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Abstract: Susceptibility mapping represents a modern tool to support forest protection plans and to
address fuel management. With the present work, we continue with a research framework developed
in a pioneristic study at the local scale for Liguria (Italy) and recently adapted to the national
scale. In these previous works, a random-forest-based modeling workflow was developed to assess
susceptibility to wildfires under the influence of a number of environmental predictors. The main
novelties and contributions of the present study are: (i) we compared models based on random forest,
multi-layer perceptron, and support vector machine, to estimate their prediction capabilities; (ii) we
used a more accurate vegetation map as predictor, allowing us to evaluate the impacts of different
types of local and neighboring vegetation on wildfires’ occurrence; (iii) we improved the selection
of the testing dataset, in order to take into account the temporal variability of the burning seasons.
Wildfire susceptibility maps were finally created based on the output probabilistic predicted values
from the three machine-learning algorithms. As revealed with random forest, vegetation is so far the
most important predictor variable; the marginal effect of each type of vegetation was then evaluated
and discussed.

Keywords: random forest; multi-layer perceptron; support vector machine; vegetation types; partial
dependent plot; variable importance ranking; Liguria

1. Introduction

Wildfires affect millions of people worldwide and are often characterized by ecosys-
tem and economic impacts at different scales [1]. Forest ecosystems where wildfires are
uncommon events, or where non-native vegetation has been introduced, can be negatively
affected by wildfires, which can spread to surrounding rural areas, affecting houses and
human lives. In such conditions, wildfires constitute a complex environmental disaster
triggered by several interacting natural and human factors [2].

Wildfires can severely harm communications, transportation, power and gas services,
and water supply. They also have a negative impact on air quality; and lead to loss of
property, crops, resources, people, and animals [3]. They also lead in some cases to land
degradation: desertification and deforestation constitute examples of the adverse conse-
quences of wildfires [4]. Other impacts of wildfires include damage to wildlife habitats
and timber disruption, which can lead to loss of biodiversity and economic damages [5]. In
addition to effects on plants and ecosystems, wildfires also affect geological and hydrologi-
cal processes in the years following the burning. They affect the biosphere, triggering ash
deposition, influencing the formation of water-repellent soil, and physically weathering
the bedrock. This can lead to erosion through sheetwash, rilling, dry ravel, and increased
mass movement, by the means of floods, debris flow, landslides, and rockfall [6].
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The Mediterranean basin is particularly prone to wildfires. These events are well
documented and cause substantial damages every year [7]. The last annual report of
the European Forest Fire Information System [8] records that, in the five large southern
European countries (Portugal, Spain, France, Italy, and Greece) between 1980 and 2020,
after an increase in the first decade, the number of fires stabilized, and finally, it started
decreasing in the last decade. The average fire size followed the same trend, with the
exception of the extreme fire season in 2017, which caused a record of 500,000 burned
hectares in Portugal [9]. In 2020, the total number of fires was 30,661 and the average fire
size was 7 ha, both below the long trend average. This decreasing trend is largely due to
the improvement in the fire protection services operating at the local level.

As observed by Turco and co-authors [10], fire management is focused mainly on fire
suppression. However, climate and land use/land cover changes that affect the ecological
and socio-economic vulnerability to wildfires could lead to more complex and unpre-
dictable situations in the future [11,12]. Moreover, fire exclusion and suppression can
lead to a higher fuel load and connectivity, allowing a limited long-term positive effect at
best [13]. Therefore, fire management strategies should develop and implement prevention
and adaptation measures, in addition to the ongoing suppression ones [12,14].

The implementation of accurate wildfire inventories represents a useful tool for tack-
ling prevention and planning programs. These ideally should include the spatial locations
of individual events, the size and perimeter of each burned area, the starting and ending
dates, and the total durations. Such inventories provide a vital source of information for
the development of hazard, risk, and susceptibility maps.

For the sake of clarity, we define “susceptibility of an area” as the potential to experi-
ence a particular hazard in the future, based only on the intrinsic local properties of the
territory, assessed in terms of relative spatial likelihood [15,16]. “Hazard maps” account
also for the potential intensity of the phenomenon, thereby expressing both the likelihood
and the likely severity of a wildfire in a given area. Finally, “risk maps” inform us of the
damages or losses related to wildfires, by taking into account exposed assets and their
vulnerabilities. In the field of wildfire risk management, fire risk is defined as an indicator
of the probability that an area will burn in a certain period of time and have destructive
impacts on the population and infrastructures [17–20]. The present study focuses on the
concept of susceptibility, providing static maps which rely on the assumption that future
wildfire events are expected to take place under the same anthropic and geo-environmental
conditions as past events. Although these concepts are well consolidated in the risk assess-
ment research area, where landslides constitute a notable example [21], there is a need to
expand them to other natural hazards, such as wildfires [15,16,22], and to evaluate different
methods for susceptibility assessment and mapping.

In most studies related to wildfire risk mapping, the susceptibility assessment is the
first mandatory step to produce further maps [23]. Susceptibility mapping can therefore
represent a modern tool to support forest protection plans and to address fuel management
strategies in order to reduce fires’ consequences [16], and it is a relevant ally for risk
reduction programs, land use planning, and civil protection activities.

