uncertainties in the spatial variation models and in the ensuing
stochastic simulation. This interpolation approach uses a geostatistical method that is
presented in the following section.
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Figure 4. Phase III: methodology for determining soil thickness map(s) and associated uncertainties
of discontinuous soil layers using geostatistical simulation.

3. Applied Geostatistical Methods
3.1. Spatial Interpolation

Appropriate prediction methods are required for a realistic reconstruction of the soil
heterogeneity over a region with a complex 3D soil deposit architecture, relatively sparse
field observations and datasets with clustered sampling patterns. The prediction methods
for computing spatial data fall into two broad categories: deterministic and stochastic [18].
Deterministic predictions are obtained by using mathematical functions with known sam-
ple points. Stochastic methods associate the distribution of unknown values with a similar
known distribution and can quantify the uncertainty associated with the interpolated
values; this capability makes them superior to the deterministic approaches. Stochastic
methods include those based on geostatistics and hybrid methods that consider machine
learning [19]. In geostatistical methods, the principal concept of statistical inference is based
on stationarity and requires the independency of the univariate and bivariate probability
laws from the location; this concept is called second-order stationarity: the mean is constant
and the variance only depends on separation h [20,21]. Given the data complexity of a
study on a regional scale, the EBK method is selected to overcome the potential of the
nonstationarity of data, automate the fitting of variograms and solve the kriging models.
The process consists of: (i) estimation of a semivariogram model on the basis of the input
data, (ii) simulation of a new set of data from the semivariogram model, (iii) estimation
of a new semivariogram model on the basis of the simulated dataset and (iv) calculation
of a weight for the new model using Bayes’ rule. The repetition of the process results
in a spectrum of semivariograms rather than a single one. Hence, the uncertainty intro-
duced in the variogram arises from using a series of semivariogram models rather than a
single one [22]. The automated simulation process facilitates the subsetting of data into
large datasets typical for regional studies and helps achieve local stationarity in subareas
where the dataset is a mixture distribution of high and low values. The EBK method is
particularly efficient for spatial interpolation in large-scale studies and/or datasets with
complexities [22–24].

In addition to the EBK method, the results are compared with the conventional
deterministic interpolation method, triangulated irregular network (TIN). For an area in
the same region of Eastern Canada as the present study, Chesnaux et al. [25] concluded that
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the expected values predicted with the TIN method are more accurate than the ordinary
kriging method.

3.2. Spatial Variation

Spatial variation refers to the dissimilarity of the pairs of values of a random variable
as a function of their distance [20]. Modelling the spatial variation assists in predicting
the soil attributes at unsampled locations. In the present study, the spatial variation
is determined for continuous (soil thickness) and categorical (soil units) variables. An
experimental variogram, γ̂(h), is used to statistically determine the average dissimilarity
between data separated by vector h [26] and is assumed as a measure of spatial variability.

γ̂(h) =
1

2 N(h) ∑N(h)
α=1 [z(uα)− z(uα + h)]2, (1)

where z(uα) and N(h) are the values of the variable of interest at location uα and the
number of data pairs within distance h in the respective direction. In practice, the tolerance
for distance h and its direction is specified. The direction of the separation vectors be-
comes irrelevant when the directional tolerance increases sufficiently. An omnidirectional
variogram is a useful starting tool for structural analysis and provides the prerequisite
information for calculating the directional variograms, whilst a directional variogram
reveals the anisotropy pattern and the direction of the maximum and minimum spatial
continuities [20]. Equation (1) is applied for continuous variables, whilst an indicator
variogram is calculated for categorical variables by substituting indicator data i(uα; k) for
K indicators as follows:

γ̂I(h; k) =
1

2 N(h) ∑N(h)
α=1 [i(uα; k)− i(uα + h; k)]2, k = 1, . . . , K. (2)

With the determination of the standard variogram characteristics (i.e., range, sill and
nugget effect), a theoretical model that best fits the experimental variogram is selected (e.g.,
spherical, exponential or Gaussian model).

