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Abstract: Linear geo-textures are widely recognized on synthetic scaled images of planetary surfaces
and consist of elongated alignments of tonal contrasts. When these linear patterns are clustered in
azimuthal sets and organized in domains occurring on specific terranes, they reflect the structural
grain of the crust and provide clues on the stress trajectories. In this way, the geostatistical analysis of
lineament domains represents a useful tool to highlight the geotectonic settings of planetary surfaces.
In this work, we applied a lineament domain analysis to better frame the tectonic evolution of the
Claritas Fossae (CF) area on Mars, the origin of which is still debated, and both dip–slip and strike–
slip tectonics have been described in the literature. A twofold approach was followed that included
the identification of a linear pattern with manual and automatic approaches. The automatic method
confirmed and validated the results of the manual detection. The statistical analysis of the identified
lineaments showed their clustering in two domains that persisted on different terranes separated by
the regionally sized scarp associated with the CF. This scarp is the surface manifestation of the CF
crustal fault. The spatial distribution of the two domains and their constant angular relationship of
about 30◦ allowed relating one domain to the main CF fault and the other domain to the extensional
deformation associated with the fault kinematics. Our results suggest that the CF frames well within
a regional setting characterized by right–lateral kinematics with about 20% transtension. Temporal
constraints derive from the ages of the terrains where the two domains develop. On this basis, we
propose that a first tectonic event occurred in the Noachian age followed by a reactivation occurring
after the emplacement of the Late Hesperian lavas.

Keywords: lineament domains; tectonics; Mars; Claritas Fossae

1. Introduction

The surface morphologies of planetary bodies characterized by a rigid outer shell
(e.g., terrestrial planets, icy and rocky natural satellites, etc.) are derived from the contri-
bution and mutual competition of endogenous and exogenous processes. Endogenous
processes (e.g., tectonism, volcanism, isostatic adjustments, elastic flexures, among oth-
ers) shape planetary surfaces yielding the development of sharp topographic contrasts
and peculiar tectonic landforms [1,2]. On the other hand, impact cratering and erosion,
transport, and depositional processes related to climatic conditions (active on planets with
atmosphere) tend to smooth and obliterate landforms created by endogenous processes. In
this way, studying the variety of planetary landforms provides fundamental information
on the geological history of a planet. Despite the increasing number of planetary missions
(that include the use of landers and rovers for direct in situ/local measurements, drilling,
and sampling), tectonic and geodynamic investigations on planetary bodies mainly rely on
indirect, orbital data. Such studies usually use methodologies developed and successfully
applied to unravel the geotectonic setting of key regions on Earth where access for direct in-
vestigation is difficult for climatic, economic, or geopolitical reasons. These methodologies
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include the study of potential fields [3–6], heat flux [7–9], and surface geo-textures from
remotely sensed data [10–14].

