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Abstract: This study investigated the size–frequency distribution of 512 landslides triggered by heavy
rain in July 2018 on Omishima Island, western Japan. Since the island has undergone rapid land
use and land cover changes in recent decades, this study statistically examined the impact of past
land cover changes on the shape of, and local variability in, the size–frequency distribution using
the inverse gamma model. The possible influence of rainfall conditions was also examined. The
landslides were classified based on the severity of anthropogenic disturbance and rainfall using
a 56-year (1962–2018) land cover trajectory map and hourly rainfall distribution data. The results
indicated that the land cover change (mainly forest conversion into farmland and its abandonment)
affected the size and frequency of landslides that occurred decades after the disturbance. Although all
landslide groups had similar small rollovers (location of probability peak; 0.042–0.075 × 10−3 km2),
the scaling exponents of the negative power-law decay were lower for landslides in secondary forest
and newly developed farmland (ρ = 1.084–1.231) than in old forest and farmland (ρ = 2.504–2.611).
This difference is considered significant compared to general exponent values (ρ = 2.30 ± 0.56),
suggesting that farmland development after 1962 caused widespread slope instability, leading to an
increase in the proportion of large landslides. By contrast, no clear correlations with rainfall intensity
were found, primarily due to complex localised variations in rainfall conditions.

Keywords: landslide area; size–frequency distribution; land use and land cover change; rainfall
return period

1. Introduction

Landslides are the most prominent erosional process in many mountainous regions [1–3]
and often cause severe damage [4,5]. To predict the occurrence of landslides and their potential
impact on the natural environment and human society in the short (immediately after the
occurrence) to the long term, it is essential to quantify and characterise their magnitude and
frequency [6–14]. Previous landslide studies observed that, above a specific size (landslide
slope areas or sediment volume mobilised by landslides), the frequency of landslides decays
as a power law [1,9,12,15–23]. Below this size, the frequency often decreases, resulting in a
transition within the probability density distribution commonly referred to as ‘rollover’.
Although the probability density distribution of landslide size is typically similar across
regional settings and triggers [9], there is considerable variability in the negative power-
law tails and rollovers. This variability might reflect variation in predisposing factors
such as geology [15,19,22] and topography [23]. Anthropogenic disturbances are another
potential factor altering the size–frequency distribution, as they cause widespread slope
instability. Several studies have reported characteristic size–frequency distributions in
areas with anthropogenic disturbances [24,25]. However, the anthropogenic influence on
the magnitude and frequency of landslides is still not clear, primarily due to the lack of
detailed information on spatially heterogeneous land use patterns [25] and the scarcity
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of landslide inventory data in areas strongly affected by human activities [24]. A better
understanding of the factors controlling the shape and variability of the size–frequency
distribution is required to use landslide characteristics to detect the effects of environmental
changes on slope stability.

Triggering conditions (e.g., variation in rainfall amount, intensity, and duration) should
also be considered to explain the landslide size–frequency distribution, as some previous
studies have suggested. For example, Alvioli et al. [26] showed that the negative power
law of medium-to-large landslides changed with rainfall intensity and duration in physics-
based numerical model simulations for given geotechnical parameters. Using cellular
automata model simulations, Liucci et al. [27] confirmed that the negative power-law
scaling exponent depends on the rate of slope weakening and suggested that the probability
density distribution of medium-to-large landslides is likely influenced by rainfall intensity.
Although the simulation results from several models highlight the importance of rainfall
conditions, few studies have demonstrated changes in the shape of the size–frequency
distribution with rainfall variation [21]. Therefore, more studies of the rainfall conditions
that significantly affect the number and size of landslides are needed to understand how
rainfall conditions systematically change the size–frequency distribution of landslides.

This study investigated the size–frequency distribution of landslides on Omishima
Island, western Japan. The island has been widely used as sloped farmland (mainly
citrus orchards) [28] but has experienced rapid land use and land cover changes in recent
decades [29,30]. Performing statistical analyses using the three-parameter inverse gamma
distribution [9], which has been broadly used to characterise landslides and their triggers,
this study tested whether the difference in land cover changes preceding a recent storm
event and the spatial variation in rainfall influence the size–frequency distribution of
landslides. To this end, 512 rainfall-triggered landslides [30] were grouped based on the
land cover trajectory pattern and rainfall intensity (rarity) at their respective locations.
A land cover trajectory map of the island was used to divide slopes based on the presence
or absence of anthropogenic land cover changes and the disturbance period. Hourly rainfall
distributions and statistically modelled relationships between rainfall intensity and the
return period (RP) were used to analyse the spatial variation in rainfall intensity during a
landslide-triggering storm event.

2. Study Area

This study examined Omishima Island (67.5 km2) in the Setonaikai Sea, western Japan
(Figure 1A,B). The elevation ranges from sea level to 436 m (the peak of Mt. Washigato;
Figure 1B). Hillslopes primarily vary between 5.0◦ and 45.0◦. The Omishima Observatory
(Figure 1B), operated by the Japan Meteorological Agency (JMA), recorded a mean annual
temperature of 15.4 ◦C and precipitation of 1218.6 mm from 1991 to 2020.