3.3. Uncertainty of Spatial Interpolation

The usual approach to modelling kriging uncertainty applies the error variance of
kriging as follows [20]:

σ̃2
k = C̃00 + ∑n

i=1 ∑n
j=1 wiwjC̃ij − 2 ∑n

i=1 wiC̃i0, (3)

where wiwj represents the kriging weights, C̃00 is the variance of point values, C̃ij is the
covariance between measured samples and C̃i0 is the covariance between measured and
unknown values.

3.4. Stochastic Simulation

The 3D model of categorical variables is constructed by applying deterministic or
stochastic approaches. Deterministic modelling is highly dependent on expert judgment
and is conducted by delineating the boundaries of geological units and verifying and
interpreting the borehole logs in successive cross-sections. In most cases, field observations
are insufficient to provide reliable modelling. Thus, stochastic modelling algorithms are
applied to construct multiple realisations. For example, SIS is a widely used technique for
categorical variable models [27]. A set of alternative high-resolution models of the spatial
distribution of the considered random variable is created during this process. Each equally
probable realisation reproduces the spatial statistics of the target variable [28]. The method
consists of three steps as follows:
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(i) Transformation of soil types to K indicator variables

i(uα; k) =
{

1 i f category k prevails at location u , k = 1, . . . , K.
0 otherwise

(4)

Indicator transformation facilitates classical statistical analyses to infer representative
proportions of the indicator variables;

(ii) Determination of indicator variograms to model the spatial continuity of the indicator
soil types;

(iii) Simulation of the soil types honouring field observation at sampled locations (condi-
tional simulation) in a sequential and reproducible manner.

4. Saguenay City DatPreparation and Analysis
4.1. Geologic Framework of the Study Area

The territory of Saguenay City located in Eastern Canada was selected as the study
area due to its relatively high seismic hazard (https://earthquakescanada.nrcan.gc.ca/
(accessed on 29 April 2021)) and the presence of layered soil deposits with complex and
variable spatial and vertical distributions. This city is the main municipality within the
Saguenay-Lac-Saint-Jean region, and its territory covers 1136 km2, with a population of
147,100. It has a hilly topography and lies in the southern portion of the E–W-trending
Saguenay graben. The regional seismic activity of this region was reassessed following
the 1988 M6.0 Saguenay earthquake. The epicentre of this intraplate earthquake with a
midcrustal depth of 29 km was 35 km south of the downtown area [29]. The earthquake’s
secondary effects included liquefaction, rock falls and landslides observed within a distance
of 200 km from the epicentre [30].

The bedrock of the Saguenay region is part of the Grenville Province of the Canadian
Shield and is mainly composed of crystalline Precambrian rocks [31]. On the basis of the
geological sections [32,33] and subsurface data [34], the soil deposits are grouped into
two major geological classes: glacial and post-glacial sediments [35]. They can be further
subdivided into five categories: till, gravel, clay, sand and other recent sediments (Figure 5).

• Till: This glacial sediment is located at the base of the stratigraphic soil column; it
is compact and semiconsolidated. Till is the most widespread soil unit in the study
area and ranges in thickness from a few meters to >10 m at certain locations. In
the highlands, the till veneer is frequently discontinuous and results in areas of
rock outcrops. Most of the till outcrops are assumed to be less than 1 m thick on the
geological map [33]. With the exception of rock outcrops, till continuously covers the
bedrock elsewhere, representing an important assumption in the 3D modelling approach.

• Gravel: This coarse sediment is mainly of glaciofluvial and alluvial origin; it consists
of gravel, sand and sometimes till. This unit is occasional in the region, often in contact
with till or sand units.

• Clays: These fine post-glacial sediments are the most present soil type by volume
in the study area. They are composed mainly of silt, silty clays and clay. They have
a thickness of up to 10 m and may attain a maximum thickness of >100 m in the
lowlands.