Regionally sized lineaments (with lengths of the order of hundreds to thousands of
kilometers) detected on synthetic scaled images of deformed regions record the signature of
tectonic deformations, thus providing a useful tool to highlight their geotectonic evolution.
Azimuthal and spatial analyses of lineaments provides fundamental insights to applied stud-
ies, such as the characterization of hydrothermal fluid circulation [15,16] and groundwater
fractured reservoirs [17–19], assessment of hydrocarbon potential in oil fields [20,21], charac-
terization of areas with high landslide susceptibility [22,23], and investigation of the structural
settings of seismically and volcanically active regions [24–26], as well as to unravel the tectonic
evolution of different planetary surfaces [13,27–34]. During the last decades, quoting [35],
“definitions and theories on the origin of lineaments have been almost as numerous as the
lines themselves” (see also [36] for a review on the various definitions of lineaments since [37]).
In the present paper, we refer to lineament textures that are elongated alignments of image
tonal contrasts consisting of the population of subparallel lineaments. These satellite-scale
lineaments are tens to hundreds of kilometers long, cluster in azimuthal family sets called
domains, and persist over wide regions (hundreds to thousands of square kilometers) forming
lineament swarms. This description resembles the definition of lineaments given by [35], and
they are described as originating from the weathering and erosional etching of subtle features
produced by the extension of the brittle upper crust above a deeper layer behaving in a more
ductile fashion. The importance of this class of lineaments is emphasized by their membership
in a large population. Therefore, this kind of lineament texture analysis does not focus on
the geo-tectonic meaning of a single lineament; instead, it is based on the characteristics of
the entire population. In fact, the inclusion, omission, or misinterpretation of one or a few
single lineaments does not affect the tectonic meaning of the entire population [35]. Multiple
sets of lineament textures (e.g., domain) may exist in the same region, thus producing the
structural/topographic grain of the region. In this way, these lineament textures reflect the
structural architecture of the crust that in some cases is partly hidden by thick sedimentary
or ice covers. Nevertheless, the dynamic adjustment of such covers (including sediment
compaction and ice flow) records on their surface the architecture of the bedrock, and this
smoothed signature may be detected and analyzed well from satellite-scale images [11]. Fol-
lowing [35], lineament domains represent the surface manifestation of crustal stress trajectories.
Specifically, under Andersonian stress conditions, the main lineament domain develops per-
pendicularly to the least horizontal compression (σ2 in compressional regimes, and σ3 in
extensional and strike–slip regimes) and parallel to the maximum horizontal compression
(σ1 in compressional and strike–slip regimes, and σ2 in extensional regimes). In this way, the
characteristics and spatial distribution of lineament domains and swarms have been observed
reflecting crustal geodynamic effects on different planetary surfaces (e.g., Earth: [16,38–41];
Ganymede: [13,14]; Mars: [28,42–44].

In the present study, we conducted a lineament domain analysis (sensu [35]) in the
Claritas Fossae (CF) region of Mars. This is a highly deformed area in which the role of
tectonics is still debated. We followed a manual and an automatic approach with the aim
of better framing the tectonic evolution of the region. Both analyses converged into similar
results confirming the reliability of the method in unravelling the tectonic evolution of
planetary surfaces.

2. Geological Setting

The Claritas Fossae, hereinafter referred to as the CF, represents the westernmost
boundary of the Thaumasia region between 15◦ S–40◦ S and 95◦ W–115◦ W (Figure 1A).
It consists of an intricate, NNW-SSE-elongated system of scarps, ridges, and depressions
that exceeds 1000 km in length and 150 km in width. The CF develops between the heavily
deformed Noachian terrains and the Late Hesperian terrains of the Thaumasia Plateau
(Figure 1B) [45–48]. Regionally, the CF features an asymmetric valley (namely, the Thau-
masia Graben, or TG, defined by [49]) that is bounded to the east by a west-dipping, steep
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scarp and to the west by a gently rounded slope (Figure 1C). The scarp is a striking physio-
graphic feature that develops for more than 900 km in length on both the Noachian and
Late Hesperian terrains. It marks an abrupt elevation change that exceeds 2000 m between
the valley bottom of the TG and the Thaumasia Plateau. In plain view, it is characterized
by a series of en-echelon segments that mostly characterize the southern Noachian terrains.
The scarp separates two areas with different textures: to the west, a pervasive network
of depressions, scarps, fractures, and graben- and half-graben-like morphologies result
in a rough landscape; to the east, depressions and graben-like morphologies are more
widespread, outlining a smoother landscape. Due to its morphometric characteristics and
dimensions, the scarp is considered by different authors as the surface expression of a
crustal-scale tectonic structure strictly related to the development of the CF [49–51].
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and en-echelon patterns can also be recognized, suggesting that strike–slip kinematics 
likely contributed to the present-day setting [50,51,57].  

