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Abstract: OpenForecast is the first openly available national-scale operational runoff forecasting
system in Russia. Launched in March 2020, it routinely provides 7-day ahead predictions for
834 gauges across the country. Here, we provide an assessment of the OpenForecast performance on
the long-term evaluation period from 14 March 2020 to 31 October 2021 (597 days) for 252 gauges
for which operational data are available and quality-controlled. Results show that OpenForecast is a
robust system based on reliable data and solid computational routines that secures efficient runoff
forecasts for a diverse set of gauges.
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1. Introduction

Floods remain the primary source of economic and human losses among all natural
disasters [1–3]. During the past few decades, floods caused thousands of deaths and billions
of dollars of material damage [4]. The modern trend towards warming and hence more
extreme climate [5–7], as well as the growing anthropogenic load on the environment [8,9],
leaves floods in the strong research focus as dominant impact-relevant events [5,6,10].

Continuous development and benchmarking of operational flood forecasting services
are among the most dynamic research areas based on the highest relevance of early warn-
ings for prevention of disastrous flood events and reduction of their impacts [11,12]. Today,
many forecasting services–from global [13–15] to continental [16–19], national [20–22],
and regional scales [23–25]–are in operational use, producing timely and reliable runoff
forecasts. All these services are complex structures based on many individual components
that provide, e.g., operational data assimilation, forecast computation, and dissemination
functionality [26–28]. Hence, it is important to guide the directed development of opera-
tional runoff forecasting services and their components towards more skillful predictions
by the continuous evaluation of their performance [29].

OpenForecast is the first national-scale operational runoff forecasting system in Rus-
sia [20,24] that has been developed since 2018 by the consortium of researchers from
the State Hydrological Institute (Saint-Petersburg, Russia), the Water Problems Institute
(Moscow, Russia), the Central Administration for Hydrometeorology and Ecology Monitor-
ing (Moscow, Russia), and the Lomonosov Moscow State University (Moscow, Russia) on
the funds provided by the Russian Foundation for Basic Research. The system was launched
on 14 March 2020. Since then, OpenForecast operationally provided one week ahead runoff
forecasts for 843 gauges across Russia. In our previous research studies, we presented:
(1) the proof of concept of runoff forecasting service design (OpenForecast v1 [24]) that has
been evaluated for three pilot river basins in the European part of Russia for the period
from 1 March 2019 to 30 April 2019 (61 days), and (2) the second version of the OpenFore-
cast system (OpenForecast v2 [20]) that has been scaled to 834 gauges across Russia and
then evaluated for the period from 14 March 2020 to 6 July 2020 (115 days). Both studies
confirmed OpenForecast as a successful example of the state-of-the-art national-scale runoff
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forecasting system. However, short evaluation periods leave room for speculation about
the system’s consistency and robustness.

Here, in this Short Communication, we aim to provide a long-term assessment of
the OpenForecast performance metrics based on the results obtained for the period from
14 March 2020 to 31 October 2021 (597 days). There are five central research questions:

1. Is there a consistency between the performance on calibration and evaluation periods?
2. Is there a consistency between the performance of computed runoff hindcasts and fore-

casts? What are the differences in performance between distinct hydrological models?
3. Is communicating ensemble mean a good strategy for forecast dissemination?
4. What is the role of meteorological forecast efficiency in runoff forecasting?
5. How many people do use OpenForecast?

In our opinion, even a brief investigation of the research questions mentioned above
would increase the confidence in OpenForecast’s reliability among the general audience,
academic, and government institutions.

2. Data and Methods

The comprehensive description of data and methods used for the development of the
OpenForecast system is provided in an open-access paper [20]. Here, we briefly introduce
the system’s main underlying data sources and computational components required to
support results presentation and analysis.

2.1. Runoff Data

Streamflow and water level observations for the historical period (2008–2017) are
available at the website of the Automated Information System for State Monitoring of
Water Bodies (AIS; https://gmvo.skniivh.ru, accessed on 10 December 2021). Streamflow
(m3/s) observations have been used for hydrological model calibration. In addition to
streamflow, water level (cm above the “gauge null”) observations have been used to
calculate rating curves for the transformation of streamflow values to water level (and vice
versa) for the corresponding gauges.

