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Abstract: Landslides are one of the most disastrous natural hazards that frequently occur in Indonesia.
In 2017, Balai Sabo developed an Indonesia Landslide Early Warning System (ILEWS) by utilizing
a single rainfall threshold for an entire nation, leading to inaccuracy in landslide predictions. The
study aimed to improve the accuracy of the system by updating the rainfall threshold. We analyzed
420 landslide events in Java with the 1-day and 3-day effective antecedent rainfall for each landslide
event. Rainfall data were obtained from the Global Precipitation Measurement (GPM), which is
also used in the ILEWS. We propose four methods to derive the thresholds: the first is the existing
threshold applied in the Balai Sabo ILEWS, the second and third use the average and minimum
values of rainfall that trigger landslides, respectively, and the fourth uses the minimum value of
rainfall that induces major landslides. We used receiver operating characteristic (ROC) analysis to
evaluate the predictability of the rainfall thresholds. The fourth method showed the best results
compared with the others, and this method provided a good prediction of landslide events with a
low error value. The chosen threshold was then applied in the Balai Sabo-ILEWS.

Keywords: landslides; early warning system; rainfall threshold; ROC

1. Introduction

Landslides are natural phenomena that can cause physical damage and even fatalities,
and occur almost all over the world [1,2]. Many countries try to mitigate landslide disas-
ters by using structural methods (e.g., slope stabilization, drainage, vegetation, barriers),
nonstructural methods (e.g., early warnings, land-use planning, escape routes, emergency
management) or both [2,3]. However, the use of nonstructural treatments is favored due
to their ease of application and financial considerations [4]. Among these nonstructural
technologies, the most widely applicable measure are landslide early warning systems
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(LEWS) [4]. Many countries have developed LEWS with various approaches and coverage
areas. Piciullo et al. [5] divided LEWS coverage areas into local and territorial. A system is
local when the LEWS is based on only a single or several slopes, and a territorial system
covers more extensive areas, such as regional (administrative boundaries of districts and
provinces), national (for a country), and global for all of the world [6]. Guzzetti et al. [6]
mentioned that from 1977 to 2019, at least 26 locations implemented a LEWS, whether on a
national, regional, or global scale.

In Indonesia, landslides are one of the most disastrous natural hazards that frequently
occur [7–9]. Rainfall is the primary factor among the various triggering forces creating land-
slides [10]. Most landslides are caused by rainfall, particularly within the wettest months of
the rainy season [11–14]. Rainfall-induced landslides are responsible for approximately 90%
of deaths related to slope failure [15]. The rainfall threshold is widely used in the LEWS
around the world. Indonesia, therefore, has developed LEWS based on rainfall thresholds
on both the regional and local scales [7,16]. The rainfall threshold method provides a quick
warning compared with warnings derived from the soil modelling approach. A combina-
tion between the empirical rainfall threshold and rainfall measurements is generally the
most popular method applied in LEWS [17].

As one of the government agencies that has the task of managing sediment-related
disasters, Balai Sabo has developed the Indonesia Landslide Early Warning System (Balai
Sabo-ILEWS). Balai Sabo-ILEWS implements the rainfall threshold for a regional-scale
LEWS. The warning level given by the Balai Sabo-ILEWS, however, is based on a single
rainfall threshold value, which hampers the accuracy of the Balai Sabo-ILEWS. Nevertheless,
the information provided by the Balai Sabo-ILEWS is very helpful for increasing public
preparedness for landslides [18]. Updating and developing new rainfall thresholds are
essential tasks and should be carried out regularly to improve the accuracy of LEWS.
More detailed information on the ILEWS can be obtained from https://sda.pu.go.id/balai/
tekniksabo/public (accessed on 10 November 2021) and Hidayat et al. [7].