The land use and land cover of Omishima Island are characterised by sloped farmland.
Based on a vegetation map published by the Ministry of the Environment of Japan [31],
farmland covers 32.5 km2, of which approximately 84% (ca. 27.4 km2) comprised ev-
ergreen citrus orchards from the late 1970s to the 1990s. Due to the narrow plains and
mountainous topography of the island, citrus orchards are often located on slopes. The
remaining slopes are predominantly covered with semi-natural evergreen and deciduous
broadleaf forests, with some conifer plantations. The island has experienced rapid land
use and land cover changes in recent decades (Figure 1C). Earlier observations allowed the
development of a 56-year (1962–2018) land cover trajectory map using historical archives
of aerial photographs and revealed that forest area decreased from 1962 to 1981 due to
conversion into orchards, while the forest area increased from 1981 to 2018 primarily due
to the abandonment of orchards and their return to forest [30].

From 28 June to 8 July 2018, heavy rainfall affected a broad region of western Japan [32,33].
The Omishima Observatory (Figure 1B) recorded total rainfall of 446.5 mm, with the 24-h
rainfall reaching 249.5 mm, breaking previous records (Figure 2). This precipitation event
triggered numerous landslides (Figure 1D), causing severe damage to property, infrastructure,



Geosciences 2024, 14, 59 3 of 16

and citrus orchards [29,34,35]. Based on post-storm aerial photos and satellite image interpre-
tation, Kimura et al. [30] identified 512 new landslides on Omishima Island; most of these
occurred in forests and orchards, reflecting the proportions of land use and land cover on the
island by area.
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Figure 1. Maps showing the (A,B) location, (C) land cover trajectory, and (D) landslide distribution
of Omishima Island in the Setonaikai Sea, western Japan. (A) The red star indicates the location of
Omishima Island. (C) The integrated patterns of land cover trajectory based on the sequence of land
cover changed between 1962 and 2018 (after Kimura et al. [30]). RFOR, remaining forest; SFOR, shift
to forest; RSHR, remaining shrub land; SSHR, shift to shrub land; RFAR, remaining farmland; CFAR,
conversion to farmland; RDVL, remaining developed land; CDVL, conversion to developed land.
(D) shows the distribution of 512 landslides triggered by the July 2018 storm event (after Kimura
et al. [30]).



Geosciences 2024, 14, 59 4 of 16
Geosciences 2024, 14, x FOR PEER REVIEW 4 of 18 
 

 

 
Figure 2. Time series of the annual maxima for (A) 1-h, (B) 3-h, (C) 6-h, (D) 12-h, (E) 24-h, and (F) 
264-h rainfall in 1976–2022 recorded at the JMA Omishima Observatory. The white dot in each plot 
indicates the rainfall in the July 2018 storm event. Red lines show rainfall return periods of 10 (lower 
dotted), 50 (middle dashed), and 100 (upper solid) years. 

3. Data and Methods 
3.1. Land Cover Trajectory and Landslide Data 

Kimura et al. [30] previously reconstructed the land cover changes in Omishima Is-
land from 1962 to 2018 and identified eight characteristic trajectory patterns (Figure 1C): 
conversion to farmland (CFAR); conversion to developed land (CDVL); shift to forest 
(SFOR); shift to shrub land (SSHR); remaining forest (RFOR); remaining shrub land 
(RSHR); remaining farmland (RFAR); and remaining developed land (RDVL). The farm-
land in this classification consisted primarily of citrus orchards. Kimura et al. [30] further 
investigated the occurrence of landslides due to the July 2018 heavy rain based on post-
storm aerial photos and satellite image interpretation; they identified 512 new landslides 
on the island (Figure 1D). Because the images used for visual interpretation were all very 
high resolution and were taken within days to months after the storm (aerial photos ac-
quired on 23 September 2018 with 0.25-m resolution; satellite images SPOT-6 acquired on 
16 July 2018 with 1.50-m resolution), all data, including the smallest landslides (6 m2), 
were analysed without setting a minimum range for the landslides included in the analy-
sis. 

The land cover trajectory pattern of the slope where each landslide occurred was 
identified by overlapping these maps in the GIS environment (ArcGIS ver. 10.8.1). The 
landslide scar area measured previously was used to determine the size of each landslide. 

  

1980 1990 2000 2010 2020
0

10

20

30

40

50

60

R
ai

nf
al

l (
m

m
)

Year

Return Period=100 y r

50 y r

10 y r

(A) 1-h max.

1980 1990 2000 2010 2020
0

40

80

120

160

200

R
ai

nf
al

l (
m

m
)

Year

(D) 12-h max.

1980 1990 2000 2010 2020
0

20

40

60

80

100

R
ai

nf
al

l (
m

m
)

Year

(B) 3-h max.

1980 1990 2000 2010 2020
0

60

120

180

240

300

R
ai

nf
al

l (
m

m
)

Year

(E) 24-h max.

1980 1990 2000 2010 2020
0

30

60

90

120

150

R
ai

nf
al

l (
m

m
)

Year

(C) 6-h max.