Several techniques have been tested in the scientific community for risk and suscepti-
bility mapping in relation to natural and anthropogenic hazards. These typically rely on
physically based or expert-based models, often integrated into a geographic information
system (GIS), or they can include statistical analyses and modeling to assess the relative
importance of the predictors [16,24–27]. In particular, purely statistical models have been
recently successfully applied in susceptibility mapping for wildfires [28–31]. Multi-criteria
decision analysis has been lately applied by Ljubomir et al. [32] to produce a forest fire
susceptibility map of an area in the Republic of Serbia. Salavati et al. [33] performed
statistical techniques on a set of predisposing factors, such as climatic factors, topographic
variables, land use/land cover, and distances from roads and rivers to generate wildfire risk
maps. Novo et al. in [34] applied the analytic hierarchy process using several predictors
(topographic variables, distances to roads and settlements, vegetation indices and fuel
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types, Canadian Fire Weather Index, and historical fire regimes) to produce risk maps at
the local level in Galicia (Spain).

The comparison between deterministic methods, both physical and statistical ap-
proaches, and methods based on machine learning, highlighted the benefit of using the
latter [23,35–37], mainly because of their ability to extract insights from the a huge vol-
ume of heterogeneous digital information. In addition, given a set of initial conditions
(i.e., wildfire observations and predisposing variables), deterministic methods lead to a
unique result, with no way for assessing its uncertainty. On the contrary, in stochastic
models (including machine learning), each simulation may give a different result, due to the
randomization of the initial conditions, and this way reflects better the reality of complex
geo-environmental phenomena. This allows one, in turn, to estimate how sure the model is
about its predictions—that is to say, to assess the uncertainty. Recent advances in automated
learning and simulation methods, such as machine learning (ML) algorithms, have stimu-
lated great interest in employing intelligent models to create wildfire susceptibility maps
in several case studies. Indeed, ML allows one to analyze, model and visualize complex
sets of geo-environmental data, and it has performed particularly well in modeling natural
hazards, which have intrinsically complex and non-linear behavior [2,15,22,27,38–41].

With the present work, we continue investigating a research framework developed in
a pioneering study at the local scale for Liguria region, in Italy [15], and recently adapted
to the national scale [16]. In these previous works, a random forest-based ML modeling
workflow was developed to generate wildfire susceptibility maps of the study areas,
under the influence of a number of environmental predictors (altitude and its derivatives,
and vegetation type). At the regional scale, different parameters were tested, and the
performances of the related models were evaluated. Including the neighboring vegetation
as an additional predictor variable and implementing a 5-fold cross validation procedure
allowed us to increase the predictive performance of the model. Due to the heterogeneity of
the area at the national scale, climatic variables (namely, the mean temperature and mean
precipitation over the last 70 years) were also considered in the second work [16].

The main objective of the present research was to evaluate the importance of different
predictors to wildfire susceptibility in a fire-prone area (Liguria), which was assessed by
using different ML based approaches. The main novelties and contributions compared to
the previous works are the following: (i) we compared three ML algorithms (random forest,
multi-layer perceptron, and support vector machine) to assess their prediction capabilities;
(ii) we used an accurate and verified vegetation map as the predictor, allowing us to
evaluate the impacts of different classes of local and neighboring vegetation on wildfires
occurrence; (iii) we improved the selection of the validation dataset in order to take into
account the temporal variability of the burning seasons.

This study contributes to filling the gap in the literature concerning: (i) the quantitative
assessment of how different classes of vegetation can influence the susceptibility to wildfires,
which was achieved directly with an ML model; (ii) the fair and appropriate selection of an
independent dataset for model validation, which ensures its ability to perform accurate
predictions on new data.

2. Material and Methods
2.1. Study Area

Liguria is located in the northwest part of Italy. It covers an area of 5400 km2 and is
shaped as a narrow strip of land bordered by the Tyrrhenian sea along its entire southern
extension (Figure 1). The territory is crossed by the two main Italian mountain ranges: the
Alps to the west and the Apennines to the east. Liguria is a mainly mountainous (65%)
and hilly (35%) region with no plains and a coast that almost always overlooks the sea.
The resulting topography is very complex. The slope is higher than 40% over 50% of the
territory, and there is dense and heterogeneous vegetation.
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Figure 1. Study area.

Forest covers more than 70% of the total surface [42], and it is characterized in large
part by the association between beech (Fagus) and silver fir (Abeis alba). These two wooded
species, typical of the ancient forests of the Ligurian Apennines, are currently associated
with Scots pine (Pinus sylvestris) and larch (Larix decidua). In the western and eastern tips
of the region, there is a consistent spread of Mediterranean forest with prevalent Aleppo
pine (Pinus halepensis) and Maritime pine (Pinus pinaster), often mixed with numerous
broad-leaved trees. The natural populations of these two species, in particular for the
maritime pine, are very localized, as most of these pine forests are of artificial origin, with
ages ranging between 50 and 120 years [43]. In addition, agricultural and grazing activities
have progressively been abandoned in recent decades, favoring the occurrence of wildfire
events, which can spread rapidly using the highly flammable pines and shrub species.

The spatial configuration of the territory accounts for a mild climate year-round,
including average temperatures of 7–10 °C in winter and 23–24 °C in summer. Mountains
very close to the coast create an orographic effect, resulting in abundant rainfall, especially
during the autumn months. The average value for rainfall is is 900–1300 mm/year. On
the eastern coast, the main cities of Genoa and La Spezia can see up to 2000 mm of rain in
a year.