Only water level observations for a limited number of gauges are available opera-
tionally at the Unified State System of Information website regarding the Situation in the
World Ocean (ESIMO; http://esimo.ru/dataview/viewresource?resourceId=RU_RIHMI-
WDC_1325_1, accessed on 10 December 2021).

2.2. Meteorological Data

ERA5 global meteorological reanalysis [30] and its pre-operational (5 day delay from
the real-time) product ERA5T serves as a source of historical meteorological forcing of
air temperature (T, ◦C) and precipitation (P, mm). The outputs from the global numeri-
cal weather prediction model ICON [31] serve as a source of deterministic 7 day-ahead
meteorological forecasts for air temperature and precipitation. Here, meteorological data
have been aggregated to the daily time step and then averaged at the basin scale for each
available river basin. In addition to air temperature and precipitation, potential evaporation
(PE, mm) is calculated using the temperature-based equation proposed in [32].

2.3. Hydrological Models

We use two conceptual lumped hydrological models: HBV [33], and GR4J [34]. While
HBV has an internal snow module, the GR4J model has been complemented with the
Cema–Neige snow accumulation routine [35,36]. Both models require only daily precipita-
tion, air temperature, and potential evaporation as inputs (see Section 2.2). HBV and GR4J
models have 14 and six free parameters, respectively (Tables 1 and 2).

https://gmvo.skniivh.ru
http://esimo.ru/dataview/viewresource?resourceId=RU_RIHMI-WDC_1325_1
http://esimo.ru/dataview/viewresource?resourceId=RU_RIHMI-WDC_1325_1
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Table 1. Description and calibration ranges for GR4J model parameters (based on Ayzel [20]).

Parameters Description Calibration Range

X1 Production store capacity (mm) 0–3000
X2 Intercatchment exchange coefficient (mm/day) −10–10
X3 Routing store capacity (mm) 0–1000
X4 Time constant of unit hydrograph (day) 0–20

X5 Dimensionless weighting coefficient of the
snowpack thermal state 0–1

X6 Day-degree rate of melting (mm/(day*◦C)) 0–10

Table 2. Description and calibration ranges for HBV model parameters (based on Ayzel [20]).

Parameters Description Calibration Range

TT Threshold temperature when precipitation is simulated as
snowfall (◦C) −2.5–2.5

SFCF Snowfall gauge undercatch correction factor 1–1.5
CWH Water holding capacity of snow 0–0.2

CFMAX Melt rate of the snowpack (mm/(day*◦C)) 0.5–5
CFR Refreezing coefficient 0–0.1

FC Maximum water storage in the unsaturated-zone store
(mm) 50–700

LP Soil moisture value above which actual evaporation
reaches potential evaporation 0.3–1

BETA Shape coefficient of recharge function 1–6

UZL Threshold parameter for extra outflow from upper zone
(mm) 0–100

PERC Maximum percolation to lower zone (mm/day) 0–6

K0 Additional recession coefficient of upper groundwater
store (1/day) 0.05–0.99

K1 Recession coefficient of upper groundwater store (1/day) 0.01–0.8
K2 Recession coefficient of lower groundwater store (1/day) 0.001–0.15

MAXBAS Length of equilateral triangular weighting function (day) 1–3

For each available river basin, model parameters have been automatically calibrated
against observed runoff using two loss functions: (1) the Nash—Sutcliffe efficiency co-
efficient (NSE; Equation (1); [37]) and (2) the Kling—Gupta efficiency coefficient (KGE;
Equation (2); [38]). Here, utilization of different loss functions is the simplest way to intro-
duce an ensemble approach for runoff forecasting [39]. Thus, in the OpenForecast system,
there are four models used to calculate runoff: HBVNSE, HBVKGE, GR4JNSE, and GR4JKGE.