1980 1990 2000 2010 2020
0

100

200

300

400

500

600

R
ai

nf
al

l (
m

m
)

Year

(F) 264-h max.

Figure 2. Time series of the annual maxima for (A) 1-h, (B) 3-h, (C) 6-h, (D) 12-h, (E) 24-h, and (F) 264-h
rainfall in 1976–2022 recorded at the JMA Omishima Observatory. The white dot in each plot indicates
the rainfall in the July 2018 storm event. Red lines show rainfall return periods of 10 (lower dotted),
50 (middle dashed), and 100 (upper solid) years.

3. Data and Methods
3.1. Land Cover Trajectory and Landslide Data

Kimura et al. [30] previously reconstructed the land cover changes in Omishima Is-
land from 1962 to 2018 and identified eight characteristic trajectory patterns (Figure 1C):
conversion to farmland (CFAR); conversion to developed land (CDVL); shift to forest
(SFOR); shift to shrub land (SSHR); remaining forest (RFOR); remaining shrub land (RSHR);
remaining farmland (RFAR); and remaining developed land (RDVL). The farmland in this
classification consisted primarily of citrus orchards. Kimura et al. [30] further investigated
the occurrence of landslides due to the July 2018 heavy rain based on post-storm aerial
photos and satellite image interpretation; they identified 512 new landslides on the island
(Figure 1D). Because the images used for visual interpretation were all very high resolution
and were taken within days to months after the storm (aerial photos acquired on 23 Septem-
ber 2018 with 0.25-m resolution; satellite images SPOT-6 acquired on 16 July 2018 with
1.50-m resolution), all data, including the smallest landslides (6 m2), were analysed without
setting a minimum range for the landslides included in the analysis.

The land cover trajectory pattern of the slope where each landslide occurred was
identified by overlapping these maps in the GIS environment (ArcGIS ver. 10.8.1). The
landslide scar area measured previously was used to determine the size of each landslide.
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3.2. Event Rainfall Data

This study used radar/rain gauge-analysed precipitation (RRAP) data to analyse the
spatial variation in short-to-long-term rainfall during the July 2018 storm event. Ground
precipitation has been measured since 1976 at the JMA Omishima Observatory [36] in the
centre of the island (Figure 1B). With the development of a radar observation network
in Japan, rainfall distribution data covering almost the entire Japanese Archipelago are
now available. RRAP is one such dataset; it consists of previous 1-h precipitation data
with a spatial resolution of 1 km (2006 to present) generated every 30 min using radar
estimates and observations by rain gauges throughout Japan. Kimura et al. [30] estimated
the RP of 1–264-h (11 days) rainfalls during the July 2018 storm event using generalised
extreme value (GEV) distributions fitted on a 47-year (1976–2022) ground precipitation
record (Figure 2). They also estimated the event maxima for 1, 3, 6, 12, and 24 h and the
total (264 h) rainfall using RRAP data from 0:00 on 28 June to 0:00 on 8 July 2018 (JST) for
each 1-km grid cell.

Using the GEV distributions and spatial data of the event maximum rainfall obtained
in the previous study, the RP for each 1-km grid cell was estimated to analyse how much
rainfall intensity during the storm event varied within the island and to clarify whether
such local variation in rainfall influenced the size–frequency distribution of landslides.
For this purpose, landslides were classified into those in areas with lighter and heavier
precipitation based on the rainfall RP in each location. The details of the classification
procedure are described in Section 3.3.

3.3. Classification of Landslides Based on Land Cover Trajectory and Rainfall Distributions

As previously noted, this study examined two questions: were there any differences in
the size–frequency distribution of rainfall-triggered landslides among slopes with different
land cover trajectory patterns preceding the recent storm event, and did spatial variation in
rainfall influence the size–frequency distribution of landslides? To address these questions
statistically, as described in Section 3.4, landslides were classified into groups based on the
land cover trajectory pattern and rainfall intensity at their locations.

For the first question, landslides were divided into eight vegetation groups according
to the land cover trajectory pattern at each location. The shrub (RSHR and SSHR) and
developed land (RDVL and CDVL) groups were omitted from further analysis due to the
absence or scarcity of landslides. Landslides occurring in forests (n = 289) included those
in old forests that remained since before 1962 (RFOR, n = 168) and those in secondary
forests that formed after 1962 (SFOR, n = 121). Similarly, landslides occurring in farmlands
(n = 200) included those in old farmlands that remained since before 1962 (RFAR, n = 130)
and those in new farmlands developed after 1962 (CFAR, n = 70). Kimura et al. [30]
previously revealed that secondary forests formed mainly on former farmlands following
their abandonment and were concentrated over the 37 years from 1981 to 2018; in addition,
most of the new farmlands developed in former forests and were concentrated over the
19-year period from 1962 to 1981. Given these facts, the differences in the size–frequency
distribution of landslides between old (RFOR) and secondary (SFOR) forests were assumed
to reflect the impact of past farmland development before reverting to a forest on recent
landslide occurrence. It was also assumed that the size–frequency distribution of landslides
would differ between old (RFAR) and newly developed (CFAR) farmlands, reflecting the
impact of new farmland creation since the 1960s on recent landslide occurrence.