Figure 1. (A) Topographic map of the Martian surface derived from Mars MGS MOLA—Mars MGS
MOLA DEM 463 m v2. Top-left inset shows the location of the CF (red star) on a stereographic
projection; (B) geologic map of the CF from [47]. In the legend: the trace of the main scarp of
the TG; the triangle indicates the dip, contacts, and geologic units as derived from [47]: Volcanic
Units—eHv: Early Hesperian volcanic unit; Nve: Noachian volcanic edifice unit; AHv: Amazonian
and Hesperian volcanic unit; lHv: Late Hesperian volcanic unit. Highland Units—mNh: Middle
Noachian highlands unit; lNh: Late Noachian highlands unit; eNh: Early Noachian highlands unit;
Nhe: Noachian highlands edifice unit. Widespread Units—AHi: Amazonian and Hesperian impact
unit. (C) Regional topographic profile of the CF, the trace of which (marked as A’-A”) is shown
in panel A.

The origin of the CF has been related to one or multiple tectonic deformations that
acted between the Noachian and Amazonian ages [46,49–53]. Different tectonic settings
have been proposed on the basis of the morphological characteristics of the area. The
asymmetric architecture of the TG, which resembles half-graben-like morphologies, has led
different authors to propose an extensional tectonic setting developed in one long-standing
stage or during multiple events [46,52]. In this scenario, the regional dimension and the
morphometric characteristics of the scarp suggest the presence of a crustal-scale listric
normal fault responsible for the development of the half-graben morphology [49,51,54–56].
In addition to this evidence, in the area of the CF, Riedel-type arrangements and en-echelon
patterns can also be recognized, suggesting that strike–slip kinematics likely contributed to
the present-day setting [50,51,57].

Although the type of the deformation/kinematics is still debated, authors are concor-
dant on the tectonic nature of the CF. In favor of the proposed scenarios, several terrestrial
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analogues have been highlighted such as the Kenya Rift and the Icelandic Rift for the
extensional setting [49,51], and the Western North American margin and the Sant Andreas
Fault for the strike–slip kinematics [57–59].

3. Materials and Methods

In the present work, lineament domains (sensu [35]) were analyzed following a man-
ual and automatic approach. The proposed methodology was aimed at identifying the
lineament domains that exist in the area of the CF in order to provide original constraints
to frame the tectonic evolution of the area. In particular, the automatic approach, which
was successfully used on other planetary surfaces [13,32], was here applied to confirm the
results of the manual detection. In this way, comparable results of the two approaches
granted robustness to the dataset and strengthened the tectonic interpretations.

3.1. Manual Lineament Detection and Statistical Analysis

Lineaments outcropping in the study area were visually identified through the pho-
togeological interpretation of satellite image mosaics. Lineaments appeared as patterns
of aligned pixels reflecting linear anisotropies in the image texture. To ease their identi-
fication, an ad hoc image enhancement [39,60] was conducted with the Digital Elevation
Model (DEM) derived from the acquisitions of the Mars Orbiter Laser Altimeter (MOLA)
aboard the Mars Global Surveyor (MGS), namely the Mars MGS MOLA DEM 463 m v2
dataset [61,62]. This dataset has 463 m/px of spatial resolution, represents the best compro-
mise between scale and resolution, and provides a synoptic view of the study area while
preserving the signature of regionally sized tectonic features. In the geographic information
system (GIS) environment, based on the open-source software QGIS_3.30_s-Hertogenbosch,
from the original dataset, a subset of the study area was extracted. It represented an area of
1060 × 1080 km in the latitude interval of 20◦–35◦ S and longitude interval of 100◦–115◦ W.
The subset image was resampled at a spatial resolution of 1000 m/px. In this way, the image
was filtered to exclude elements and morphologies related to local effects that we consid-
ered negligible for the regional aim of this work. Shaded relief images were derived from
the resampled subset image according to four low-angle (20◦) synthetic lighting conditions
trending 45◦, 90◦, 135◦, and 180◦ (Figure 2). This allowed the reduction of the bias induced
by a single direction of the light for which lineaments nearly parallel to the direction of the
light tend to be hidden and those nearly perpendicular emphasized [16,29,63,64]. Linear
texture enhancing of each shadow image included (i) the application of a Laplacian filter to
emphasize higher spatial frequency related to the presence of the tectonic texture; and (ii) a
lookup table stretching to enhance the tone contrasts and ease the manual identification of
the lineaments [65].