• Sand: This group consists mainly of coarse glaciomarine deltaic and prodeltaic sedi-
ments and alluvial sands composed of sand and gravely sands.

• Other sediments: This extremely heterogeneous category comprises all the remaining
sediments; it mainly includes loose post-glacial sediments consisting of alluvium,
floodplain sediments, organic sediments and occasional landslide colluvium that can
be classified into sand, clay and gravel on the basis of grain size distribution.

The surficial deposit map in Figure 5 shows that till is the most widespread soil type
at the surface, followed by clay and sand sediments.

https://earthquakescanada.nrcan.gc.ca/
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Figure 5. Saguenay study area: surficial geology map (modified from Daigneault et al. [33]), [34].

4.2. Input Data and Analysis

Subsurface and surface data were collected from various sources of information
(Figure 6). Borehole logs are the main subsurface data where the soil thickness data and
soil types are obtained. The other invaluable sources of data are rock outcrops with zero
soil thickness value; the virtual data derived from geological cross-sections and thin till
data (thickness ≤ 1 m) interpreted from the surficial geological map. Borehole data were
obtained from groundwater wells, exploration boreholes and geotechnical drilling logs.
The brief descriptions of the input data stored in the database are as follows:

• Borehole logs: The database contains 3524 borehole logs distributed over the study
area [34]. A total of 2402 boreholes are sufficiently deep to reach the bedrock. The
remaining 1122 boreholes that do not reach the bedrock indicate that the bedrock is
deeper than the borehole depth, and a groundwater-bearing layer is possibly encoun-
tered in the coarse soil deposits.

• Virtual logs: A total of 26 geological cross-sections distributed over the region were
developed on the basis of expert opinion in previous geological studies [34]. These
cross-sections include 973 virtual logs distributed in a regular spatial pattern at a distance
of ~500 m to improve the data coverage mainly in the lowland areas (Figure 6).

• Rock outcrops: During the geographic information system processing of the surficial
geology map, additional 1033 data points were introduced to indicate rock outcrops.
Located within the bedrock polygons, they improve the realistic spatial variability of
the sediment thickness.

• Till veneer: Till sediments cover most of the study area. Till outcropping areas, with
a thickness equal to or less than 1.0 m, are located in the highlands and are referred
to as a till veneer. In these areas, the till thickness is fixed to 1 m, and the till outcrop
polygons are modelled with a mesh of 75 m, generating an additional 42,649 points
with a known thickness.
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Figure 6. Complete set of the available observation points, including borehole logs, rock outcrops
and shallow till data.

Rock outcrops (zero soil thickness) and shallow till data (1 m soil thickness) are
valuable sources of complementary information, mainly in the highlands where they
improve the accuracy of the geological model (Figure 6). However, the rock outcrops and
till veneer points are observed over large areas of the region, in comparison with other data,
which are limited to the borehole locations [36]. The resulting bias in the simulation of the
soil types is avoided by using the rock and till outcrop data only to generate the bedrock
and till topography maps and then excluding these later data for the simulation of other
soil units. The till veneer data are only applied to create the thickness map of till deposits.