For the second question, the relationship between rainfall intensity and RP was anal-
ysed for 1, 3, 6, 12, and 24 h maximum rainfall and the total (264 h) rainfall in the July 2018
storm event. As shown in Figure 3A, the range of rainfall intensity and RP for the 174 grid
cells overlapping the study area varied widely depending on the rainfall duration. There-
fore, the median value (50th percentile) of the RPs according to the cumulative frequency
distribution of each duration was calculated to determine the threshold for classifying the
study area into areas with lighter (below 50th percentile) and heavier (above 50th percentile)
precipitation (Figure 3B, Table 1). The landslide data were then divided into those in areas
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with lighter and heavier precipitation. Figure 4 shows the maximum rainfall distribution
and classification results by rainfall intensity (rarity).
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Figure 3. Intensities and return periods for 1-, 3-, 6-, 12-, and 24-h maximum rainfall and total (264-h)
rainfall in the July 2018 storm event. (A) Relationships between rainfall intensities and their return
periods. (B) Cumulative frequency distributions of rainfall return periods. White dots in each plot
indicate the location of the 50th percentile values for 1–264-h rainfalls.

Table 1. Statistics of the event maximum rainfall and return periods (RPs) estimated using the
distribution of generalised extreme values (GEVs) fit on a 47-year hourly rainfall time series (1976–
2022) recorded at the JMA Omishima Observatory.

Rainfall *
5th Percentile ** 50th Percentile ** 95th Percentile **

Rainfall
(mm)

RP
(yr)

Rainfall
(mm)

RP
(yr)

Rainfall
(mm)

RP
(yr)

1-h max. 32.0 5.0 36.0 9.0 41.0 19.5
3-h max. 62.0 8.5 70.0 28.1 77.0 143.1
6-h max. 90.0 15.4 97.0 27.1 105.0 55.9

12-h max. 153.0 66.9 174.0 154.6 192.0 318.0
24-h max. 243.0 78.5 271.0 125.4 294.0 176.1

Total (264-h) 433.0 20.8 476.0 33.1 535.0 62.0
Notes: * The event maxima for 1, 3, 6, 12, and 24 h, and the total (264 h), were calculated at each 1-km grid cell of
radar/rain gauge-analysed precipitation (RRAP) data overlapping with the study area (174 grid cells in total).
** Respective percentile values were obtained from the cumulative frequency distributions of the 174 grid cells
(Figure 3B).
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3.4. Statistical Analysis for Characterising Landslide Size Distributions
3.4.1. Quantifying Landslide Size Distributions

The non-cumulative frequency density f (AL) of a landslide inventory is given by the
number of landslides δNL over the range of areas δAL. The probability density p(AL) can be
estimated as f (AL) normalized to the total number of landslides NLT according to:

p(AL) =
1

NLT
f (AL) =

1
NLT

δNL
δAL

(1)

in which p(AL) is the probability of a landslide with area A [L2]. The frequency f (AL) and
probability p(AL) densities of the inventory data were calculated by sorting landslide sizes
into bins spaced evenly in logarithmic space.
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3.4.2. Landslide Size Distribution Models

A negative power law relationship can express the probability density p(AL) for
medium–large landslides:

p(AL) = CAL
−β (2)

where C is a normalisation constant, and β is the scaling exponent of the right tail of the size
distribution (β > 1) [18]. This approach requires predefining the size range to fit the model.
Because the probability density diverges as AL → 0, there must be a lower bound to the
power law behaviour, which is contained in the normalisation constant, C. To analyse the
size distribution considering the total landslide population, Stark and Hovius [17] proposed
using a double Pareto model to describe the size distribution of observed landslides, which
can quantify not only the negative power law behaviour of medium–large landslides
but also the positive power law behaviour of small landslides. In this model, p(AL) is a
function of two scaling exponents, λ and ρ, which describe the rate of decay for small and
medium–large landslides, respectively, on either side of a peak landslide area ALpeak:

p(AL) =
λ

ALpeak

[
1 +

(
ALmax
ALpeak

)−ρ
] λ

ρ

[
1 +

(
AL

ALpeak

)−ρ
]1+ λ

ρ

×
(

AL
ALpeak

)−(ρ+1)

(3)

where ALmax is the largest landslide in the inventory data set, ALpeak is the area at which the
rollover occurs, λ is the exponent controlling positive power-law scaling when 0 < AL < ALpeak,
and ρ is the exponent controlling negative power-law scaling for ALpeak < AL < ALmax [17].
Note that the variables labelled α and β in the original paper have been replaced with ρ
and λ, respectively, to avoid variable confusion. Thus, the negative power law scaling β in
Equation (2) is equivalent to ρ + 1. Similarly, Malamud et al. [9] modelled the probability
density of a landslide inventory with a three-parameter inverse gamma function:

p(AL) =
1

aΓ(ρ)

[
a

AL − s

]ρ+1
exp

[
− a

AL − s

]
(4)

where ρ is a parameter controlling the power-law decay scaling for medium–large land-
slides (again note that β in Equation (2) is equivalent to ρ + 1), a [L2] is a parameter
controlling the location of the maximum probability (the peak in the probability distribu-
tion), s [L2] is a parameter controlling the exponential rollover for small landslides, and
Γ(ρ) is the gamma function of ρ.