Rainfall data gathered from ground-based observations are highly accurate and are
often utilized in landslide research. However, this technique is pricey and has low area
coverage due to a lack of ground station density, particularly in mountainous areas. In this
study, satellite-derived rainfall products obtained from the Tropical Rainfall Measuring
Mission (TRMM) and Global Precipitation Measurement (GPM) have been chosen to
overcome this problem [19]. These data can be integrated into nowcasting and forecasting
warning systems for landslide risk management if combined with rainfall forecasting
(e.g., the rainfall forecasts produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF)) [20]. The existing Balai Sabo-ILEWS uses a regional scale with a single
rainfall threshold value for all of Indonesia [7]. This system was established in 2017 and is
still under further development. The Balai Sabo-ILEWS uses rainfall predictions from the
ECMWF as input to predict landslides up to 4 days ahead. In 1 week, this system is run
twice, namely on Tuesdays to give warnings for the next 3 consecutive days (Wednesday,
Thursday, and Friday) and on Fridays to provide alerts for the next 4 consecutive days
(Saturday, Sunday, Monday, and Tuesday) [7].

Differences in the geographical conditions of the Indonesian region mean that the
use of a single rainfall value as a threshold leads to inaccurate results. Aldrian and Dwi
Susanto [21] stated that rainfall in Indonesia can be divided into three regions, based on their
characteristics. Region A starts from south Sumatera and also covers south Kalimantan,
Java to Timor Island, Sulawesi, and Irian Jaya. Region B begins at northern Sumatra and
continues to northern Kalimantan. Region C consists of the northern part of Sulawesi
and Maluku. Region A is the most dominant area because it covers an extensive area [21].
Therefore, this study aimed to improve the accuracy of the Balai Sabo-ILEWS by updating
the general threshold that was previously implemented in the system with a more specific
threshold that is solely developed for Region A. Statistical approaches based on historical
landslide events were used to select the best applicable threshold. Due to the limitations of
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the data collected, this study will focus only on Region A, especially Java Island, where
most landslides have occurred [22].

2. Materials and Methods
2.1. Study Area

The location of this research was Java Island. The total area of Java Island is 128.297 km2,
consisting of mountainous areas with several active volcanoes and various elevation levels
between 0 and 2500 m (Figure 1). Java Island is one of the many islands on the perimeter
of the Eurasian Plate in Indonesia, and subduction has had an important impact on its
geological history [23]. The physiographic zones identified by van Bemmelen [24] were
subdivided into 7 groups based on different ages, processes, and lithology (Figure 2) as fol-
lows: (1) From the west to the east of Java Island, the Quaternary Volcanic Zone is defined
by a series of volcanic arcs, characterized by alluvial deposits from quaternary volcanoes.
(2) The southern mountains zone is characterized by limestone and volcanic rock estimated
to be from the Miocene, and there is an endogenous process in the form of uplift in the south
of Java Island. (3) The central depression zone, which is the main axis of the island of Java,
is formed by the endogenous process. (4) The Kendeng hills have Mio-Pleistocene deposits
in part of the middle anticlinal zone extending from west to east. (5) The Randublatung
depression, located at the foot of the Kendeng hills, consists of Mio-Plestocene deposits.
(6) The Rembang–Madura anticlinorium is composed of limestone rocks formed during
the Miocene. (7) The alluvial lowlands formed by the deltaic deposits build the northern
coast of Java.
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Java Island has a tropical climate with annual mean air temperatures ranging from 26.4
to 29.6 ◦C and an average rainfall intensity of 320 mm/month during the rainy season [25].
These conditions make Java Island vulnerable to many types of weather-induced natural
disasters, including landslides [26]. Compared with landslide occurrence in the entire
nation, Java Island has the highest frequency of landslide occurrence, namely 62.0% of
the total landslides in Indonesia, compared with Sumatra (21.2%), Sulawesi (6.7%), and
Kalimantan (5.1%) [22]. Aside from this condition, Java Island has the highest population
level in Indonesia, with 151.6 million people or 56.10% of the entire population of Indonesia
living in this island. The largest population (48.27 million people) resides in the West Java
Province, followed by East Java with 40.67 million people, Central Java with 36.52 million,
and DI Yogyakarta with 3.67 million people [27]. Java Island has become the center
of economic growth in Indonesia with the best infrastructure and industrial facilities;
therefore, developing a regional landslide warning system with sufficient accuracy is of
utmost importance in this island compared with other islands.