Figure 7 shows the histograms of the total soil thickness and thickness of glacial
deposits. A total of 2745 soil thickness values are selected comprising the boreholes that
reach the bedrock and virtual logs located in areas with sand, clay or gravel soil units. The
average thickness of sediments over these areas is approximately 17 m with a positive
skewness and a relatively high standard deviation of 18.7 m, indicating high thickness
variability (Figure 7a). Important thicker parts are located in two areas: La Baie and
Saint-Jean-Vianney (Figure 5). The incorporation of rock outcrops with zero soil thickness
value decreases the average thickness (12.89 m), but the effects on the other parameters
are minor (Figure 7b). A total of 1007 data points are selected from the virtual logs
and boreholes reaching the bedrock at the location where the till sediments are exposed.
Figure 7c illustrates that the average thickness of till is approximately 5 m in the borehole
data, whilst the maximum nearly reaches 50 m. Attention must be given to the presence
of outliers because they have a major influence on the interpolated surfaces [37]. Given
that the expected thickness of till rarely exceeds 20 m, higher thickness values are most
probably a consequence of poor logging of other soil units considered as outliers. The exact
values of the outliers are determined using a box plot and are cases with values more than
1.5 times the interquartile range. Here, these values are replaced by a maximum of 13.85 m
(Figure 7d). Following the replacement of the outliers of till thickness, the 1007 points are
merged with till veneer and rock outcrop data in the database.
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Figure 7. Thickness distributions of soil deposits as observed in borehole logs: (a) total soil thickness, depth to rock; (b) total
soil thickness, including rock outcrops; (c) till sediments; (d) till sediments following replacement of outliers. The black line
represents the normal distribution curve.

On the basis of the statistical summary, we can perceive existing high or low values,
and the asymmetry of the probability distribution questions the stationarity. The asymme-
try is evident in Figure 7 by comparing the observed thickness histograms and theoretical
normal distributions of the different soil properties. In this context, traditional kriging
methods (e.g., ordinary or transformed Gaussian kriging) do not perform well, whereas
the EBK method is particularly helpful to overcome the nonstationarity by defining subsets
(subareas) and automated variography analysis.

Table 1 provides the proportions of each soil unit based either on real or on virtual
borehole logs. One of the main reasons for the differences in percentages is the clustered
drilling pattern of the real boreholes drilled mainly in coarse sandy soils for drinking water
supply. Given that virtual boreholes are designed in a systematic pattern, the percentages
of virtual data are deemed reliable estimates for the layer thickness. The percentage values
indicated in Table 1 denote the marginal probabilities that are applied in the geostatistical
simulation using the Stanford Geostatistical Modelling Software [38].

Table 1. Percentage of each soil type based on real and virtual borehole logs.

Geological Unit Real Borehole Data (%) Virtual Logs (%)

Clay 53.60% 58.54%
Gravel 6.80% 2.06%
Sand 35.66% 18.37%
Till 3.94% 21.03%
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4.3. Modelling Spatial Variation: Variogram Analysis

Two sets of directional variograms (not shown here) are calculated to determine
the anisotropy axis and describe the spatial variation of soil types and their thickness.
The first set uses a 2D coordinate system for the soil thicknesses, and the second set
applies a 3D coordinate system for the soil types. Using the EBK method automates the
fitting of variograms by simulating variograms per subset of data and then weighting the
models using Bayes’ rule. The subsequent repetition of the process results in a spectrum of
semivariograms rather than in a single one [39,40].

In the case of categorical variables, soil types, an indicator transformation is first
performed. Indicator variograms are then computed to describe their spatial variability.
The directional experimental variograms are computed using different lag sizes to capture
the short- and long-scale variabilities. The experimental variograms show nested structures
(e.g., Figure 8) and can be interpreted as a short- and a long-scale variability. The short-scale
structure captures the variability over a distance of hundreds of meters and can be referred
to as local soil variability. The long-scale structure captures the variability over a distance
of thousands of meters and can be referred to as geological (stratigraphic) variability. In
all the anisotropic models, the anisotropy is interpreted as geometric in which the range
changes with the direction, whereas the sill is constant. Detailed discussion on variogram
modelling can be found in [20].

Figure 8. Example of variogram modelling: a nugget and two spherical nested structures are fitted
on an experimental sample variogram. R1 and R2 refer to the ranges of the two nested models.