In this study, the inverse gamma function of Equation (4) was used to facilitate com-
parisons with existing landslide studies, while the double Pareto model of Equation (3)
was used to visualise the size distribution for the entire dataset.

3.4.3. Statistical Analysis for Model Fitting

To characterise the size–frequency distributions of the landslides triggered by the
July 2018 storm event, the frequency f (AL) and probability p(AL) densities were calculated
following Section 3.4.1 for the entire dataset and subsets grouped by land cover trajectory
and rainfall intensity. Then, the model parameters best fitting each dataset were estimated
using maximum likelihood estimation (MLE). The goodness-of-fit of the obtained model
was evaluated based on the negative log-likelihood value (NLL), Akaike information
criterion (AIC), and Bayesian information criterion (BIC). The model uncertainty was
shown as the standard error of each optimised parameter, which was taken from the
observed information matrix and calculated by numerical approximation. The empirical
probability distributions for each pair were compared statistically using the two-sample
Kolmogorov–Smirnov (KS) test [37]. These statistical analyses were performed using the
MASS package [38] in R ver. 4.2.3.
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4. Results
4.1. Size-Frequency Distribution of the Landslides Triggered by the July 2018 Storm Event

The landslide inventory for the July 2018 storm event counted 512 landslide scars on
Omishima Island (Figure 1D), with a total area of 0.137 km2. According to post-storm field
observations, most of the landslides were shallow translational landslides of the topsoil
layer [29,30]. Figure 5 shows the size–frequency distribution of these landslides. The
median landslide size was 1.21 × 10−4 km2 (121 m2), and the most frequent landslides
were on the order of 10−5–10−4 km2 (101–102 m2). The probability density distribution
of landslides increased with landslide area, peaking at 0.4–0.8 × 10−4 km2 (40–80 m2)
before decreasing in a power-law fashion (Figure 5A). Although rollover occurred at a
small landslide size, it is unlikely to be due to under-sampling, as it is one or two orders
of magnitude larger than the resolution of the images used for landslide interpretation
(10−1–100 m2).
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Figure 5. Landslide size–frequency distribution for 512 landslides triggered by the July 2018 storm.
(A) Probability density distribution of all landslide scars (grey circles). Solid red and blue lines
show maximum likelihood estimation of inverse gamma distribution (a = 0.176 ± 0.025 × 10−3 km2;
s = −0.167 ± 0.041 × 10−4 km2; ρ = 1.641 ± 0.141) and double Pareto distribution (ALpeak = 0.083 ±
0.012 × 10−3 km2; λ = 2.272 ± 0.260; ρ = 1.517 ± 0.085), respectively. The solid grey line is the general
landslide probability density proposed by Malamud et al. [9]. The boxplot indicates the lower and
upper quartiles (extent of rectangle) with the median (centre line), while the ends of the whiskers
indicate the lowest and highest values. (B) Frequency density distribution of all landslide scars (grey
circles). Solid black lines represent the general frequency distribution proposed by Malamud et al. [9]
for varying total numbers of landslides NLT (101–106).

Using MLE, inverse gamma distribution [9] and double Pareto distribution [17]
were plotted in Figure 5A. Both models matched the observed probability distribution at
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areas ≤ 10−3 km2 (1000 m2), while some discrepancies were observed between the data
and model distributions at larger areas (>10−3 km2). Figure 5A also shows the general
distribution model (a = 1.28 × 10−3 km2; s = −1.32 × 10−4 km2; ρ = 1.40) proposed by
Malamud et al. [9]. The peak probability of landslide size for the landslides on Omishima
Island was almost an order of magnitude smaller than that of this general model, indicating
more frequent small landslides than previously reported in complete landslide inventories
associated with a single triggering event. Nevertheless, the negative power-law scaling
exponent obtained by fitting the observed probability distribution was close to that of the
general model, even when using the inverse gamma (ρ = 1.641 ± 0.141) or double Pareto
(ρ = 1.517 ± 0.085) models.

The characteristics of the landslide size distribution in the study area became more
prominent when the frequency distribution was compared with those estimated by the
general model (Figure 5B). The frequency density of the largest landslides (>10−3 km2) in
the dataset fell within the range of small-magnitude events (NLT = 101–102), while that of
small–medium landslides (≤10−3 km2) varied over a wide range, reaching large-magnitude
events at its peak (NLT = 102–105).

4.2. Statistical Distribution of Landslides Grouped by Land Cover Trajectory Patterns

To investigate the influence of past anthropogenic land cover changes on the size
distribution of recent landslides, subsets of landslide data were analysed according to the
land cover trajectory patterns preceding the storm event (Figure 1C). Figure 6 shows the
probability density distributions for forest and farmland groups and their inverse gamma
models fitted using MLE. Table 2 summarises the optimised parameters and goodness-of-fit
of the models.