2.2. Data
2.2.1. Landslide Events

The landslide data used to build the rainfall thresholds were collected from 2017 to
2020, with a total of 420 landslide events (Figure 1). These landslide inventories were
gathered from the government websites responsible for natural disaster management, such
as the national and regional disaster management Agencies (BNPB and BPBD, respectively)
and from other sources such as digital newspapers, blogs, and technical reports [28]. The
data collected should provide information about the location, time, losses of material and
life, and the number of affected residents. These data are usually used to provide emergency
aid when a landslide occurs [29]. Landslides in this study refer to shallow landslides that
were triggered by rainfall. Shallow landslides occur not because of rising groundwater
levels but are due to rainfall infiltration in the soil [30].

The landslide events are distributed into several locations based on the area. In
total, the landslide events were distributed across four sites (Figure 1). Central Java is the
location where most landslides occurred, with 200 landslides or almost half of the total
landslide events (48%). West Java and East Java recorded 153 (36%) and 52 (12%) landslides
occurrences, respectively. DI Yogyakarta is the location with the fewest landslide events,
with only 15 (4%) landslides documented during 2017–2020. This study also categorized
several landslide events that affected areas of more than 100 m2 as major landslide events.
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Among the 420 landslide events, 23 of them were major landslides. Figure 3 shows examples
of landslide events triggered by heavy rainfall in Purworejo and Banyumas Districts, Java.
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Figure 3. Landslide events triggered by rainfall in Java Island (a) at Purworejo District on 28 October
2020 and (b) at Banyumas District on 17 November 2020.

2.2.2. Observed Rainfall Data

There is a significant number of global satellite rainfall products, for instance, Global
Satellite Mapping of Precipitation (GSMap) Reanalysis, the Climate Prediction Center
Morphing Algorithm (CMORPH), PERSIANN-CCS, IMERG, and TRMM [31]. In ILEWS,
TRMM data were used as input to develop a flood and landslide monitoring system [32–34].
However, in December 2019, the TRMM mission ended, but it was continued by the GPM
mission as its successor. The GPM mission is also a joint project between NASA and JAXA
that launched in February 2014 from Tanegashima Space Center, Japan. The GPM has
broader global coverage data than TRMM, between latitudes of approximately 65◦ north
and 65◦ south. The GPM mission carries two instruments, a radiometer called the GPM
Microwave Imager and a Dual-Frequency Precipitation Radar [35]. These instruments
aim to probe global precipitation characteristics (rain, snow, ice) in a more accurate way
and assist in forecasting the extreme events that lead to natural hazards, such as floods,
droughts, and landslides [36,37].

For this study, the rainfall dataset used to determine the threshold was derived from
the GPM mission. The GPM mission has provided data from 2000 until now. The rainfall
data was downloaded from https://giovanni.gsfc.nasa.gov/ (accessed on 8 September
2021) with a spatial resolution of 0.1◦. Two types of rainfall data were used in the analysis,
namely 1-day and 3-day effective antecedent rainfall. The 1-day and 3-day effective
antecedent rainfalls were estimated on the basis of the date when the landslide occurred
(from 00.00 to 24.00). For instance, a landslide occurred in West Bandung on 2 January 2018,
so the rainfall data from 31 December 2017 to 2 January 2018 were downloaded. The daily
rainfall used the rainfall data from the same date of the landslide, in this case, the rainfall
data on 2 January 2018. The effective antecedent 3-day rainfall was calculated following
Glade et al.’s [38] equation using cumulative rainfall data on the same date of the landslide
and the two preceding days’ effective antecedent rainfall data, in this case, 31 December
2017 and 1 January 2018.