Wildfires in Liguria are recurrent throughout the year. They occur primarily in July–
September and February–March. The main causes of the spatial and temporal distributions
of wildfires in this region are the following: (i) the climate, which is characterized by
long dry period in summer, especially along the coast, but also in winter, caused by
dry winds from the north, which blow over herbaceous cover in curing status; (ii) the
topography of the area, which favors the fire spreading along the forested steep slopes;
(iii) the heterogeneous vegetation, characterized by high percentages of forest canopy;
(iv) the human pressure, in terms the rural exodus, urbanization, a growing road network,
and agrocultural, forestry, and pastoral activities that followed World War II and that
greatly extended the wildland–urban interface [44,45].

2.2. Wildfires Dataset

The input dataset used in the present study is the same one used in [15], consisting of
mapped burned areas spanning a 21-year period (1997–2017) (Figure 2), provided by the
regional forestry service [46]. This wildfire inventory was created based on GPS-surveying
and subsequent digitalization over the cadastral map (scale 1:10,000) and includes the
starting date of each event. The availability in Liguria of a mapping of fire perimeters
(through ground measurements) allows one to carry out a thorough analysis that is not af-
fected by the drawbacks of satellite-based digital observations. The final dataset comprises
8217 wildfires, with an annual mean of 391 fires, burning an area of about 3035 ha per year
(Figure 2). To account for the fires’ seasonality, two macro seasons have been considered:
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winter, from November to April, and summer, from May to October. These two seasons are
characterized by a quite distinct spatial distributions of the burned areas (Figure 3) and
were therefore analyzed separately.

Figure 2. Yearly burned area (a) and number of fires (b) in Liguria during the summer and winter in
the period 1997–2017.

Figure 3. Burned area dataset for summer and winter.

2.3. Predictor Variables

The predictor variables describe the intrinsic characteristics of the territory and pro-
vide information on the associated dependent variable (i.e., the burned areas) with regard
to the susceptibility of an area to wildfires. Predictors can be divided into two main groups:
the first providing information on the topography and land cover (geo-environmental fea-
tures) and the second related to anthropogenic features. The first group includes the digital
elevation model (DEM) and derived features (slope, northness, and eastness), the type of
vegetation (local pixel information), and the neighboring vegetation (within the surround-
ing pixels). The second group includes the Euclidean distances to an anthropogenic features
(i.e., urban areas, road networks, pathways, and crops), and if a pixel belongs or not to a
protected area. All this digital information has been provided by the Authority of the Lig-
uria Region and is available at the official geo-portal (https://geoportal.regione.liguria.it/,
accessed on 17 November 2022) [46]; a detailed description can be found in [15]. All the
spatial layers were rasterized, re-sampled, and spatially aligned to match the same reference
raster with a spatial resolution of 100 m.

In the present study, we used an updated version of the map of vegetation types.
Information on land use came from the Regional Land Use map (scale 1:10,000), which was

https://geoportal.regione.liguria.it/
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improved for what concerns the class “forest”. Namely, the forest areas were reclassified
according to the Regional Forest Type map (scale 1:25,000), which provides more detailed
information on the different sub-classes. The final map included more than one hundred
classes, finally re-aggregated into 37 main types. Specifically, the non-vegetated areas were
grouped into a unique class named “non-flammable area”, because they are not the object
of wildfire events.

Moreover, all the areas classified as “burned area” were reclassified based on the
classes of vegetation that covered these areas before the wildfires, evaluated by expert
knowledge and by means of maps dated back to an antecedent period. This allowed us to
create an accurate map holding detailed information on the different classes of vegetation,
especially as concerns the forest cover types. This information had two functions in the
present work: (1) the vegetation map has been used as a categorical variable, to describe
the class of vegetation as local information characterizing each single pixel (referred to
“local vegetation”); (2) for each pixel, a Moore neighborhood of order 2 (resulting in
24 surrounding pixels) was evaluated (Figure 4), allowing us to estimate the percentage of
each class of vegetation or non-flammable area within the neighboring pixels (referred to
as “neighboring vegetation”) and resulting in 38 additional numerical predictor variables
(Table 1).

Table 1. List of the predictor variables adopted by the different ML models implemented in this work.

Variable Group Variable Name Type Unit of Measure Model

Topographic

Elevation Continuous [m] All
Slope Continuous [°] All
Northing Continuous - All
Easting Continuous - All

Anthropic

Distance from urban areas Continuous [m] All
Distance from Crops Continuous [m] All
Distance from Roads Continuous [m] All
Distance from Tracks Continuous [m] All

Vegetational

Vegetation (local) Categorical (30 cat.) -
RF Global Vegetation,
RF local vegetation

Neighboring vegetation (30 variables) Continuous [%]
RF Global Vegetation,
RF neighbouring vegetation,
SVM, MLP

Figure 4. Neighboring vegetation variables—computational scheme.

Different variations of ML models can be trained by changing the set of input data.
In this work, different strategies were tested for the vegetation part of the input set of
predisposing factors. Some models, called in the following “Local Vegetation models”,
were trained using just the categorical value of vegetation for each pixel. “Neighboring
Vegetation models”, in turn, were trained using just the 38 continuous variables expressing
the percentage of the i-th vegetation category in the proximity of the considered pixel
(i ∈ {1, 38}). In addition, we tested a third ML model category, which included in the
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predisposing factor set both the local and the neighboring vegetation layers, referred to
“global vegetation”. The three models of vegetation were compared using random forest,
allowing us to assess the relative importance of the vegetation types as predisposing factors
in wildfire prediction.

2.4. The Methodological Workflow

The methodological workflow developed in the present study includes the follow-
ing process:

1. Elaboration of the input dataset: pre-processing of the raster describing the pre-
dictor variables (i.e., topographic, anthropogenic, and vegetation features) and the
independent variable (i.e., the wildfire dataset).