Table 2. Parameters of the inverse gamma models for landslides in areas with different land cover
trajectory patterns.

Trajectory Pattern * Model Parameter ** Goodness-of-Fit ***

a s ρ Rollover NLL AIC BIC
(×10−3 km2) (×10−4 km2) (×10−3 km2)

Forests (n = 289) 0.194 ± 0.039 −0.164 ± 0.061 1.731 ± 0.208 0.056 1831.858 3669.717 3680.747
RFOR (n = 168) 0.348 ± 0.106 −0.312 ± 0.124 2.504 ± 0.470 0.075 1055.480 2116.959 2126.384
SFOR (n = 121) 0.108 ± 0.032 −0.059 ± 0.067 1.231 ± 0.207 0.042 771.410 1548.820 2125.347

Farmlands (n = 200) 0.140 ± 0.029 −0.133 ± 0.050 1.506 ± 0.192 0.042 1225.985 2457.971 2467.820
RFAR (n = 130) 0.252 ± 0.083 −0.238 ± 0.093 2.611 ± 0.542 0.042 750.746 1507.491 1516.094
CFAR (n = 70) 0.136 ± 0.049 −0.108 ± 0.108 1.084 ± 0.221 0.056 461.448 928.896 935.510

All landslides (n = 512) 0.176 ± 0.025 −0.167 ± 0.041 1.641 ± 0.141 0.056 3215.394 6436.787 6449.502

Notes: * The inverse gamma distribution was fitted to respective size–frequency distributions for landslides in
forest (RFOR (remaining forest) and SFOR (succession to forest)) and farmland (RFAR (remaining farmland)
and CFAR (conversion to farmland)) areas. ** Three parameters of the inverse gamma distribution are shown
with standard error estimates. The rollover value indicates the most frequent landslide size estimated from
the probability density distribution model. *** Abbreviations: NLL, negative log-likelihood value; AIC, Akaike
information criterion; BIC, Bayesian information criterion.

There was no significant difference in landslide size between old and secondary
forests (two-sample KS test: D = 0.092, p-value = 0.585), while the landslide size in newly
developed farmlands differed significantly from that in old farmlands (two-sample KS
test: D = 0.298, p-value = 7.662 × 10−4). Similar unimodal patterns were observed in the
probability density distributions for all subset data. However, the optimised inverse gamma
model differed between old and secondary forests and between old and newly developed
farmlands. Comparing the models of landslides in forests, the scaling exponent of the
negative power-law decay increased in RFOR (ρ = 2.504 ± 0.470) and decreased in SFOR
(ρ = 1.231 ± 0.207), despite having rollovers similar to that of all landslides (0.042–0.075
× 10−3 km2). Such model differences became more pronounced between landslides in
farmlands (old farmland (RFAR): rollover ≃ 0.042 × 10−3 km2, ρ = 2.611 ± 0.542; newly
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developed farmland (CFAR): rollover ≃ 0.056 × 10−3 km2, ρ = 1.084 ± 0.221). These
results suggest that landslides in areas with anthropogenic land cover changes have a lower
scaling exponent of the negative power-law decay (more gradual attenuation of landslide
frequency) and a proportionately greater number of large landslides.
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Figure 6. Probability density distributions for landslides in (A) forests and (B) farmlands. The dashed
black lines show the inverse gamma distribution model for all landslides, while the solid grey line
represents the model for landslides in forests/farmlands. Coloured lines are the results of fitting the
probability density for each land cover group to the inverse gamma distribution. Boxplots represent
the median (centre line), lower/upper quartiles (extent of rectangle), and lowest/highest values
(ends of the whiskers) of landslide area data for each land cover group. Lowercase letters (a–c)
beside the boxplots indicate statistical differences in landslide size–frequency distributions examined
using the two-sample Kolmogorov–Smirnov test (pairs with significant differences at the 5% level
(p-value < 0.05) are shown with different letters).

4.3. Statistical Distribution of Landslides Grouped by Rainfall Intensity

The landslide inventory data were subdivided into landslides in areas with lighter and
heavier precipitation based on the rainfall RPs for each rainfall duration (Figures 3 and 4).
Figure 7 shows the probability density distribution for each rainfall intensity (rarity) group
and its inverse gamma model fitted using MLE. Table 3 summarises the optimised parame-
ters and goodness-of-fit of the models.