Lineaments detection was conducted in a GIS environment (QGIS_3.30_s-Hertogenbosch)
through the systematic visual inspection of each enhanced shadow image and following the
rules provided in [66]. Thus, four distinct lineament datasets were derived. Due to the regional
purpose of the present work, only lineaments corresponding to pixel alignments that main-
tained the same azimuthal direction for no less than 20 km were traced. Identified lineaments
were digitized by manually tracing linear elements by drawing vertices by clicking on a fixed
map scale of 1:10,000,000. The linear, digital elements were stored in four dedicated vector lay-
ers. The following attributes were calculated for each lineament: length, azimuthal direction,
and the coordinates of the extremes and of the centroids. The four derived datasets including
the lineaments identified in the four shadow images were then grouped into a single database.
This database was statistically analyzed using Daisy3 software (v. 5.58.3.231121, Rome, Italy).
Daisy3 allowed us to conduct an azimuthal analysis by frequency and cumulative length
following the approach presented in [67]. This analysis included the polymodal Gaussian fit
aimed at identifying the main azimuthal family set (i.e., lineament domains, sensu [35]). The
statistical analysis includes several steps: (i) the histograms of the azimuth by the frequency
and cumulative length of the identified lineaments were prepared and normalized to their
highest value; (ii) the histograms were smoothed to reduce the statistical noise by a selected
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number of moving weighted averages [68,69]; (iii) the peak(s) of the histograms were fitted
with the sum of the Gaussian curve functions using a best-fit algorithm [70]; (iv) the results
were plotted as rose diagrams that represented as “petals” the recognized unimodal- (single
azimuthal cluster) or polymodal-distribution (multiple azimuthal clusters) lineament domains.
In this way, each domain could be described by its Gaussian/statistical parameters, such as
the main azimuth, standard deviation, and relative height. In particular, the value of the
standard deviation (SD), calculated as the width of the petals/Gaussian measured at half
height, was related to the azimuthal scattering of the lineament domains. Two domains
were easily identified when their angular distance (i.e., the distance between their modes)
was higher than their SD and thus the corresponding Gaussian peaks showed minimal or
null overlap.
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3.2. Automatic Lineament Detection and Statistical Analysis

Criticism about lineament detection relies on the magnitude of its potential for observer
bias [66]. In fact, manual lineament identification may be conditioned by psychological
factors of operators, such as an enthusiasm for drawing lines or former knowledge of the
study area that could produce a biased dataset. For this reason, automatic detection was
performed to strengthen the objectivity of the dataset manually traced. In the present
work, SID software (v. 3.06-2, Rome, Italy) [71] was used. It is of note that this software
has been successfully used in previous geotectonic investigations both on Earth and on
other planetary surfaces [11–13,32,39,40]. The SID software was used to discover the
alignment of the adjacent-pixel contrast in the pre-processed DEM (Mars MGS MOLA
DEM 463 m v2) of the Martian surface by a systematic search for all possible digital
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combinations of segment directions within a given range of parameters. According to the
used parameters, the algorithm can identify faint, discontinuous lineaments characterized
by alignments of the adjacent-pixel contrast separated by null pixels. The software searched
for lineaments according to a set of parameters defining the characteristics of the linear
pattern. These parameters included: the minimum and maximum length of a pixel unit
of a lineament; the width of the lineament in pixel units measured perpendicularly to its
strike; the dimension of the moving smoothing window along the potential lineament to
override the discontinuities in pixel distribution; the minimum length of each lineament
segment; the maximum distance between lineament segments that belonged to the same
lineament; and the pixel density along the lineaments.