2. Selection of the testing and training subsets: 3 out of 17 years were randomly selected
for the testing subset based on a clustering procedure, to ensure a fair representation
of the possible wildfire trends.

• Selection of the validation subset (via spatial-cross validation): the training subset
was then split into 5 parts, and the model was trained on the remaining four
parts—the one left out was alternated.

3. Implementation of the machine learning (ML) algorithms, namely, random forest (RF),
multi-layer perceptron (MLP), and support vector machine (SVM), for the spatial
prediction of wildfire susceptibility.

4. Evaluation of the performance indicators for each ML algorithm and for the two seasons.

• The AUC (area under the curve) ROC (receiver operating characteristic) were
evaluated over the testing dataset.

• The root mean-square error (RMSE) between the values resulting from the three
ML-models and the testing subset was also evaluated.

5. Elaboration of the wildfire susceptibility maps, based of the probabilistic outputs
resulting from the three ML implemented models.

6. Assessment of the importance of the predictor variables, obtained by evaluating their
rankings and the marginal effect on the predicted outcome.

• This was achieved with RF, which can handle both numerical variables (e.g., the
percentage of neighboring vegetation) and native categorical variables (e.g., the
classes of vegetation at the pixel level).

In the following, the three algorithms that were employed for the elaboration of
seasonal wildfire susceptibility maps are briefly introduced. The methodology and the
experimental settings are described in more detail in the next sections.

2.5. Machine-Learning Algorithms

Generally speaking, ML includes algorithms capable of learning from data by model-
ing the hidden relationships linking a set of input and output variables. The independent
input variables are the predictors of the investigated phenomenon (also known as “fea-
tures”), and the output dependent variables represent the occurrences of the phenomenon
(also known as output “labels”).

The model is usually evaluated by splitting the input dataset into training, validation,
and testing subsets. The training subset allows one to train the model, and the validation
subset allows calibrating its parameters. The fitted model can then be used to make
predictions with the testing subset. This last set is an independent dataset which is assumed
to have the same characteristics as the training data, and it allows one to provide an
unbiased evaluation of the model’s performance.

The present study deals with making predictions on the probability of an area burning
in the future, based on the burned areas observed in the past and on the predictor vari-
ables. This can be considered a binary classification problem, seeking to predict whether a
given pixel belongs to the class burning (label “one”) or unburning (label “zero”). Many
ML algorithms support a probabilistic output (ranging continuously from 0 to 1), which
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estimates the probability for a pixel to be classified as “burning” or “unburning”. This
value can be obtained, for example, by normalizing the output over the total number
of iterations. ML probabilistic outputs are meaningful to elaborate susceptibility maps,
indicating the potential to experience a particular hazard in the future in terms of relative
spatial likelihood.

For the purpose of the present study, all the pixels corresponding to burned areas in
the wildfire dataset were labeled to “one”. To guarantee a balanced representation of the
two classes, a number of non-burned pixels (labeled to “zero”) equal to the number of
pixels labeled “one” was randomly extracted from the non-burned area.

2.5.1. Random Forest

Random forest (RF) is an ensemble-learning algorithm for classification and regression
based on decision trees [47]. Decision trees are supervised classifiers formed by root nodes
and child nodes which can develop at multiple levels. Decisions at the node level are made
based on the training predictor variables. At each split, only a subset of these variables
are randomly selected to avoid neglecting those that have less influence on the output.
The number of variables to be considered (mtry) and the number of trees (ntree) are the
two parameters of the model that need to be optimized. In this study, these parameters
were set to the rounded up square-root of the number of predictor factors for mtry and
750 for ntree following [15]. In order to perform a meaningful split, the prediction error is
normally computed on a subset of observations that are not used in the training subsets
(called “out-of-bag”—OOB). OOB include about one-third of the testing data, selected by
bootstrapping (i.e., random sampling with replacement). At each split of a decision tree, the
Gini impurity allows one to determine how the observations should split nodes to form the
tree. This step is iterated until each node contains only one observation. For a classification
problem, the prediction of new data is finally computed by counting the maximum voting.

The relative importance of each variable can be assessed by evaluating the mean
decrease accuracy (MDA). The MDA is estimated by measuring, across all the trees, how
much the tree nodes that use a given variable enable reducing the mean-square errors
on the OOB. In addition, the partial dependent plot (pdp) gives a graphical depiction
of the marginal effect of each variable on the class probability over different ranges of
continuous or discrete values. In the present work, it was used to analyze the effect of
different vegetation types [48]: for each class, positive values are associated with likely
occurrence of the phenomenon (i.e., wildfire), and negative vales indicate its likely absence.

For the computation of RF, we used the the R package randomForest and the function
partialPlot to generate the partial dependence plots [49].

2.5.2. Multi-Layer Perceptron

Multi-layer perceptron (MLP) belongs to the class of machine learning algorithms
called artificial neural networks (ANN), and is widely used to solve nonlinear data analysis
problems. ANN mimics the architecture of the human brain by making use of a set of
interconnected neurons. It can be a solid tool for the modeling of problems where relation-
ships between causal predisposing factors and outputs (responses) are complex [23,50]. The
human brain is imitated through initiation of a learning process on the available data and
storing that knowledge with synaptic weights.