NSE = 1 − ∑Ω(Qsim − Qobs)
2

∑Ω(Qobs − Qobs)2
(1)

KGE = 1 −

√
(r − 1)2 + (

σsim
σobs

− 1)2 + (
Qsim

Qobs
− 1)2 (2)

where Ω is the period of evaluation, Qsim and Qobs are the simulated and observed runoff,
Qsim and Qobs are the mean simulated and observed runoff, r is the correlation component
represented by Pearson’s correlation coefficient, σsim and σobs are the standard deviations
in simulations and observations. NSE and KGE are positively oriented and not limited
at the bottom: a value of 1 represents a perfect correspondence between simulations and
observations. NSE > 0 and KGE > −0.41 can be considered to be showing skill against the
mean flow benchmark [40].
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2.4. Openforecast Runoff Forecasting System

The OpenForecast system provides one week ahead runoff forecast for 843 gauges that
have been selected based on calibration results and data availability [20]. The illustration
of the OpenForecast computational workflow is presented in Figure 1.

Figure 1. Illustration of the OpenForecast workflow.

First, for each gauge of interest, meteorological forcing is updated based on the
latest ERA5T and ICON data (see Section 2.2). Then, the updated meteorological forcing
data is used as input to four hydrological models (Section 2.3) to obtain recent runoff
forecasts. Finally, the calculated forecasts are communicated on the project’s website
(https://openforecast.github.io, accessed on 14 December 2021).

Figure 2 illustrates OpenForecast’s modeling phases and the corresponding input data
in more detail. There are three general phases (periods): (1) hindcast, (2) pre-operational
hindcast, and (3) forecast. For the hindcast phase, ERA5 and ERA5T meteorological data is
utilized. That describes hindcasts as model predictions (similar to those on the calibration
period) during the run time of the forecasting system. Because of the delay of ERA5T
from real-time, the scheme of filling missing data between the recent ERA5T update and
ICON forecast is needed. To that, we use ICON hindcasts—the past 1 day-ahead ICON
forecasts [20,24]. To distinguish this phase from the hindcast phase, which utilizes ERA5-
based data instead of ICON-based, we call it pre-operational hindcast (Figure 2). Finally,
we use deterministic 7 day-ahead ICON forecasts to force hydrological models to provide
the corresponding predictions for the forecast phase. The results of the OpenForecast
operational run have been obtained for the period from 14 March 2020 to 31 October 2021
(597 days).

Figure 2. Illustration of the temporal sequence of modeling phases and the corresponding input data.

While we compute four realizations of runoff predictions (by the number of utilized
hydrological models; Section 2.3), we communicate only the ensemble mean (hereafter
ENS), and ensemble spread on the OpenForecast website (https://openforecast.github.io,
accessed on 14 December 2021).

https://openforecast.github.io
https://openforecast.github.io
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2.5. Reference Gauges

Unfortunately, it is impossible to provide an efficiency assessment of OpenForecast for
each of all 834 gauges. There are two main reasons: (1) the operational information provided
by the ESIMO system (Section 2.1) does not cover all OpenForecast gauges, (2) historical
water level observations from the AIS system are not always consistent with operational
information provided by the ESIMO. Thus, after the semi-automatic checking of operational
data consistency (e.g., detection of outliers, sudden changes in flow dynamics, and the
visual inspection), 252 gauges have been selected for further performance assessment
(Figure 3). This number represents 30% of operational OpenForecast’s gauges and could be
considered representative because they keep the distribution of small, medium, and large
basins similar to the general population (834 gauges). There are 13/41/46% and 20/45/35%
for small/medium/large basins and the sample and the general population.

Figure 3. The spatial location of OpenForecast gauges (n = 843) and those from the ESIMO database
that were selected for the verification procedure (n = 252).

2.6. Performance Assessment Setup

The forecasts from operational systems are typically evaluated in terms of the degree
of their similarity with observations [11,20,41]. To this end, here, two efficiency metrics
that are widely and mostly used in hydrological studies [40,42,43] are employed: (1) the
Nash–Sutcliffe Efficiency coefficient (NSE; Equation (1); [37]) and (2) the Kling–Gupta
Efficiency coefficient (KGE; Equation (2); [38]).

For each reference gauge (Figure 3), we assess individual model (HBVNSE, HBVKGE,
GR4JNSE, and GR4JKGE) performance in terms of NSE and KGE for two periods: (1) cali-
bration (1 January 2008–31 December 2017) and (2) evaluation (hindcast) (14 March 2020–
31 October 2021). Also, we assess both individual and ensemble mean (ENS) performances for
seven pre-operational hindcast (t − 7, . . ., t − 1 days) and seven forecast (t + 1, . . ., t + 7 days)
lead times (Figure 2) for the entire period of evaluation (14 March 2020–31 October 2021).