Other rainfall data required in this study to determine the rainfall threshold were
the rainfall events that did not trigger landslides. Following the method proposed by
Muntohar et al. [8], the landslide events considered in this study were only the first events,
if there were several subsequent landslide events at the same location. To determine a
meaningful comparison of the triggering and nontriggering rainfall events, we selected
high-intensity rainfall that did not trigger a landslide in the same location as a landslide
in the month(s) before the landslide event [39]. For example, if a landslide occurred on
24 April 2017, the 1-day and 3-day rainfall events considered to be nontriggering were
high-intensity rainfall in the same location in the month(s) before 24 April 2017. In total,

https://giovanni.gsfc.nasa.gov/
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the number of triggering rainfall events and nontriggering rainfall events collected in this
study was 420 and 750, respectively. Figure 4 shows the rainfall data used in this study,
with the y-axis being 1-day cumulative rainfall and the x-axis being the 2-day effective
antecedent rainfall. The 3-day effective antecedent rainfall is the total of the 1-day and
2-day effective antecedent rainfall.
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2.3. Methods
2.3.1. Effective Antecedent Daily Rainfall

The rainfall is not only the factor that contributes to slope failure. Pre-existing soil
moisture conditions in the area also contribute to the landslide occurrences. As soil moisture
measurements are either rarely or not readily available prior to a landslide event, effective
antecedent daily rainfall can be considered as an index of soil moisture conditions preceding
the event [38,40]. Following Chikalamo et al. [39], who studied rainfall thresholds for
Bogowonto Catchment, Central Java, we adopted the effective antecedent daily rainfall
model proposed by Glade et al. [38] and Zezere et al. [41]. The effective antecedent rainfall
(AR) index is calculated as follows:

ARx = kR1 + k2R2 + . . . + knRn (1)

where ARx is the effective antecedent daily rainfall for day x, k is the coefficient of the decay
rate of the flood hydrograph curve, R1 is the daily rainfall for the day before day x, and Rn
is the daily rainfall n days before day x. Unlike Chikalamo et al. [39], who used a range
of antecedent period lengths to assess the optimum number of days for calculating the
antecedent rainfall, in this study, we only considered 3-day and daily rainfall accumulation.
This selection was based on the consideration that the current LEWS uses 1-day and 3-
day cumulative rainfall to derive rainfall thresholds [7]. The 3-day effective antecedent
rainfall is the sum of daily rainfall and 2-day effective rainfall, following Equation (1), that
was calculated before the date of the landslide. Following Chikalamo et al. [39], we also
assumed k = 0.9, which came from a study of flood hydrograph recessions in the Central
Java region. In fact, the decay rate depends on catchment shape and size, vegetation cover,
relief, slope gradients, soil type, and the existence of natural or artificial lakes [38].



Geosciences 2022, 12, 129 7 of 17

2.3.2. Determination of Rainfall Thresholds

The rainfall corresponding to each landslide event in the inventory was obtained from
the GPM data by extracting the daily rainfall value from the GPM grid cell covering the
event’s location on the event date. The same procedure was applied to obtain rainfall
estimates for up to 3 days preceding a landslide event to calculate the antecedent rainfall.
We derived the new rainfall thresholds by analyzing the relationship between the 1-day
rainfall during the landslide event and the 3-day effective antecedent rainfall. This rela-
tionship was shown by plotting the daily cumulative rainfall on the day of the landslide
events in each region against the 3-day effective antecedent rainfall. Afterwards, without
using rigorous probabilistic analysis, a regression line was drawn from the scatter plot to
obtain the rainfall thresholds (Figure 5a,b) using four methods. The first method is the
existing rainfall threshold implemented in the Balai Sabo-ILEWS. The second uses the same
approach as the existing Balai Sabo-ILEWS but with new data collected from 2017 to 2020.
A threshold line was drawn based on the average value of the 1-day and 3-days effective
antecedent rainfall [7]. The third method connects the lowest values of the rainfall events
that triggered landslides [8]. Lastly, the fourth method refers to Hong et al. [42], in which
the threshold line was drawn based on the minimum value of major landslides.