Several neural network structures are available in the literature for different purposes.
In this work, the MLP architecture was adopted. According to the definition, three char-
acteristics have to be defined in order to introduce an MLP: a layer of input neurons, a
layer of output neurons, and one or more intermediate layers (also called “hidden layers”).
Neurons belonging to the same hidden layer are not connected, and every neuron of each
layer is connected to every neuron of the adjacent layers. The algorithm is trained via back
propagation algorithm (BPA). The idea of BPA is to recalculate the weights array in the last
neuron layer based on error (or loss) calculation and proceed towards the previous layers,
from back to front. In this way, all the weights in each layer area recalculated, from the last
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one until reaching the input layer of the network. The initial weights were set randomly
and subsequently iteratively updated by BPA.

For the computation of MLP, we used the function mlp implemented in the R package
RSNNS [51]. The number of epochs and the learning rate of our model were set to 500
and 0.1, and for the other parameters we kept the default values (i.e., one hidden layer of
50 neurons).

2.5.3. Support Vector Machine

Support vector machine (SVM), also known as the maximum-margin hyperplane [52],
is a ML technique that has largely been applied in the literature to the study of problems of
geo-environmental interest [53]. The SVM is based on the statistical learning theory; the
input dataset is mapped into a higher-dimensional feature space via non-linear transforms
involving kernels. The objective is to find the best separating hyperplane between different
output labels [54]. The classifier is a linear hyperplane in the transformed feature space,
though it may be non-linear in the original input space, due to the kernel-based non-
linear transform.

For instance, considering a training dataset of each label pairs (Xi, yi), where
i = 1, 2 · · · , N, xi is, for example, the input vectors of the wildfire-predisposing factors,
yi is the label associated with the input vector xi (that is, "burning" or "non-burning"),
and N is the size of the training dataset. In principle, yi can vary in any set, e.g., {0, 1},
but most computational implementations retain the choice y ∈ {1,−1} [55]. The SVM
model will search an hyper-plane which separates between the two classes ("burning" and
"non-burning"), maximizing their gap.

The kernel function of the radial basis function (RBF) is the most commonly used to
model natural hazard susceptibility [23,54]. In formulas, it reads:

K(xi, xi) = exp
(
−γ‖‖xi − xj‖‖2

)
, γ > 0 (1)

The kernel width (γ) [26] controls the extent of the training sample’s influence on the
model predictions, affecting the susceptibility output maps produced by the SVM using
such kernel. Low values for kernel width express a long-range influence, and high values
represent a localized one. The kernel width γ balances between bias and variance errors. In
the involved minimization problem, the regularization parameter also needs to be tuned.

For the computation of SVM, we used the function ksvm implemented in the R package
Kernlab [56].

Both SVM and MLP were used by relying on the wrapper and ML process optimizer
package rminer [57].

2.6. Model Evaluation
2.6.1. Spatial Cross-Validation

The validation subset, allowing one to calibrate the parameters of a ML algorithm,
is often selected randomly from the training input data. However, in geo-environmental
modeling, the random selection can cause the selection of observations falling near to each
other in the two subsets, leading to an over-estimation of the predictive performance of the
model. This circumstance is known as “spatial auto-correlation”, grounded on the fact that
close features generally have similar characteristics. To overcome this issue, training and
validation subsets were selected far enough apart in the geographic space, by adopting the
spatial k-fold cross validation with k = 5 [15]. This consists of splitting the original training
data into k folds, removing a fold at a time, training the model on the remaining k− 1 folds,
and validating the model using the fold that has been left out. The process is iterated k
times, and the different evaluation scores resulting from each folding are then averaged to
produce the final results. In the present study, the space was organized into spatial blocks
of 15 × 15 km, resulting in 50 blocks covering the entire study area, where each single fold
included 10 blocks (corresponding to the 20% of the observations).
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2.6.2. Selection of the Testing Subset

In this work, the concept of “model generalization” has been widened to include not
only the spatial, but also the temporal dimension. This represents a novel contribution to the
classical validation procedure in ML. Indeed, ML models are often evaluated considering
only the validation subset (i.e., cross-validation or out-of-bag for random forest), which
contains not completely unused observations and can result in a over-fitting. At best, for
a spatio-temporal dataset, the testing subset is selected considering the last few years of
observations [15,36], which makes sense when evaluating the ability of the model to make
good predictions in the near future. Nevertheless, this procedure neglects the spatial and
temporal auto-correlation among the observations (i.e., the training subset) and predictions
on new data (i.e., the testing subset), meaning that observations close to each other, both
in space and in time, tend to have similar characteristics. In addition, it can happen that
the last years of observations have different characteristics compared to the training subset
because of a change in the surrounding conditions, and thus these data could be more
suited to being included in the testing subset.

To overcome this issue, the testing subset was implemented by selecting, for both
winter and summer, a set of years that are fully representative of the possible wildfire trends
observed throughout the entire area and study period. This was obtained by splitting the
original input wildfire dataset into three different clusters using the K-means algorithm.
The idea was to find homogeneous sub-groups with similar characteristics and tendencies
within each group, while maximizing the difference among groups. As clustering criteria
(i.e., the attributes of similarity among members of the same cluster), we considered the
total number of wildfires and the average burned area per year; see Figure 5. Then, for
each one of the three clusters, one year was chosen randomly and assigned to the testing
subset. As result, the years 2001, 2010, and 2016 were selected for summer, and 2003, 2007,
and 2015 for winter to form the testing subsets.

Figure 5. Clustering of the wildfire dataset for winter and summer, resulting from K-means (with
K = 3).