3. Results and Discussion
3.1. Consistency between Calibration and Evaluation Periods

Temporal consistency of model efficiency ensures computational system robustness
and confidence in the underlying routines and models [44–47]. There are many cases when
that consistency could be disrupted: inconsistency of meteorological data sources between
periods of consideration, significant change in runoff formation or pathways (e.g., reservoir
construction), instability of model parameters, to name a few. As a result, a well-calibrated
model could not provide reliable predictions under new conditions.

Here, we provide results of model efficiency assessment for two periods: (1) calibration
and (2) hindcast (evaluation). Figure 4 illustrates the differences between efficiencies of
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the individual models in terms of NSE (see Figure A1 for the KGE metric) for 843 Open-
Forecast gauges. The obtained results are similar for all models and illustrate visually
distinct differences between model performance on two independent periods. Expectedly,
individual model efficiencies decrease on the hindcast period compared to the calibration
period. The median NSE is dropped from 0.81 to 0.71, 0.78 to 0.66, 0.82 to 0.64, 0.8 to 0.63 for
GR4JNSE, GR4JKGE, HBVNSE, and HBVKGE, respectively. Major quantiles, 25th and 75th,
also follow the same pattern. Also, it is visually clear that the bottom “tail” of lower values
is bigger on the hindcast period than on the calibration period. Here, obtained results also
show that the HBV-based models with 14 calibrated parameters, HBVNSE and HBVKGE,
lose more efficiency than GR4J-based models with six calibrated parameters, GR4JNSE and
GR4JKGE. That provides an interesting insight into the higher reliability of simpler models
for runoff forecasting even if they had comparable efficiency during the calibration period.
However, that distinct decrease in performance from the calibration to the hindcast period
could not be considered crucial and critical for the forecasting system’s reliability. Only
the minor number of gauges show unskillful results in terms of NSE (NSE ≤ 0): four, nine,
seven, and 16 for GR4JNSE, GR4JKGE, HBVNSE, and HBVKGE, respectively. Sixteen gauges
with unskillful NSE for HBVKGE model include those detected for other individual models.
Most of them (12 out of 16) are located in the European part of Russia and represent small
and medium-size basins (under 10,000 km 2). There are 58, 78, 78, and 87 gauges that show
unsatisfactory (after [48]) yet skillful results in terms of NSE (NSE ≤ 0.5). However, there
is no distinct pattern in their spatial or basin area distribution. In terms of KGE, unskillful
results (KGE ≤ −0.41) have shown only for a single gauge by GR4JNSE and GR4JKGE
models. Therefore, we argue that OpenForecast’s underlying hydrological models are
robust and provide a solid basis for reliable runoff predictions.

Figure 4. Differences between individual hydrological model performances in terms of NSE for cali-
bration and hindcast (evaluation) periods. Violin plots represent the distribution of estimated values
within the full range of variation. Dashed lines show the quantiles of 25, 50, and 75%, respectively.
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The decrease of model efficiency on the evaluation period compared to the cali-
bration period is commonplace in hydrological modeling studies, and well-reported in
literature [20,44–47]. There are several significant reasons for that behavior, e.g., changing
meteorological or landscape conditions of considered periods or/and instability of model
parameters. However, for the present case of OpenForecast efficiency assessment, the factor
of observational data inconsistency takes its lead. First, for the performance assessment,
we use operational water level data from the ESIMO system that could be inconsistent with
historical runoff data from the AIS system that we use for model calibration (Section 2.1).
ESIMO’s data does not undergo correction routines, so that it could be misleading for some
number of gauges. Additionally, for some gauges, processes of river channel transformation
may play a huge role, so the correction of the rating curve is needed for reliable conversion
of operational water levels to runoff. Unfortunately, the AIS database has a significant time
lag for approximately two years of update cycles. Thus, we could provide an OpenForecast
performance assessment based on consistent runoff data no earlier than the end of 2022.