Directional and omnidirectional variograms are analysed using a lag size of 25 m to
model the variability at the short scale of all soil units. Lag sizes of 300 and 750 m are
adopted to capture the variability at the long scale for gravel, sand and clay layers. The
selected bandwidth is three times larger than the lag size to limit eventual deviation around
the direction of the azimuth vector. The range of short-scale variability can be measured
within hundreds of meters, as indicated in Table 2, whilst that of long-scale variability
is within thousands of meters. Significant spatial variances are captured in short-scale
variability, and the geometrical anisotropy with an azimuth angle of 135◦ corresponds to
the geological continuity in the study area (Figure 5). As expected, the vertical range in all
of the considered models is considerably lower than the horizontal ranges. The anisotropy
consequently refers to the high density and the remarkable variation in data in the vertical
direction compared with the horizontal.
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Table 2. Variogram model parameters of the soil type indicators.

Variables Number of
Structures

Model Properties
Structure 1

Model Properties
Structure 2

Model
Type

Anisotropy Axis
(amax, amed, amin) Model Parameters Model

Type
Anisotropy Axis
(amax, amed, amin) Model Parameters

Clay 2 Sp. (135◦,45◦,90◦)
Nugget: 0.01

R1: (375,212.5,75)
Sill1 *: 0.18

Ex. (135◦,45◦,90◦) R2: (12825,4275,75)
Sill2 *: 0.05

Sand 2 Sp. (135◦,45◦,90◦)
Nugget: 0.02

R1: (412.5187.5,62.5)
Sill1 *: 0.17

Sp. (0◦,0◦,90◦)
R2:

(12375,12375,62.5)
Sill2 *: 0.03

Gravel 2 Sp. -
Nugget: 0.01

R1: (150,150,150)
Sill1 *: 0.026

Ga. (0◦,0◦,90◦) R2: (4600,4600,150)
Sill2 *: 0.015

* Partial sill, R: range (meter), Sp.: spherical, Ex.: exponential, Ga.: Gaussian. Amax, amed and amin refer to the azimuths of the three principal
axes of the anisotropy.

5. Results
5.1. Construction of the Total Soil Thickness Map (Depth to Bedrock)
5.1.1. Spatial Interpolation

The spatial interpolation of the total soil thickness that represents the depth to bedrock
map is performed by using the EBK method in addition to TIN. The study area is discretised
into a regular grid of 902 × 637 cells with 75-m spacing. Figure 9a,b illustrate the resulting
depth to bedrock maps. The estimated thickness of the deposits varies from zero to
approximately 100 m, with similar variability patterns modelled by the two methods. The
areas covered by till veneers and rock outcrops are excluded; they are indicated by the
white background on the maps.

Figure 9. Total soil thickness maps obtained with: (a) EBK, (b) TIN; and (c) the map of the kriging standard deviation (σ̃k)
EBK. The areas with till or rock outcrops are excluded and indicated with white background.
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Figure 9c shows the spatial distribution of the standard deviation of the kriging with
EBK (σ̃k). As expected, lower uncertainties are associated with locations in the proximity
of the existing data. However, relatively higher σ̃k values are also observed, where the
depth to rock is the highest. This phenomenon is a consequence of the locally varying
mean and variance of the EBK method assumed as reliable results. TIN is a deterministic
interpolation method and does not allow for the uncertainty of estimation.

5.1.2. Validation

Two approaches are applied to validate the estimation of soil thickness. The first
approach is the routine cross-validation procedure in which the measured data are removed
individually and re-estimated from the remaining dataset, referred to as the “leave-one-out
method”. The second approach is based on a subset of data that is held back from the
estimation process. In this case, the boreholes not reaching the bedrock are used as the
validation dataset.