2.6.3. Performance Metrics

The performance of a predictive model can be evaluated by predicting the results over
previously unused data—that is, the testing dataset. The area under the receiver operating
characteristic (ROC) curve (AUC) is an evaluation score broadly used as an indicator of
the goodness of the model in classifying areas that are susceptible to a certain hazard.
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The ROC curve is a graphical technique based on the plotting of the percentage of correct
classification (the true positives rate) against the false positive rate (occurring when an
outcome is incorrectly predicted as belonging to class “one” when it actually belongs to
class “zero”), evaluated for many thresholds. The AUC value lies between 0.5, denoting a
bad classifier, and 1, denoting an excellent classifier.

As an additional indicator of the algorithm’s goodness we computed the root mean-
square error (RMSE), based on the difference between the predicted outputs, expressed as
a probability value in the interval [ 0, 1 ], and the observations, which assumed the value
“one” for burning area and “zero” for unburned areas. Therefore, for a model performing
good predictions (i.e., model outputs for burning areas ∈ {0.5, 1} and for unburned areas
∈ {0, 0.5}), we can expect an RMSE value lying between 0 and 0.5.

Finally, the performances of the three algorithms (RF, MLP, and SVM) were further
assessed and compared by calculating the percentage of an area that fell within a burned
area in the testing subset and then looking at its probabilistic predicted value. Output
values were split into five ranges (25th, 50th, 75th, 90th, and 95th). The 25th percentile
indicates the 25% of the area with the lowest probabilistic predicted values of burning,
while the 95th percentile indicates the 5% of the area with the highest ones, and so on for
the intermediate ranges.

3. Results and Discussion
3.1. Comparison of the Three ML Algorithms

The main output resulting from the three ML algorithms is the probabilistic predicted
value for each pixel to burn under the influence of the geo-environmental predisposing
variables. Specifically, we compared RF, MLP, and SVM under the same conditions, which,
to restate, were the following: (i) 5-fold cross validation, to ensure good generalization of
the results and avoid over-fitting; (ii) a set of numerical variables (neighboring vegetation;
DEM; slope; northness; eastness; belonging or not to a protected areas; distances to urban
areas, road networks, pathways, and crops) that can be handled by all the three algorithms.

RF resulted to be the best predictive model, both for winter and for summer (Figure 6),
as attested by the highest values of AUC (0.944 and 0.953, respectively), followed by MLP
(0.921 and 9.940), and lastly, by SVM (0.916 and 0.931). The RMSE estimator confirmed this
result; see Table 2. Indeed, RF has the lower values for both the seasons (0.329 in summer
and 0.335 in winter) compared to MLP and SVM, which have higher values for summer
(0.344 and 0.358, respectively) and winter (0.353 and 0.360, respectively).

Table 2. RMSE and AUC values for testing burned area, for both winter and summer, and for all the
implemented modes.

Winter RMSE AUC

Random Forest
Neighboring Vegetation 0.335 0.944
Local vegetation 0.367 0.906
Global vegetation 0.342 0.939

SVM Neighboring Vegetation 0.36 0.916
MLP Neighboring Vegetation 0.353 0.921

Summer RMSE AUC

Random Forest
Neighboring Vegetation 0.329 0.953
Local Vegetation 0.37 0.911
Global vegetation 0.328 0.952

SVM Neighboring Vegetation 0.358 0.931
MLP Neighboring Vegetation 0.344 0.94
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Figure 6. ROC curves for the three ML algorithms with the corresponding AUC values.

Table 3 shows the percentage of burned area in the testing dataset (Testing BA) within
each percentile class range (Classes) and the corresponding probabilistic predicted value
(Prob. Value). The same percentile range’s limits can correspond to different values of the
probabilistic output, allowing the competent authority the make decisions based on a given
threshold for the highly susceptible area rather than on the raw output values. A model that
predicts good results is expected to produce a higher percentage of the testing burned area
within the highest percentile ranges and a lower percentage in the lowest ranges. Indeed,
this is exactly what happened with the three algorithms (RF, MLP, and SVM) for both the
seasons. Moreover, looking at the 25% of the area with the highest probability of burning
(corresponding to the class >75%), results indicate that RF performs better that SVM and
MLP: 93.65% of the test set’s burned area was predicted for winter and 94.80% for summer,
compared to 89.57% and 87.30% for winter and 92.68% and 91.93% for summer for MLP
and SVM, respectively. Likewise, given the area with the lowest probability of burning
(corresponding to the class 25%), the three algorithms allocated a very low extent of test
burned area for winter (0.27%, 0.48%, and 0.42% for RF, MLP, and SVM, respectively) and
for summer (0.18%, 0.10%, and 0.34% for RF, MLP, and SVM, respectively).

Table 3. Percentages of burned area in the testing subset belonging to different output percentile class
ranges for SVM, MLP, and RF with neighboring vegetation. The last line for each season represents
the top 25%.