There were no significant differences in landslide size according to rainfall intensity
variation, except between areas with lighter and heavier 1-h maximum precipitation (two-
sample KS test: D = 0.169, p-value = 0.001). The probability density distributions of all
subset data showed similar unimodal patterns characterised by a rollover of 0.042–0.056 ×
10−3 km2 and power-law decays on either side. However, the optimised inverse gamma
models differed slightly by subset data. Model differences were most pronounced between
landslides in areas with lighter and heavier 6-h maximum precipitation (Figure 7C). Despite
having almost the same rollover point, the scaling exponent of the negative power-law
decay increased in areas with lighter precipitation (RP ≤ 27.1 yr, ρ = 2.430 ± 0.419) and
decreased in areas with heavier precipitation (RP > 27.1 yr, ρ = 1.396 ± 0.143). Another
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apparent difference was observed for total rainfall (Figure 7F), but the relationship be-
tween the scaling exponent and rainfall intensity was the opposite (ρ = 1.381 ± 0.163 for
RP ≤ 33.1 yr and ρ = 1.998 ± 0.257 for RP > 33.1 yr) for the 6-h maximum precipitation case.
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Figure 7. Probability density distributions for landslides in areas with lighter (below 50th percentile of
return periods) and heavier (above 50th percentile of return periods) precipitation for (A) 1-h, (B) 3-h,
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(C) 6-h, (D) 12-h, (E) 24-h, and (F) 264-h maximum rainfall in the July 2018 storm event. The
dashed black line in each plot shows the inverse gamma distribution model for all landslides. Green
and purple lines are the respective results of fitting the probability density for lighter and heavier
precipitation groups, respectively, to the inverse gamma distribution. The boxplot represents the
median (centre line), lower/upper quartiles (extent of rectangle), and lowest/highest values (both
ends of the whiskers) of the landslide area data for each precipitation group. Lowercase letters
(a and b) beside the boxplots indicate statistical differences in landslide size–frequency distributions
examined using the two-sample Kolmogorov–Smirnov test (pairs with significant differences at the
5% level (p < 0.05) are shown with different letters).

Table 3. Parameters of inverse gamma models for landslides in areas with different rainfall intensities.

Rainfall * Model Parameter ** Goodness-of-Fit ***

a s ρ Rollover NLL AIC BIC
(×10−3 km2) (×10−4 km2) (×10−3 km2)

1-h max.
RP ≤ 9.0 yr (n = 292) 0.212 ± 0.036 −0.193 ± 0.055 1.710 ± 0.183 0.056 1864.621 3735.242 3746.272
RP > 9.0 yr (n = 220) 0.130 ± 0.031 −0.108 ± 0.056 1.535 ± 0.215 0.042 1344.075 2694.150 2704.331

3-h max.
RP ≤ 28.1 yr (n = 305) 0.213 ± 0.040 −0.205 ± 0.059 1.857 ± 0.215 0.056 1900.689 3807.378 3818.539
RP > 28.1 yr (n = 207) 0.136 ± 0.030 −0.120 ± 0.056 1.397 ± 0.182 0.042 1313.215 2632.430 2642.428

6-h max.
RP ≤ 27.1 yr (n = 182) 0.324 ± 0.090 −0.327 ± 0.107 2.430 ± 0.419 0.056 1120.105 2246.210 2255.822
RP > 27.1 yr (n = 330) 0.135 ± 0.024 −0.109 ± 0.044 1.396 ± 0.143 0.042 2091.150 4188.300 4199.697

12-h max.
RP ≤ 154.6 yr (n = 219) 0.210 ± 0.026 −0.205 ± 0.069 1.875 ± 0.258 0.056 1358.028 2722.055 2732.222
RP > 154.6 yr (n = 293) 0.157 ± 0.029 −0.143 ± 0.051 1.504 ± 0.167 0.042 1856.504 3719.009 3730.049

24-h max.
RP ≤ 125.4 yr (n = 234) 0.170 ± 0.036 −0.168 ± 0.058 1.664 ± 0.213 0.042 1455.081 2916.162 2926.528
RP > 125.4 yr (n = 278) 0.181 ± 0.035 −0.163 ± 0.057 1.623 ± 0.188 0.056 1759.397 3524.794 3535.677

Total (264-h)
RP ≤ 33.1 yr (n = 249) 0.144 ± 0.029 −0.159 ± 0.055 1.381 ± 0.163 0.042 1600.017 3206.034 3216.587
RP > 33.1 yr (n = 263) 0.219 ± 0.046 −0.174 ± 0.064 1.998 ± 0.257 0.056 1610.765 3227.530 3238.246

All landslides (n = 512) 0.176 ± 0.025 −0.167 ± 0.041 1.641 ± 0.141 0.056 3215.394 6436.787 6449.502

Notes: * The inverse gamma distribution was fitted to respective size–frequency distributions for landslides in
areas with lighter (below the 50th percentile of return periods) and heavier (above the 50th percentile of return
periods) precipitation. ** Three parameters of the inverse gamma distribution are shown with standard error
estimates. The rollover value indicates the most frequent landslide size estimated from the probability density
distribution model. *** Abbreviations: NLL, negative log-likelihood value; AIC, Akaike information criterion;
BIC, Bayesian information criterion.