2.3.3. Performance Analysis of Rainfall Thresholds

All the rainfall thresholds derived by all methods were evaluated using the receiver
operating characteristic (ROC). The ROC is a two-dimensional plot describing the perfor-
mance of the classifier system [43], using the contingency table and the area under the curve
(AUC). The contingency table consists of four conditions based on the model predictions,
and the occurrences or non-occurrences of a specific event are categorized as true positive
(TP), true negative (TN), false positive (FP), and false negative (FN). Positive and negative
refer to the model predictions, while true and false refers to the validity of the model
predictions and real events [44]. In application, TP occurs when the rainfall is above the
threshold and a landslide occurs. TN occurs when the rainfall is below the threshold and a
landslide does not occur. FP occurs when the rainfall is above the threshold but a landslide
does not occur. FN occurs when the rainfall is below the threshold but a landslide occurs
(Table 1). In summary, there are two conditions: correct predictions (TP and TN) and wrong
predictions (FP and FN) [8]. The performance of the thresholds was measured based on
several statistical indices obtained from calculation, as shown in Table 1. The statistical
indices are shown in Table 2.

The area under the curve (AUC) was used to evaluate the ability of the classifier
system to discriminate the actual condition of landslide events in the field [43]. To create
the AUC, we have to draw the ROC curve by plotting the sensitivity on the Y-axis and the
1-specificity on the X-axis for all possible thresholds. The capability levels of the classifier
system based on the AUC value are presented in Table 3 [43].
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Table 1. Contingency table.

Model
Predictions

Landslide Events

Yes No

≤Threshold TP FP
>Threshold FN TN

Table 2. Statistical indices used to measure the performance of the thresholds.

Statistical Indices Description Equation

Sensitivity/true positive rate
(TPR)

The proportion of positive
cases of landslide events that
are correctly detected by the

threshold

TPR = TP
TP+FN

Specificity/true negative rate
(TNR)

The proportion of negative
cases of landslide events that
are correctly detected by the

threshold

TNR = TN
TN+FP

Accuracy The proportion of correct
predictions overall Acc = TP+TN

TP+TN+FP+FN

Table 3. AUC value classifications.

AUC Value Descriptions

0.5 No discrimination, random guesses
0.5 < AUC ≤ 0.6 Poor discrimination
0.6 < AUC ≤ 0.7 Acceptable discrimination
0.7 < AUC ≤ 0.8 Excellent discrimination

0.9 < AUC Outstanding discrimination

3. Results
3.1. Rainfall Threshold Results

Following the methods to estimate the threshold lines as explained in Section 2.3.2,
we derived four rainfall thresholds for all 1-day cumulative rainfall (Figure 5a) and 3-day
effective antecedent rainfall (Figure 5b). The four rainfall threshold values in the 1-day and
3-day effective antecedent rainfall showed the same pattern. The biggest threshold is the
existing threshold, with a value of 61 mm and 91 mm for the 1-day and 3-day effective
antecedent rainfall, respectively. This is followed by the average threshold, with results of
39 mm and 81 mm, then the minimum for major landslide threshold with values of 30 mm
and 64 mm. The last is the smallest landslide threshold, which had the lowest values of
rainfall that triggered landslides, with threshold values of 15 mm and 40 mm for 1-day and
3-day effective antecedent rainfall, respectively.