Winter Season SVM MLP RF

Classes Total Area (%) Testing BA Prob. Value Testing BA Prob. Value Testing BA Prob. Value

25% 25 0.42 0.13 0.48 0.13 0.27 0.10
50% 25 2.14 0.22 1.55 0.25 1.43 0.21
75% 25 10.14 0.46 8.43 0.46 4.65 0.41
90% 15 19.97 0.74 21.67 0.68 17.67 0.67
95% 5 19.05 0.85 18.57 0.81 17.40 0.81
100% 5 48.27 0.99 49.30 0.99 58.58 1.00
>75% 25 87.30 89.54 93.65

Summer Season SVM MLP RF

Classes Total Area (%) Testing BA Prob. Value Testing BA Prob. Value Testing BA Prob. Value

25% 25 0.34 0.09 0.10 0.08 0.18 0.05
50% 25 1.11 0.17 1.35 0.21 0.83 0.18
75% 25 6.62 0.50 5.87 0.47 4.14 0.45
90% 15 15.99 0.77 13.82 0.69 10.22 0.69
95% 5 19.79 0.83 16.82 0.82 14.64 0.81
100% 5 56.14 0.99 62.04 1.00 69.94 1.00
>75% 25 91.93 92.68 94.80
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3.2. Susceptibility Maps

Wildfires susceptibility maps were elaborated based on the probabilistic predicted
values resulting from the three ML-based approaches (Figure 7) and classified using the
same ranges as in Table 3. The implementation of RF, MLP, and SMV in the model resulted
in quite similar maps. Areas of high/very high and low/very low susceptibility classes
were detected in the same locations in the three cases, for both the seasons. In winter, the
very high susceptibility class (above the 90th percentile) is mainly located in the more
elevated inland areas, and in summer it is mainly distributed in the coastal area. This
spatial pattern can be attributable to the state of the vegetation, which is more burnable at
higher altitudes in winter and at lower elevations and closer to the coast in summer. This
characteristic is a consequence of the senescence of the vegetation in the mountainous areas
in winter, while in summer the high temperature and the dry weather cause it the be dryer
and more venerable to fires in the plain and close to the touristic areas.

Figure 7. Susceptibility maps.

3.3. Assessment of the Predictor Variables
3.3.1. Effect of the Neighboring Vegetation

As explained in the Methods, in the present study the type of vegetation was evaluated
both as categorical variable, to describe the class of vegetation as “local information”
characterizing each single pixel, and as “neighboring vegetation”, assessed by estimating
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the percentage of each class of vegetation, or non-flammable area, within the neighboring
pixels. This led to the creation of a set of additional variables ranging from 0 to 100%
corresponding to each class of vegetation. Moreover, a third “global vegetation” model,
including both the local and the neighboring vegetation, was implemented.

To evaluate the predictive performances of these three vegetation models and estimate
which one gives the best results, they were compared by using RF (Figure 8 and Table 2).
We would like to stress again that RF can handle directly both categorical and numerical
variables. Indeed, with the adopted R implementation (available in randomForest package),
there is no need for transforming “categorical” variables into “numerical” variables, thereby
limiting the number of predictors. The resulting ROC curves clearly show that accounting
for the “neighboring vegetation” allows one to enhance the performance of the model (see
Figure 8), resulting in increasing values of AUC from 0.906 to 0.944 in winter and from 0.911
to 0.953 in summer. The “global model”, which includes both the local and the neighboring
vegetation, has a similar performance to the neighboring model (AUC equal to 0.939 in
winter and 0.952 in summer) (Figure 8) and was considered for the final assessment of the
importance of the predictor variables.

As additional validation, Table 4 expresses the quantile-analysis of the burned area,
analogously to Table 3. The three RF models performed well in this analysis, but the
model without neighboring vegetation had lower performances (the highest percentile
class covered 45% of the total BA, while the other choices obtained both more than 55%).

Table 4. Percentage of burned area in the testing subset belonging to different output percentile
classes for RF with different vegetation models. The last line for each season represents the top
25% percentile.

Winter Season Global Vegetation Neighboring Vegetation Without Neighboring Vegetation

Classes Total Area (%) Testing BA (%) Prob. Value Testing BA (%) Prob. Value Testing BA (%) Prob. Value

25% 25 0.34 0.09 0.27 0.10 0.94 0.12
50% 25 1.47 0.21 1.43 0.21 2.75 0.26
75% 25 4.70 0.43 4.65 0.41 8.72 0.46
90% 15 18.09 0.68 17.67 0.67 23.79 0.70
95% 5 19.83 0.82 17.40 0.81 17.94 0.84
100% 5 55.59 1.00 58.58 1.00 45.84 1.00
>75% 93.50 93.65 87.57

Summer Season Global Vegetation Neighboring Vegetation Without Neighboring Vegetation

Classes Total Area (%) Testing BA (%) Prob. Value Testing BA (%) Prob. Value Testing BA (%) Prob. Value

25% 25 0.13 0.05 0.18 0.05 0.26 0.06
50% 25 1.14 0.18 0.83 0.18 2.02 0.19
75% 25 4.04 0.46 4.14 0.45 9.50 0.53
90% 15 10.84 0.70 10.22 0.69 21.76 0.75
95% 5 14.98 0.82 14.64 0.81 17.10 0.83
100% 5 68.85 1.00 69.94 1.00 49.34 1.00
>75% 94.67 94.80 88.20

3.3.2. Predictor Variables Importance Ranking

The relative importance of the predictor variables was evaluated with regard to the
global vegetation model, based on the value of the mean decrease accuracy (MDA). Higher
values of MDA mean that the model strongly benefits from the given predictor to make
meaningful choices in assigning a pixel to high or low fire susceptibility to burn. MDA
values have been normalized in order to have a sum equal to one and allowing a fear
comparison in both the seasons.
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Figure 8. ROC curves for the three RF vegetation models and corresponding AUC values.

Vegetation was by far the most important variable, as clearly shown in Figure 9. Here,
the local type of vegetation has a normalized MDA of about 0.2 for both the seasons,
followed by orographic variables such as elevation and northness. The other variables
usually plateau below 0.05. In order to have a clear display, the ranking of the first
neighboring vegetation classes are represented in a another plot (Figure 10). In summer,
the contributions of moors, shrubs, Mediterranean pines, chestnut trees, beech, hop and
hornbeam forests, oaks, and downy oaks to the vegetation mosaic are predominant; and in
winter the presence of pastures plays a major role, followed by oaks and moors/shrubs.