Figure 5 shows the spatial distribution of differences in NSE between the calibration
and hindcast periods (NSEhindcast − NSEcalibration) for the HBVKGE model for which the
corresponding differences are the most pronounced. First, we should mention that for
34 gauges (13.5%), NSE on the hindcast period is higher than the calibration period. No dis-
tinct spatial clusters of plotted differences could be attributed appropriately to geographical
or hydrological factors.

Figure 5. Spatial distribution of differences between performances of calibration and hindcast periods
for the HBVKGE model.

It was also expected that models that have been calibrated using particular metrics
(either NSE or KGE) would have better results in terms of those metrics on the evaluation
(hindcast period). Thus, GR4JNSE and HBVNSE have higher median NSE efficiencies
(0.71 and 0.64, respectively) than GR4JKGE and HBVKGE (0.66 and 0.63, respectively) on
the evaluation (hindcast) period. Obtained results raise a question of the best metric
that could serve the needs of all interested parties: professional community, government
agencies, and general public [49]. Currently, NSE and KGE metrics are popular only within
the hydrological community. Hence, we need a targeted effort to make them (or more
successful analogs) familiar to the general public.

3.2. Consistency between Hindcasts and Forecasts

In contrast to the comparison of model efficiencies between the calibration and evalua-
tion (hindcast) periods where the general idea was to validate overall model reliability and
robustness on contrasting periods (Section 3.1), here we aim to evaluate the consistency and
skill of model predictions under the inconsistent input data for the hindcast, pre-operational
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hindcast, and forecast modeling phases (Figure 2). The difference in prediction efficiency
between the hindcast and pre-operational hindcast periods aims to highlight the trade-off
of the transition from the ERA5 reanalysis to ICON hindcast to fill in meteorological forc-
ing data seven days before the forecast run time (Figure 2). The difference in prediction
efficiency between the pre-operational hindcast and forecast periods describes forecast-
ing efficiency and highlights the cumulative role of initial conditions and meteorological
forecasts in efficiency decrease over lead time.

Figure 6 illustrates the distribution of individual and ensemble mean (ENS) model
performances in terms of NSE for the hindcast period, as well as for seven pre-operational
hindcast (t − 7,. . . , t − 1 days) and seven forecast (t + 1,. . . , t + 7 days) lead times for
252 OpenForecast gauges (see Figure A2 for the KGE metric). First, it is visually appar-
ent that all models follow the same pattern of efficiency change: the efficiency slowly
decreases with increasing lead time, and there are no significant drops between hind-
cast, pre-operational hindcast, and forecast periods. Thus, all models demonstrate per-
sistent and robust behavior while assessed on a long-term period of almost two years
(March 2020–October 2021). Both mean NSE and KGE (Figures 4 and A1) are higher than
behavioral values for all considered periods and lead times: 0.5 for NSE and 0.3 for KGE
(after Knoben et al. [40]). The obtained results are in line with the previous large-scale
assessments of the OpenForecast performance [20,50] that capitalizes on the robustness
and reliability of the developed forecasting system.

Similar to the results obtained in Section 3.1, GR4J-based models (GR4JNSE and
GR4JKGE) generally show higher efficiency than HBV-based models (HBVNSE and HBVKGE)
in terms of the NSE metric. The differences are less pronounced in terms of the KGE metric.
Thus, higher model complexity (of HBV-based models) does not ensure higher efficiency
of runoff predictions and forecasts in the case of the OpenForecast system. While the
difference in mean NSE between GR4J and HBV-based models is significant (around 10%
for each lead time), they show a similar rate of around 10% for efficiency decrease with lead
time. While two different hydrological models differ in catching up with the complexity
of runoff formation processes, they respond similarly to changes in meteorological input
forcing (from hindcasts to forecasts).

3.3. Communication of Ensemble Mean

Despite a large variety of options in communicating ensemble runoff forecasts, there is
yet no consensus on what practice fits differing requirements of many parties the best [51].
From the beginning, communication of the ensemble mean and spread is the only option
in the dissemination of runoff forecasts in the OpenForecast system [24]. That choice was
driven by two main factors: (1) ensemble mean could provide more skillful and less biased
results than each of its members [52,53], and (2) visualization of a single line is perceptually
clear and easier to understand [51]. The previous assessment studies confirm that as reliable
and skillful [20,50]. Figure 7 illustrates time series of simulated ensemble mean streamflow
compared to observations.