In this study, a set of parameters was selected to discover lineaments longer than
30 km and 3 km wide. The ad hoc image enhancement of the four shadowed images (pre-
pared as described in the previous section) included: (i) Laplacian filtering (to emphasize
the higher spatial frequency related to the presence of the linear texture); (ii) threshold
slicing (to select pixels contributing to the image texture related to the presence of linea-
ments and in order to reduce the meaningful pixel number to ~10% of the image); (iii) and
LIFE filtering (that allowed a reduction in random noise in the raster image). The resulting
images were then automatically processed with SID to recognize lineament patterns. The
detected lineaments were cumulated into a database that was successively statistically
analyzed through the Daisy3 software (v. 5.58.3.231121, Rome, Italy) to discover lineament
domains with the same procedure previously described.

4. Results

The photogeological interpretation of the four shadow images allowed the visual iden-
tification of 735 lineaments (Figure 3A). The polymodal Gaussian fit highlighted that the
identified lineaments were not randomly distributed but clustered around
two preferential orientations, thus defining two lineament domains (sensu [35]). The
two lineament domains were clearly highlighted by both the analyses by frequency (upper
part of the rose diagrams in Figures 3B and 4A) and by cumulative length (lower part
of the rose diagrams). They are (i) Domain 1 (red), which included 381 lineaments with
a main azimuthal direction of 13.39◦ (NNE-SSW), SD: 11.91◦; and (ii) Domain 2 (blue),
which included 139 lineaments with a main azimuthal direction of 339.35◦(NNW-SSE),
SD: 6.03◦. The angular difference between the two Gaussian peaks was 34.04◦, which
was well above the SD of both the domains. This indicated that the analysis identified
two separated Gaussian peaks that represented two distinct, non-overlapped lineament
domains. In addition, Figure 3B shows that Domain 1 and 2 were characterized by different
spatial distributions. Domain 1 was spatially clustered in the western part of the study
area, whereas Domain 2 was clustered in the eastern part.

The automatic lineament domain analysis identified 824 lineaments. The polymodal
Gaussian fit highlighted two main Gaussian peaks corresponding to two lineament domains
and a minor peak (Figure 4B) that were (i) Domain A (red), which included 228 lineaments
with a main azimuthal direction of 11.26◦ (NNE-SSW), SD: 12.75◦; (ii) Domain B (blue),
which included 116 lineaments with a main azimuthal direction of 341.40◦(NNW-SSE), SD:
7.61◦; and the third, secondary peak, which included 189 lineaments with a main azimuthal
direction of 86.87◦ (E-W), SD: 26.29◦. Domains A and B strictly resembled Domains 1 and
2 identified through the manual approach. The strong azimuthal similarity is shown in
Figure 4 and confirmed the reliability of the manually traced lineaments. Therefore, in the
following discussion and tectonic interpretations, the manual lineament dataset will be
used. The rose diagrams in Figure 4 show that the azimuthal differences between Domains
1 and A, and 2 and B were less than 2◦. Thus, also the mean angular distance between
Domains A and B, which was 29.86◦, was nearly the same as that between Domains 1 and
2 (34.04◦) with a difference less than 5◦.
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peaks resulting from the azimuthal analyses of the lineaments. The width of each petal corresponds
to the SD computed at half the height of the Gaussian peak. The tables above include the statistical
parameters as derived from the polymodal Gaussian fit analyses. Lineament data with scattered
azimuthal directions were not classified and do not contribute to any lineament domain.