5. Discussion and Conclusions

Recent landslides on Omishima Island show a humped probability (or frequency)
distribution (Figure 5) similar to those of reported landslide event inventories, e.g., [9,18,21].
Although the negative power-law scaling exponent obtained from the observed probability
distribution was close to that of the general model proposed by Malamud et al. [9], the
rollover was offset towards smaller areas than this general model. These characteristics
of the landslide size–frequency distribution may reflect unique regional conditions, in-
cluding land use and land cover dynamics on the island. In a study investigating the
landslide size–frequency distributions in areas strongly affected by anthropogenic dis-
turbances, Van Den Eeckhaut et al. [24] developed a historical landslide inventory for
a populated hilly region (gentle slopes generally < 8.5◦) in Belgium. They found that
recent landslides (10−4–10−1 km2) triggered by localised human activities had a lower fre-
quency without distinct peaks. Another study in the tropical Andes (predominantly steep
slopes > 25.0◦) of Ecuador investigated anthropogenic land cover changes and landslide
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occurrence (10−5–10−2 km2) over several decades [25]. It revealed that land cover changes
(mainly forest degradation and conversion into farmland) shifted the rollover towards
smaller landslides. Considering the slope steepness and landslide size on Omishima Island
(slopes primarily from 5.0◦ to 45.0◦, landslide areas from 10−5 to 10−2 km2, with the mode
on the order of 10−5–10−4 km2), the results of this study are likely to have many similar-
ities with the rollover shift associated with anthropogenic disturbances observed in the
tropical Andes.

However, comparing landslides among the slopes with different land cover trajecto-
ries on Omishima Island suggested that the anthropogenic land cover changes influence
the size–frequency distribution of landslides differently from the simple rollover shift
(Figure 6, Table 2). Despite exhibiting similar small rollovers for all landslide groups
(0.042–0.075 × 10−3 km2), landslides in secondary forest and newly developed farmland
had lower scaling exponents of the negative power-law decay than landslides in old for-
est and farmland (ρ = 1.084–1.231 and ρ = 2.504–2.611, respectively). This difference is
significant compared to the general exponent ρ-value of 2.30 ± 0.56 (range: 1.40–3.50),
estimated based on an analysis of global landslide inventories [24]. Therefore, the current
findings strongly indicate that anthropogenic land cover changes (forest conversion into
farmland) not only alter the number of small landslides but also affect the importance of
large landslides. Given that the scaling exponent for old farmland was as high as that for
old forest, farmland development after 1962 (mainly sloped orchard fields) might result in
widespread slope instability, leading to an increase in the proportion of large landslides.
The difference in the scaling exponent also suggests that the impact of past land cover
changes may manifest decades later during rare heavy rains. This insight could be crucial
for appropriate land management and disaster countermeasures; however, more land-
slide data and statistical validation are needed to determine how long the anthropogenic
influence remains on slopes.

It is important to note that the rollover, which is smaller than the general model, could
be attributed to differences in the accuracy of landslide interpretation between the previous
and current studies. This study analysed fine-scale landslide data developed using very
high-resolution images (with 0.25 and 1.50 m resolutions) taken within days to months after
the storm. Furthermore, the shape and location of each identified landslide were verified
by comparison with a post-storm topographic map at a 0.5-m resolution [30], enhancing the
precision and accuracy of the landslide size. To determine whether the observed rollover
shift is due to differences in the dominant landslide mechanism, e.g., [10,12], or the accuracy
of landslide interpretation, e.g., [1,17], more detailed analyses are required. These analyses
should explicitly address the differences in interpretation accuracy from previous studies.
This will be the subject of further research.

This study also examined the possible influence of rainfall conditions on the number
and size of landslides. Chen [21] previously investigated the size–frequency characteris-
tics of landslide areas in the Tachia River basin in central Taiwan, which suffered severe
damage from the 1999 Mw 7.6 Chi-Chi earthquake and subsequent storm events. Com-
paring landslide locations with the spatial distribution of maximum hourly rainfall and
cumulative rainfall interpolated from several ground-rainfall records, Chen [21] found that
the scaling exponent of the negative power-law decay was lower in areas with heavier cu-
mulative rainfall (>400 mm/4 days, ρ = 1.57) than in areas with lighter cumulative rainfall
(<400 mm/4 days, ρ = 1.84). Similar to this result, several model simulations showed de-
creasing trends of the scaling exponent with increasing rainfall intensity [26,27]. However,
the size–frequency distribution of landslides on Omishima Island was not clearly corre-
lated with rainfall intensity, while the optimised inverse gamma models differed slightly
between subsets (Figure 7, Table 3). For the 6-h maximum rainfall case, it was apparent
that the negative power-law scaling exponent increased in areas with lighter precipita-
tion (ρ = 2.430) and decreased in areas with heavier precipitation (ρ = 1.396), suggesting
that heavier precipitation (above 27.1-yr RP, >97 mm/6 h) induced more frequent large
landslides. The opposite trend was found for total rainfall (ρ = 1.381 and 1.998 for lighter
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(below 33.1-yr RP, ≤476 mm/11 days) and heavier (above 33.1-yr RP, >476 mm/11 days)
total precipitation, respectively). This discrepancy might be due to the difference in spatial
variation between short- and long-term precipitation. As shown in Figure 4, areas with
heavier 6-h precipitation were scattered throughout the study area and were unrelated
to the distribution of total rainfall increasing toward the northwest. Given this complex
localised variation in rainfall and the impact of past land cover changes, it is necessary to
subdivide the landslide data further and assess the impact of short- and long-term rainfall
separately. Future studies should address this by investigating a larger area that includes
more landslides in various land cover trajectories and rainfall conditions.
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