Figure 8 shows the development of mean efficiencies with a lead time for individual
models, as well as their ensemble mean, for the long-term evaluation period in terms of
NSE and KGE. Results show that the communication of ensemble mean is the best strategy
so far–ENS demonstrates higher efficiency than all individual models for all lead times in
terms of both performance metrics.
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Figure 6. Differences between performances of individual hydrological models and their ensemble
mean for the hindcast, pre-operational hindcast, and forecast modeling phases in terms of NSE. Violin
plots represent the distribution of estimated values within the full range of variation. Dashed lines
show the quantiles of 25, 50, and 75%, respectively.
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Figure 7. Time series of observed and predicted (7-day ahead ensemble mean) streamflow for gauges
with high (top panel), medium (middle panel), and low (bottom panel) NSE.

Figure 8. Mean values of individual model efficiencies and their ensemble mean for the evaluation
period (hindcast, pre-operational hindcast, and forecast) in terms of NSE (top panel) and KGE
(bottom panel) metrics.

Results show that communication of ensemble mean benefits more for the end-users
because of perceptual clarity and the highest prediction efficiency. The latter probably is a
result of a combination of structurally different yet efficient models [53–55]. We see ample
potential to increase further the number of hydrological models within the computational
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core of OpenForecast. The recent advances in hydrological model distribution as an open-
source software package [56–58] makes it particularly easy to implement and further
capitalizes on the open nature of the OpenForecast system.

3.4. Role of Meteorological Forecast Efficiency

Discrepancies between observed and predicted runoff may have many sources (uncer-
tainties), e.g., the inability of the hydrological model to capture the entire diversity of runoff
formation processes on the considered watershed, and/or systematic biases in meteorologi-
cal input data that could trigger errors in initial conditions and following predictions [59,60].
In the presented study, we provide information on cumulative model-related and data-
induced errors that could be represented as a difference between the reference efficiency
(1 for both NSE and KGE) and the efficiency on the calibration/evaluation (Section 3.1) and
forecast (Section 3.2) periods. Results showed that, on average, runoff forecast efficiency
decreases on 10% in terms of NSE between t − 1 and t + 7 days lead times (Section 3.2,
Figure 8). While it is almost impossible to distinguish the different sources of errors in
runoff prediction without a controlled environment, here we provide a brief quality assess-
ment of ICON forecasts comparing them with ERA5 data, which is considered as ground
truth (Figure 9).

Figure 9. Evaluation-period correlation coefficients between ERA5 reanalysis and ICON forecast data
with increasing lead times for air temperature (P, top panel) and precipitation (T, bottom panel).

Results show that while numerical weather prediction made a huge step towards
increasing efficiency of weather forecasts in recent decades [61], the chaotic nature of
precipitation-related processes remains the main (unsolved) problem. It is clear that the
efficiency of air temperature forecasting is solid and highly reliable—the lowest correlation
coefficient is around 0.93 with the lowest mean value of 0.96 for a lead time of one week
(Figure 9, top panel). In contrast, the mean correlation coefficient for precipitation decreases
from 0.9 to 0.29 for the lead times of t + 1 and t + 7 days, respectively (Figure 9, bottom
panel). However, due to a crucial role of transformation processes of water flow on a
watershed (e.g., water travel time, basin memory), that distinct decrease in precipitation
forecast efficiency does not directly transfer to a similar decrease in runoff forecast efficiency.
Recent studies show [62,63] that modern deep learning techniques have ample potential
to set new state-of-the-art results in the field of precipitation forecasting. Until then,
OpenForecast may increase the number of meteorological forecasting products (apart
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from sole ICON) used in the system’s computational core to provide a wider range of
ensemble forecasts.

3.5. OpenForecast Users

The description of runoff forecasting systems users is usually ignored in scientific
literature. The high importance of any developed forecasting system is unquestionable
until it helps mitigate the effect of extreme floods. However, high importance does not
assure a high number of users, and we argue that this topic has high relevance for the
hydrological community, which develops forecasting services.