Cross-validation: The cross-validation procedure is used to optimise the estimation
parameters. The optimised parameters include the lag size, the minimum and maximum
numbers of participant data and the subset size in the EBK method. Four parameters are
used to check the performance of the kriging methods: mean error (ME), root mean square
error (RMSE), mean standardised error (MSE) and mean square standardised error (MSSE).
The standardised values consider the kriging variance and are dimensionless. They provide
an accurate comparison in addition to the statistical ME and RMSE values. The MSE values
should be close to zero and can be obtained as follows (details can be found in [21]):

MSE =
1
N ∑n

α=1
(Z∗(uα)− Z(uα)

σ̃k(uα)
, (5)

where N is the number of measured data, and Z∗(uα) and Z(uα) are the estimated and
measured values of random variable Z at the location of uα, respectively. σ̃k(uα) and σ̃2

k (uα)
are the kriging standard deviation and variance of the random variable Z, respectively.

The MSSE value should be close to one. For an MSSE greater than one, the variability
in the estimated values is underestimated. Otherwise, the variability is overestimated. The
parameter can be obtained with the following equation [21].

MSSE =
1
N ∑n

α=1
((Z∗(uα)− Z(uα))

2

σ̃2
k (uα)

. (6)

Chiles and Delfiner [21] recommended a tolerance of 1 ±3
√( 2

N
)

for the accepted
MSSE. A total of 3778 measurements are used for estimating the total soil thickness in
which the accepted tolerance is within the [0.93–1.07] range.

The cross-validation results reveal that (Table 3) the EBK method provides accurate
and unbiased estimates with low ME and MSE values close to zero. The EBK method also
gives relatively low values of RMSE and MSSE that vary within the acceptable tolerance
range.

Table 3. Cross-validation results for the total soil thickness estimates using EBK methods.

ME (m) RMSE (m) MSE MSSE

0.05 8.94 0.01 0.94

Validation using a test set: The 1122 boreholes that do not reach the bedrock, shown in
Figure 6, were used as a test set for the soil thickness predictions. The depth of the observed
point is underestimated when the total soil thickness estimates at these locations are lower
than the observed borehole depths. Accordingly, the “thickness error” is considered the
difference between the measured and estimated thicknesses, and only the positive errors are
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considered. Table 4 provides the statistical results of the thickness errors with respect to the
different interpolation methods. The EBK method yields a lower number of underestimated
soil thickness values at 313 boreholes, suggesting that this method provides better overall
spatial predictions. When the mean error values and the sum of the errors are compared,
EBK appears to provide slightly better predictions.

Table 4. Thickness error results at the locations of 1122 boreholes known not to reach the bedrock.

Thickness Error TIN EBK

Mean (m) 12.2 11.8
Sum (m) 3889.8 3682.6

Error count (boreholes) 318 313

Figure 10 represents the distributions of the thickness error estimated by EBK in
addition to the TIN methods. The thickness error is less than 10 m in approximately 60%
of the underestimated borehole values. Overall, the results of the validation procedures
indicate that the EBK method respects the observed values and provides accurate spatial
predictions. This method provides a reliable measure of uncertainty at the estimation
points.

Figure 10. Thickness error distributions for the test set of 1122 boreholes not reaching the bedrock estimated by (a) EBK and
(b) TIN.

5.2. Determination of the Till Thickness Map

The spatial distribution of the till thickness as a continuous soil layer at the base of
the Quaternary sequence is estimated with a similar procedure to the one applied for
interpolation of the total soil thickness using the EBK method. The difference is that the
outliers are replaced because the till deposits cannot be easily distinguished from the other
soil types due to difficulties related to the presence of drilling mud. Thus, replacing the
outliers of the till thickness data can be considered a conservative approach to estimate
the thickness of other post-glacial deposits. Replacement is also an effective method for
stabilising the variance. A complete set of observation points, including 2402 real and
973 virtual boreholes, 1033 rock outcrops and 42,649 points of thin till thickness (1 m), is
incorporated to create the till thickness map. The thin thickness data dictate the highly
skewed distribution of the 1 m data. Therefore, subsetting the data is a great advantage
in using the EBK method. Figure 11 presents the resulting spatial distribution of the
till thickness and the associated kriging standard deviation. Replacement of outliers
combined with the use of shallow till data prevents potential soil thickness overestimation
and generates conservative estimates for the future evaluation of the geotechnical soil
parameters.
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Figure 11. (a) Till thickness map and (b) kriging standard deviation, σ̃k.