3.2. Performance Analysis
3.2.1. ROC Curve

The performance analysis results from using the ROC curve for both 1-day and 3-
day effective antecedent rainfall are shown in Figure 6. This indicates that the 3-day
effective antecedent rainfall produces higher performance (AUC = 0.73) than the 1-day
cumulative rainfall (AUC = 0.70). The difference between the 1- and 3-day cumulative
rainfall, however, is relatively small. AUC values above 0.7 imply that the model shows
excellent discrimination (Table 3), meaning that the thresholds derived by the classifier
system have a very good level of accuracy and are not just random guesses.
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3.2.2. Confusion Matrix and Statistical Indices

The results of the confusion matrix and statistical indices for each threshold in this
study are summarized in Table 4. In total, we used 420 landslide events and 1170 rainfall
events for the 1-day and 3-day effective antecedent rainfall. The statistical results are shown
as the average 1-day and 3-day effective antecedent rainfall. Statistical values above 0.5 are
considered to be able to provide an explanation of the performance, and a value above 0.5
is categorized as “good” and one below 0.5 is categorized as “not good” [31].

TPR and TNR

TPR and TNR describe the ability of the threshold to predict actual landslide events
and actual landslide nonevents, respectively. Thus, higher TPR and TNR results mean
that the threshold performs better. Based on Table 4, the TPR values, ranked from the
highest to the lowest, were obtained by the thresholds calculated using the third, fourth,
second, and first methods. The third and fourth methods showed “good” TPR values with
values higher than 0.5, 0.99 and 0.60, respectively. In contrast, the second and first methods
showed “not good” TPR values of 0.38 and 0.21, respectively. The TNR values, starting
from the highest to the lowest values, were ranked as the first method with a TNR value of
0.97, the second method with a TNR value of 0.89, the fourth method with a TNR value
of 0.71, and the third method with a TNR value of 0.14. Thus, all methods yielded “good”
performance except for the third method, which showed “not good” performance. If we
combine the TPR and TNR values, then the highest TPR+TNR values are obtained by the
fourth method with a total value of 1.31, followed by the second method, the first method,
and the third method, with total values of 1.27, 1.18, and 1.13, respectively.

Accuracy

Accuracy is the correct percentage prediction of a threshold regarding whether land-
slides occur or not, compared with all predictions generated by the threshold [28]. The
higher the accuracy, the better the threshold. Table 4 shows that other than the third
method, all the methods produce good prediction accuracy scores, with a small difference
in accuracy. The second method had the highest accuracy of 0.71, followed by the first
method (0.7) and the fourth method (0.68), while the third method had the lowest accuracy
of 0.45.
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Table 4. Result of the confusion matrix and statistical indices.

Method Threshold
Line Duration Threshold

(mm) Contingency Table * Av. ** TPR Av. TNR Av.
Accuracy

1st Existing
threshold

1 Day 61
59 1

0.21 0.97 0.70
361 749

3 Days 91
120 44

300 706

2nd Average

1 Day 39
155 79

0.38 0.89 0.71
265 671

3 Days 81
168 93

252 657

3rd Minimum

1 Day 15
417 693

0.99 0.14 0.45
3 57

3 Days 40
417 590

3 160

4th
Minimum of

major
landslides

1 Day 30
229 186

0.60 0.71 0.68
191 564

3 Days 64
272 245

148 505

* Includes the values of TP, FP, FN, and TN, referring to Table 1. ** Average.

Overall Statistical Scores

Based on the results from Table 4, we summarized the general performance of the
thresholds in Table 5. We categorized scores above 0.5 as “good” and those below 0.5 as
“not good” (as explained in Accuracy Section). The best threshold was identified for the
threshold generated by the fourth method because it was the only threshold that showed
good performance in all categories. The fourth method can provide good predictions
of landslide events and landslide nonevents. In addition, this method also has a small
error prediction rate compared with the actual landslide events. The first and second
methods have similar performance. The thresholds derived from these approaches have
poor performance for predicting landslides, even though the thresholds have good results
for predicting landslide nonevents. Both methods, however, have good prediction accuracy.
The last is the third method, which yields a good result for predicting landslide events but
it has poor performance in estimating landslide nonevents. Moreover, the accuracy of this
threshold is below 0.5, and it was categorized as a method that produces poor prediction
performance.

Table 5. The general performance of the thresholds.