5. Discussion

The two detected lineament domains (i.e., NNE/red and NNW/blue) persisted over
two distinct areas separated by the main TG scarp (Figure 3). The different spatial distribu-
tion is shown with density maps created for each domain in Figure 5. The density maps
were obtained in a GIS environment (QGIS_3.30_s-Hertogenbosch) through the plugin
“Heatmap” that used the kernel density estimation algorithm to generate a density raster
from a vector point layer as an input. The density of the points was calculated as a function
of the number of points in a position. The more points that were present, the larger the
values. In our study’s case, the centroids of the lineaments were used as points for the
input layer. The density map in Figure 5A shows an almost homogenous distribution of the
NNE domain to the west of the major scarp of the TG, in correspondence to the Noachian
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terrains (an area with a slightly higher concentration can be observed around 28◦ S and
103◦ W). On the other hand, the density map in Figure 5B highlights that the NNW domain
was characterized by two areas with higher concentrations of lineaments to the east of the
major scarp of the TG. The main concentration was located to the north of the Claritas Rise,
where lHv crops out. The secondary concentration was to the south and persisted from
the Early to Middle Noachian terrains. A local minimum of the NNW domain occurred in
correspondence to the Claritas Rise.
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geological map of the CF from [47].

As shown in Figures 3B and 5, the transition between the two domains was sharp and
occurred in correspondence to the major scarp of the TG. This last was a regional tectonic
lineament considered the superficial manifestation of a crustal-scale tectonic feature [51].
Specifically, some authors have argued for the existence of a crustal-scale listric normal fault
that developed in an extensional tectonic setting; others have proposed that a regional shear
corridor developed in a right-lateral strike–slip regime [49–51,57]. Following our analysis,
the NNW domain included some strands of the major scarp of the TG [51] and shared
with the scarp the same orientation (Figure 3B). However, the prevailing lineament domain
in the area of the CF was found to be in the NNE domain. According to [35], the main
lineament domain under Andersonian stress conditions developed perpendicularly to the
least horizontal compression (or parallel to the maximum horizontal compression). In this
way, in an extensional tectonic scenario, the extension should be WNW-ESE-oriented, which
would not be compatible with the NNW-SSE regional orientation of the CF. An important
clue for the tectonics of the CF was related to the angular relationship between the two
identified domains. In particular, the low values of SD that characterized both the NNE and
NNW domains indicated a small azimuthal scattering of the identified lineaments. Thus,
the angular relationship, which was ~30◦, was maintained for the entire extent of the CF
(>1000 km in length and >150 km in width). According to [12,13], in pure strike–slip tectonic
regimes, the angle between the main fault/shear corridor and the maximum horizontal
compression induced by kinematic conditions was 45◦. The angle reduced or increased in
the case of transtensional or transpressional kinematics, respectively (Figure 6). In this way,
the variation of the fault kinematics yielded the rotation of the angle of the intra-fault/shear
corridor stress field resulting in a different orientation of the related lineament domain
(Figure 6A). In the case of our study, the angle of ~30◦ between the NNE and NNW domains
suggested that the identified domains developed in a transtensional tectonic regime. This
tectonic reconstruction was also supported by the sketch presented in Figure 6B, in which
the acute angle θ between the shear corridor and the related fractures/lineaments was
used to quantify the transtensional/transpressional components of a strike–slip corridor.
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In the case of our study, the angle of ~30◦ referred to a right-lateral transtensional regime
characterized by a ~20% extensional component.
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Figure 6. (A) Schematic representation of a pure strike–slip regime (upper part) and transtensional
regime (lower part, redrawn after [13]), in which the blue lines represent the kinematic elements
(i.e., boundaries of the shear corridor) and the red lines the dynamic elements (i.e., intra-corridor
fractures). In the case of our study, the kinematic elements are represented by the NNW-SSE/blue
domain and the dynamic elements by the NNE-SSW/red domain. (B) Diagram showing different
angular relationships as derived from different orientations of the internal kinematics (e.g., [40]). The
different angles are shown on the X axis whereas the percentage of extension/compression is shown
on the Y axis. The acute angle measured clockwise between the shear corridor and fractures was
45◦ in a pure strike–slip regime and decreased (increased) in the case of a transtensional (transpres-
sional) regime. The angular relationship of ~30◦ between the two identified domains indicated that
they formed under a right-lateral transtensional regime with a nearly 20% extensional component
(red bullet).