In contrast to weather forecasts, runoff forecasts have limited temporal and spatial
demand. Floods typically occur in known flood-rich periods and should be impact-relevant,
i.e., affect population and material property in river valleys, to be a problem for local
communities. Thus, many people do not even require any flood forecasts, which cannot be
said about the weather forecasts. Figure 10 illustrates OpenForecast daily users and devices
they use to access the forecasting system website (https://openforecast.github.io, accessed
on 22 December 2021).

Figure 10. OpenForecast daily users and the distribution of their device types.

Figure 10 shows that the daily number of OpenForecast users highly correlates with
flood-rich periods of spring, snowmelt-driven (March–June) and summer, rainfall-driven
(June–July) flood periods. Thus, of the 12 months of the year, only four provide an interest
to the public. In this way, due to continuous operational run on an everyday basis, Open-
Forecast demonstrates very high idle costs—that could be negligible for government-driven
agencies or big tech companies but considerable for small independent research groups or
startups. Also, most OpenForecast users use it from their desktops—obsolete devices in
the new mobile era. There are obvious reasons for that, e.g., the absence of mobile version
or application and (comparatively) slow evolving flood events that do not require frequent
on-the-go updates. The absolute number of users is also meager and could be considered
negligible compared to daily users of weather forecasts (millions of people). However,
we know that OpenForecast is routinely utilized as an additional information source by
different government authorities; thus, it indirectly delivers reliable 7-day ahead runoff
forecasts for a wider audience.

4. Conclusions

The main aim of the presented Short Communication is to provide an up-to-date per-
formance assessment of the long-term operational run of the OpenForecast system–the
first national-scale service that delivers 7-day ahead runoff forecasts for 834 gauges across
Russia. To that, we assess the efficiency of OpenForecast on the evaluation period from
14 March 2020 to 31 October 2021 (597 days) for 252 gauges that have been supported
by reliable operational runoff observations (Figure 3). The results could be summarized
following the related research questions as follows:

1. All hydrological models under the hood of OpenForecast computational workflow
(Figure 1) demonstrate robust and reliable results of runoff prediction either on

https://openforecast.github.io
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calibration or evaluation (hindcast) periods (Figure 4). We argue that the selected
hydrological models form a solid basis for operational forecasting systems allowing
consistent and skillful runoff predictions.

2. While the OpenForecast system utilizes different sources of meteorological data for
different modeling phases (Figures 1 and 2), there are no distinct gaps in model per-
formance between them (Figure 6). The additional exciting insight obtained: simpler
models have comparable or even higher reliability on the evaluation period than more
complex models even while demonstrating similar results on the calibration period.

3. The ensemble mean of individual model forecast realizations outperforms each model
in terms of NSE and KGE for all considered evaluation periods and lead times
(Figure 8). That underlines that the communication of ensemble mean with the
end-users is the best dissemination strategy so far.

4. Despite the recent advances in numerical weather prediction, the skill of one-week-
ahead precipitation forecasting remains the main (unsolved) problem in the fore-
casting chain (Figure 9). However, due to the comparatively high inertia of runoff
formation processes on a watershed, uncertainties of precipitation forecast do not
entirely transfer to the runoff predictions.

5. User engagement in accessing runoff forecasting systems is low and mostly limited to
flood-rich periods (March–July) (Figure 10). That makes costs of idle systems high
and requires new, mobile-first approaches to deliver runoff forecasts to the general
public efficiently.

In summary, OpenForecast could be considered as a successful national-scale fore-
casting service that delivers timely and reliable runoff predictions for hundreds of gauges
across Russia. In further studies, we will continue to capitalize on the increasing diversity
of issued runoff ensembles by increasing the number of utilized hydrological models and
sources of meteorological forecast data. In addition, we admit an ample potential of deep
learning techniques to be utilized on different stages of the forecasting chain to increase
its efficiency.
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Appendix A

Figure A1. Differences between individual hydrological model performances in terms of KGE for cal-
ibration and hindcast (evaluation) periods. Violin plots represent the distribution of estimated values
within the full range of variation. Dashed lines show the quantiles of 25, 50, and 75%, respectively.
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Figure A2. Differences between performances of individual hydrological models and their ensemble
mean for the hindcast, pre-operational hindcast, and forecast modeling phases in terms of KGE.
Violin plots represent the distribution of estimated values within the full range of variation. Dashed
lines show the quantiles of 25, 50, and 75%, respectively.
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