5.3. 3D Modelling of Discontinuous Soil Layers

A full 3D volume is required to determine the soil type of discontinuous soil layers.
The block model fills this volume, and each block represents the smallest unit of soil type
using geostatistical simulation. For this purpose, the maps of bedrock and till topography
are created by using digital elevation modelling, and total soil thickness and till thickness
maps. When the bedrock and till topography maps are created, the space between the top
and bottom of each surface is filled with 75 × 75 × 2 m blocks. Overall, 100 realisations
are generated using the conditional SIS method to determine the probability of occurrence
for each of the post-glacial deposits: clay, sand and gravel. Figure 12 shows a plan and
cross-section through one of the SIS realisations in an area where all four surficial soil units
are present.

Figure 12. (a) Plan and (b) cross-section of one SIS realisation of sand, clay and gravel. The thickness
of the till unit shown in the cross-section is determined in Section 5.2.
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The results of the SIS simulation are visually compared with the deterministic geo-
logical cross-section (Figure 13). Figure 13a represents a part of the main cross-section of
the study area (Figure 12a). Figure 13b shows the soil units with the highest probability of
occurrence resulting from 100 realisations. The comparison of Figure 13a,b shows that the
probabilistic model is consistent with the interpretations of expert geologists; however, it
yields a realistic soil variability prediction corresponding to the real borehole data. This
observation is particularly true when comparing the individual borehole logs or the entire
right-hand portion of the cross-section extending from borehole F1161. This condition is
mainly due to the nature of the probabilistic estimates that consider the entire set of input
data and the extent of the geological units in 3D. Figure 13c–e present the probabilities
of occurrence of the individual soil units. The 3D simulation of the discontinuous soil
units quantifies the uncertainty of the predictions (Figure 13f) using the total standard
deviation of the soil thickness computed from the probability of a categorical distribution
for each block. The thickness standard deviation represents the total uncertainty that
reaches its maximum in locations where the probabilities tend to be average, such as 0.5.
The average probabilities are generated in two types of location: in the areas of contact
between sand and clay or gravel and the areas with a high variability of soil types (locations
near boreholes F11611 and SIH1340). This variability can be a result of errors in geological
logging or from the inherent soil variability. The detailed computations of the thickness
maps of post-glacial deposits and the associated uncertainty are discussed next.

5.4. Thickness Maps of Discontinuous Soil Layers

The above 3D probabilistic model provides the spatial distribution of the discon-
tinuous soil units and their probability of occurrence within the regular 75 × 75 × 2 m
blocks. In the determination of seismic parameters at a site (e.g., Vs,30 and T0), the geometry
(soil thickness) and shear wave velocity (Vsi ) of each soil layer are important variables.
Therefore, the 3D model must be transformed into a set of 2D thickness maps to obtain
the thickness of the individual discontinuous soil units. Thus, the thickness mean and
variance of each block are computed on the basis of the discrete probability distribution of
the random categorical variable (Xi) with an event probability pi as follows:

E(Xi) = pi, Var(Xi) = pi(1− pi), (7)

where E(Xi) is the mean, Var(Xi) is the variance and xi ∈ {0, 1}, i ∈ {1, . . . , k}. The
thickness mean and the variance are scaled at the 2 m height of the blocks, h, as follows:

E(hX) = hE(X), (8)

Var(hX) = h2Var(X). (9)

The thickness maps and the associated variances are obtained by computing the sum
of the mean thickness and the variance of the blocks in a vertical column. In other words,
the probabilities of occurrence are considered the weighting factors (Equation (8)) for the
calculation of the soil thickness. In this case, the resulting thickness maps consider all
the probabilities of occurrence for each soil type (not only the most probable one). The
total variance for an individual soil unit (e.g., clay) is computed by summing up the block
variance for each variable (Equation (9)) in a vertical column. The standard deviation is
then computed as the square root of the total variance.
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Figure 13. Stratigraphic cross-sections: (a) deterministic based on expert opinion (modified from CERM-PACES [34]);
(b) soil units with the highest probability of occurrence based on conditional SIS; individual probabilities of occurrence
for (c) clay, (d) sand and (e) gravel obtained from a set of 100 conditional SIS; and (f) total standard deviation (σh) of the
thickness computed by using the probability of categorical distribution.