Additional information can be derived from the polymodal Gaussian fit analysis
that could be used to determine the relative age of the identified domains [11,72]. In
particular, the ratio between the values of the normalized Gaussian height NorH and
standard deviation SD (values for both domains are shown in tables in Figure 4) was
indicative of the sharpness of the peaks or, in other words, of the azimuthal scattering of
lineaments belonging to the same domain with respect to their frequency [60]. Exogenous
processes that act on areas deformed by tectonic/endogenous processes tend to increase
the azimuthal scattering of the original unaltered linear geometries, thus increasing the SD
of the domain [11,60,72]. Therefore, higher values of NorH/SD relate to relatively younger
lineament domains [11,60,72]. In the case of our study, NorH/SD was higher for the NNW
domain (NNE 8.39 and NNW 10.76). This indicated that the NNW domain was relatively
younger compared to the NNE domain. This was also supported by the spatial distribution
of the domains as highlighted by the density maps that show the NNW domain developing
on both the Noachian and Late Hesperian terrains, whereas the NNE domain persisted
only over the Noachian terrains. This evidence suggested the formation of NNE domain in
the Noachian age and the NNW domain after the onset of the Late Hesperian age. This
disagreed with the coeval or nearly coeval growth of both domains in a single tectonic
stage, whereas it could be better explained by a tectonic evolution comprising multiple
events in accordance with [51]. In this multi-phase tectonic scenario, a first right-lateral
transtensional event led to the development of both the domains during the Noachian
age. A subsequent event occurred after the emplacement of the Late Hesperian lavas and
likely reactivated the NNW domain, thus explaining its younger relative age. This tectonic
reconstruction is in line with the beginning of the tectonic deformation at the CF in the
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Noachian age proposed by different authors (e.g., [46,52]), and with the event that yielded
the development of the TG between the Late Hesperian and Early Amazonian ages [49,73].
In Figure 7, the proposed tectonic evolution that led to the formation of the two identified
domains is shown. In this way, the lineament domain analysis proved to be a powerful
tool to highlight the crustal stress of the deformed regions. Specifically, the stress directions
highlighted by the NNE domain were compatible with a kinematically induced stress in an
NNW-SSE regional corridor of deformation characterized by dextral shear. These findings
were in accordance with the evolutionary model proposed in [51] and with the preliminary
results on the spatial distribution of the three major fault trends identified in [74]. In
particular, this different, independent dataset provides similar results that strongly support
a polyphase tectonic evolution of the CF. Similar tectonic reactivations along inherited
weakness zones are a deeply investigated deformation process that operates both on Earth
(e.g., [75–77]) and on other planetary surfaces (e.g., [13,27,32]).
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Figure 7. Tectonic sketch showing the proposed tectonic evolution of the CF as highlighted through
the lineament domain analysis. (A) Right-lateral transtensional event enacted in the Noachian age:
both domains formed; (B) tectonic reactivation of the CF between the Late Hesperian and Early
Amazonian ages suggested by the relatively younger age of the NNW domain and the crosscutting
relations with lHv. The normal fault that generates the scarp was redrawn after [49,51].

6. Conclusions

In this work, we applied a manual and an automatic approach to conduct a lineament
domain analysis to investigate the CF, a complex, tectonically controlled area represent-
ing the western boundary of the Thaumasia Region. Through a polymodal Gaussian fit
analysis, the existence of two lineament domains was highlighted: the NNE domain and
NNW domain. The angular relationship between the domains indicated that the domains
developed within a right-lateral transtensional tectonic regime during the Noachian age.
The relative age of the domains, as derived from the NorH/SD ratio, suggested a possible
reactivation of the NNW domain between the Late Hesperian and Early Amazonian ages.
This is in line with a polyphase tectonic evolution of the CF. Eventually, the lineament
domain analysis proved to be a free and a real-time method to investigate tectonically
controlled areas, both in manual and automatic approaches.
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