0.00 0.05 0.10 0.15 0.20 0.25
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Figure 9. Variable importance rankings for RF model (global vegetation), based on the mean decrease
accuracy (MDA), of the predictor variables. Summer and winter are portrayed on the top and the
bottom, respectively. The blue bars represent the means of the importance score among all the folds,
and black lines represent the standard deviation.
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Figure 10. Variable importance ranking (based on the MDA) of each neighboring vegetation variable,
using the RF model (global vegetation). Summer and Winter are portrayed on the top and the bottom,
respectively. The blue bars represent the mean of the importance score among all the folds, and black
lines represent the standard deviation.

The partial dependence plot (Figure 11) allows one to infer the magnitude of the rele-
vance of each single vegetation class, and to detect whether a particular type of vegetation is
important because it is associated with high or low fire susceptibility. The pixel-related local
vegetation categories follow on average similar patterns as their neighboring counterparts.
However, it emerges from Figure 11 that, for the summer wildfire susceptibility model,
areas with mixtures of crops and natural vegetation, pastures, moors, shrubs, mixed forest,
schlerophyllus vegetation, and Mediterranean pines were associated with high levels of
fire susceptibility; and beech forests, hop/hornbeam forest, and turkey oak are associated
with low levels of susceptibility. For what concerns winter wildfire susceptibility, from
Figure 11, it is evident that pastures, mixed forests, moors and shrubs, mixed crops/natural
areas, and downy oaks are characterized by high susceptibility; and sessile oaks, beech
holm, mountain pines, and Turkey oak are associated with low susceptibility patterns.
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Figure 11. Partial dependence plot of the categorical variable corresponding to the local vegetation,
for the RF model with global vegetation input set. Summer and winter are portrayed on the top and
the bottom, respectively. The blue bars represent the means of the importance score among all the
folds, and black lines represent the standard deviation.

4. Conclusions

In the present work, we consolidated the use of machine learning to asses the sus-
ceptibility to wildfires at the regional scale and to estimate the relative importance of the
predictor variables (i.e, land cover, type of vegetation, altitude and its derivatives, nearby
infrastructures). In comparison to the previous studies [15,16], the main novelties consisted
in the comparison of three algorithms, namely, random forest, multi-layer perceptron, and
support vector machine, and in the implementation of an accurate vegetation map as input.
This last allowed us to evaluate the impact not only of the vegetation as predictor, but
of each single class of vegetation on wildfires’ occurrence. Moreover, to account for the
temporal and for the spatial variability of the burning seasons (winter and spring), we
selected a highly representative testing subset, with the purpose of avoiding the prob-
lem of the spatio-temporal auto-correlation with the observations in the training that can
cause overfitting.

The main results of the implemented ML models consisted in the probabilistic pre-
dicted values finally used to produce susceptibility maps. The spatial pattern distribution
of the areas in the different classes of susceptibility did not substantially differ by using
RF, MLP, or SVM. Nevertheless, indicators of performance (based on ROC curves and the
corresponding values of AUC, and RMS errors and the comparison with the burned area in
the testing subset) revealed that RF gives the better performances, followed closely by MLP
and SVM.

Finally, we used RF to asses the variables’ importance ranking. Indeed this algorithm
can handle both numerical variables (such as the percentage of neighbouring vegetation)
and native categorical variables (such as the types of vegetation at local pixel level). The
most important predictor variable was the vegetation, and a more detailed investigation on
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the marginal effect of each type of vegetation allowed us to detect the singles classes that
are more or less susceptible to wildfires in summer and winter.

The thorough variable importance assessment carried out in this study showed the im-
portance of explainable ML procedures, shifting from a black box to a more understandable
framework. In this specific case, the importance of vegetation cover and its continuity pave
the way for further assessment of vegetation impact on wildfire regimes. In addition, it has
to be remarked that no climate data were considered as input variables. This is in line with
the pioneering work of Tonini et al. [15], and allowed us to shift the focus to the vegetation
importance in the wildfire susceptibility patterns of winter and summer. However, the
inclusion of climatic variables in the predictors set, e.g., wind, temperatures, precipitation,
and soil moisture averages, may shed light on their effects on the wildfire regimes also at a
regional level. They can also be useful for depicting climate change scenarios. This is clearly
a gap that needs to be filled by researchers in future studies. Moreover, the presented maps
are static products that do not consider synoptic data of wind and fuel moisture and need
further modeling in order to provide time-varying fire danger maps.

Results of the present work are extremely useful for decision makers in wildfire
management and long-term land use planning. Actually, ML-based susceptibility maps
are adopted operationally by the Italian Civil Protection in early warning systems for
wildfire danger [58–60]. Future works will be devoted to trans-boundary case studies,
where susceptibility maps at the macro-regional scale can help in transboundary risk
assessment procedures.

In the present study, ML proved to be successful in assessing the susceptibility to
wildfires, and also showed how the different topographic, vegetational, and anthropogenic
factors affect the propensity of an area to burn. The same approach can be applied to other
research domains. Indeed, ML is emerging as a new paradigm in geosciences [61], as it
enables us to make sense of the collected data and to discover the hidden relationships
between the target events (e.g., natural hazards, geological or atmospheric process, etc.)
and the predictor variables.
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