Method Threshold Line TPR TNR Accuracy

1st Existing threshold Not Good Good Good
2nd Average Not Good Good Good
3rd Minimum Good Not Good Not Good
4th Minimum of major landslides Good Good Good

4. Discussion
4.1. Worldwide Rainfall Thresholds

In Figure 7, we plot other regional rainfall thresholds collected from 2018 to 2021 from
all over the world proposed by [8,39,45–47] in a power law as a comparison. All of those
thresholds use a similar condition/approach to our study (regional rainfall threshold in
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a mountainous area and only considering shallow landslides). We also plot the existing
Balai Sabo-ILEWS threshold (first method), that proposed by Hidayat et al. [7], and the
proposed threshold derived from the best method, which is the fourth method. This plot
only considers the minimum 1-day and 3-day rainfall thresholds following the rainfall
threshold used in this study. Figure 7 shows that the proposed threshold in this study
lies in the middle of other thresholds. This indicates that the selected threshold is in good
agreement with the other thresholds.
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The landslide thresholds derived from average daily rainfall vary from less than
10 mm to more than 70 mm. This indicates that the landslide threshold is highly dependent
on the location, climate, and method used for determining the threshold line [48]. High-
land regions with natural steep slopes and lowland areas with artificial slopes will have
a different rainfall intensity prior to a landslide, resulting in a different rainfall threshold.
Furthermore, developing a landslide threshold in a certain location must consider the dif-
ferences in seasons, climate, land cover, and soil conditions compared with other locations,
which will lead to a different threshold value, even though the location being reviewed is
the same.

In this study, we only reviewed the general threshold for the entire region of Java
Island without considering differences in the local conditions, such as differences in seasons,
land cover, and soil conditions. The threshold in this study was used for all of Java Island
during either the rainy season or dry season. Compared with the existing threshold (the
first method), the newly proposed threshold (the fourth method) showed better prediction
performance but a lower precipitation threshold. The 1-day cumulative rainfall was reduced
by more than half, from 61 mm/day to 30 mm/day, and the 3-day cumulative rainfall
was reduced by almost 30%, from 91 mm/3 days to 64 mm/3 days. This condition
occurred because the trend of rainfall events that trigger landslides in the research location
is decreasing for the period of 2017–2020, which means that lower rainfall intensity is
needed to trigger a landslide event. However, we should note that the average of the
rainfall events that triggered landslides in 2017–2020 in terms of the 1-day and 3-day
cumulative rainfall is 39 mm and 81 mm, respectively, and both of these still lie below
the existing thresholds. Our result suggests that the use of existing thresholds should be
revisited, and the use of newly developed thresholds must be urgently implemented in the
Balai Sabo-ILEWS.
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4.2. Implementation in the Balai Sabo-ILEWS

Rainfall threshold data combined with susceptibility maps are often used to generate
LEWS and are proven to give good results [49–52]. A susceptibility map is used to predict
the landslides’ locations, while the rainfall threshold is used to estimate the time of landslide
events [49,53]. This method was also applied in this study by combining the selected
rainfall threshold with Indonesia’s susceptibility map. Indonesia’s susceptibility map was
established by the Geological Agency of Indonesia in 2017 using a heuristic and statistical
approach [54]. With a resolution of 1:250.000, the susceptibility map divides Indonesia
into four zones namely: very high (red), moderately high (orange), low (blue) and very
low (green). Several parameters were used to build this map, such as the slope, soil type,
geological structure, land use, and landslide history [54]