Geosciences 2021, 11, 204 18 of 21

Figure 14 represents the weighted thickness maps based on the probability of dis-
continuous post-glacial deposits (clay, sand and gravel units) and the associated standard
deviations of the thickness. A single pixel on these maps represents the weighted sum of
the 2-m-high blocks in a vertical column for the same individual soil unit. The comparison
of the standard deviation and thickness maps reveals that the local thickness uncertainty
depends mainly on the following factors: differences between the presence of the discon-
tinuous soil units in the neighbouring boreholes, the soil thickness values and the distances
to the observation points. In other words, the greater the differences in the thickness or the
distance, the greater the standard deviation.

Figure 14. Spatial distribution of the weighted thickness and associated spatial standard deviation
(σh) for (a,b) clay, (c,d) sand, (e,f) gravel and (g,h) total post-glacial deposits.
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6. Conclusions

This study adopted a combined multistep methodology of interpolation and simu-
lation to develop a 3D geological model for geotechnical and seismic hazard evaluation
at a regional scale. This approach focuses on considering geologic rules of stratification,
reducing the effect of skewness of the observation points, and realistically predicting soil
variability.

The interpolation procedure incorporates boreholes logs, in addition to the rock out-
crop and shallow till data; these sources of data result in being invaluable in soil thickness
mapping. Providing bedrock and till deposit maps allows considering the geologic rule
of stratification of the basal till and the exclusion of low and zero thickness data from
the simulation process of the discontinuous layers (i.e., clay, sand and gravel). The re-
sults of the validation and cross-validation verify that EBK is an appropriate interpolation
method, producing an accurate outcome in regional studies involving extensive data with
complexity.

SIS predicts the occurrence probability of discontinuous soil layers, as a representation
of the soil type variability. The results indicate that the assumption of a continuous
stratigraphic layer for the clay and for the sand and gravel units as drawn in the geological
sections does not correspond to the real spatial variability of these layers. This observation
is supported by the abrupt discontinuity and repetition of the deposits in the 3D model.
The simulation of the soil type shows the benefit of considering the spatial soil variability
and its associated uncertainty. The advantage is that the areas identified with increased
uncertainty are characterised with considerable stratigraphic inconsistency and require
further field measurements.

The proposed approach provides the basis for developing a reliable 3D shear wave
velocity model including its uncertainties. The 3D geological and velocity models can
enhance the mapping of seismic site parameters (e.g., Vs,30 and T0), which are important
factors in seismic hazard assessment.
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Nomenclature

C̃00 Variance of point values
C̃ij Covariance between measured samples
C̃i0 Covariance between measured and unknown values
EBK Empirical Bayesian Kriging
fo Fundamental site frequency of vibration
i(uα; k) Binary indicator value at location uα and for category k
ME Mean error
MSE Mean standardised error
MSSE Mean square standardised error
RMSE Root mean square error
SIS Sequential indicator simulation
TIN Triangulated irregular network
To Fundamental site period of vibration
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u Coordinates vector
Vs Shear wave velocity
Vs,30 Average shear wave velocity of the top 30 m
VS, avg Average shear wave velocity of the entire soil deposit
wiwj Kriging weights
Z(uα) Random variable at location uα

γ̂(h) Experimental variogram
γ̂I(h; k) Indicator variogram for category k
σ̃2

k Error variance of kriging
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