The existing Balai Sabo-ILEWS provides information about landslide warnings only
for the locations that are indicated on the landslide susceptibility maps as “moderately
high” and “very high“ [1]. Other conditions such as “very low” and “low” are assumed
to be always stable. The recent system assumes that the “moderately high” and “very
high” regions have the same landslide probability, even though it is not the case. The “very
high” regions have a higher landslide probability than the “moderately high” regions. In
this study, we propose a new approach to be implemented in the Balai Sabo-ILEWS that
considers the differences in rainfall classification and the landslide susceptibility map. The
landslide susceptibility map is shown in Figure 8.
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To define landslide warning levels, we classified the warning levels based on the
amount of 1-day and 3-day effective antecedent rainfall and the landslide susceptibility
map. The rainfall classification is divided into three conditions. A very high rainfall
classification is applied if 1-day and 3-day effective antecedent rainfall of more than 30 mm
and 64 mm occurs, respectively. A high rainfall classification is applied if it meets only one
of these conditions, and low rainfall classification is given if it does not meet both conditions.
The warning level gives four levels of warning in different classes. Warning classes are
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intended to provide better information for the stakeholders. Following Park et al. [55] and
Pradhan et al. [50], warning levels, from the lowest to the highest, are indicated by green
(Null), yellow (Watch), orange (Attention), and red (Alert) (Figure 9). “Null” is used if there
is no warning, “Watch” as a preliminary warning, “Attention” as a precautionary warning,
and “Alarm” as a warning that a landslide may occur at any time.
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Rainfall with a low classification will trigger a “Watch” warning in the regions located
in the very high landslide susceptibility areas. The rest (moderately high, low, and very
low), receive no warning or “Null”. Rainfall classified as high will trigger “Attention” and
“Watch” warnings for regions located in the very high and moderately high risk areas,
respectively. For low and very low risk regions, there are no warnings. The last, (very
high) rainfall classification will trigger “Alarm”, “Attention”, and “Watch” warnings for
regions located in the very high, moderately high, and low landslide-susceptibility areas,
respectively. The very low regions receive no warning, whatever the rainfall classification
is. Through this method, the same precipitation classification in different landslide-prone
locations will produce different warning levels.

We applied this new approach in Banjarnegara district to find out the performance.
This location is within Central Java, where almost half of the landslide events in this study
occurred. The total number of landslides in Banjarnegara during 2017–2020 was 15 events.
The results show that 23 “Alarm” warnings were recorded, 122 for “Attention”, 373 for
“Watch” and 578 for “Null”. All the actual landslide events could be predicted by the
system, although the accuracy was 65%. Among the 15 landslide events, most of them
occurred when there was an “Alarm” warning and only two landslide events occurred at
“Attention” and one landslide event at “watch”. Another issue is the number of “Attention”
and “Watch” warnings, which were quite numerous in our opinion. This condition occurred
because most of Banjarnegara area was categorized as “very high” in the susceptibility map,
which means that low-intensity rainfall was enough to trigger the warning. In general,
the results in the test area were quite good, even though there was an over-prediction of
warnings. The use of a susceptibility map with a more detailed scale is also expected to
improve the results of this system further.

5. Conclusions

This study derived a rainfall threshold that will be implemented in Java Island using
four methods. The first method used the existing threshold in the Balai Sabo-ILEWS. The
second method applied the average value of rainfall as the threshold. The third and fourth
methods used the minimum rainfall of all the landslide events and the minimum rainfall for
only the major landslide events, respectively. The fourth method had the best performance
because it showed “good” results for all statistical indices (TPR, TNR, and accuracy). The
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first and second methods showed “not good” scores for TPR, while the third method
produced “not good” scores in the TNR and accuracy categories. The result shows that the
new rainfall threshold proposed in this study (the fourth method) has good performance
statistically. The threshold gives good predictions for landslide occurrence, with a low error
level. In general, the new rainfall threshold is capable of being used as a reference for the
Balai Sabo-ILEWS.

This study is a part of efforts to improve the existing Balai Sabo-ILEWS’s performance.
The newly developed rainfall threshold for the Java area has recently been implemented in
the system, and we will gradually apply different rainfall thresholds to all other regions
in Indonesia. Moreover, we will also issue warning levels based on different rainfall and
landslide susceptibility classifications. Further data collection, especially for landslide
occurrences in regions other than Java Island, is still needed to improve the accuracy of the
Balai Sabo-ILEWS in the future.
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