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Abstract: The Ougnat Massif of the eastern Anti-Atlas (Morocco) hosts barite and sulfide vein-type
deposits of vital economic importance. With over 150 mineralized structures reported in the Ougnat
Massif, the ore-bearing ones are predominantly composed of barite, quartz, calcite, and minor
portions of sulfides. The mineralized veins are driven by NW-SE and NE-SW to E-W oblique-slip
opening faults that cross both the Precambrian basement and its Paleozoic cover. The mineralized
structures occur as lenses and sigmoidal veins that follow stepped tension fracture sets oblique to the
fault planes. These geometries and kinematic indicators of these structures point to a predominantly
normal-sinistral opening in a brittle-ductile tectonic setting. The S isotopic compositions of barite
from the Ougnat Massif (+10.8 to +19.5‰) fall mostly within the range of δ34S values of Late Triassic
to Jurassic seawater, thus suggesting that some of the SO2− in barite comes from seawater sulfate.
This range of δ34S values also corresponds approximately to the hydrothermal barite context. The
87Sr/86Sr ratios of barite, which range from 0.710772 to 0.710816, lie between the radiogenic strontium
isotopic compositions of deposition by hydrothermal solutions, and also coincide with the non-
radiogenic isotopic signature of Triassic to Jurassic seawater. Based on a fluid inclusions study, the
ore-forming fluids were a mixture of two or more fluids. A deep hot fluid with an average temperature
of 368 ◦C leached the granodiorites and volcanic-sedimentary complex of the Ouarzazate Group.
This fluid provided the hydrothermal system with most of the Ba, radiogenic Sr, and some of the
dissolved S. A second, shallow fluid with an average temperature of 242 ◦C was derived from Late
Triassic to Jurassic seawater. The barite mineralization of the Ougnat Massif constitutes a typical
example of vein-type mineralization that occurred along the northern margin of the West African
Craton and regionally tied to the central Atlantic opening.

Keywords: barite veins; fluid inclusions; sulfur isotopes; strontium isotopes; tectonic; Ougnat Massif;
Anti-Atlas

1. Introduction

Barite holds significant value in industries such as aerospace, chemicals, and petroleum,
as well as for the production of white goods [1–11]. Thanks to its versatility in these fields of
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application, it contributes significantly to the national economy. With an annual production
of 1100 metric tons, Morocco is the seventh-largest producer of barite in the world [4]
(Table 1).

Table 1. Production resources of barite in major countries from 2016 to 2022 (metric tons).

Particular Year 2016 2017 2018 2019 2020 2021 2022

China 2800 3100 3200 2900 2500 2100 1900
Kazakhstan 482 500 620 620 600 450 500

Turkey 170 200 290 250 130 258 300
India 1050 1100 2000 2200 2000 1600 2600
Iran 480 500 550 490 200 224 220

United States 240 NA 480 390 NA NA NA
Morocco 107 140 1000 1100 800 1100 1300
Mexico 197 140 400 400 280 321 320

Pakistan 107 140 110 110 110 - -
Thailand 223 148 150 NA NA -

Russia 434 430 220 160 160 - -
Other 470 470 460 900 340 528 580
Global 7320 7700 9480 9520 7500 6730 7900

Data source: U.S. Geological Survey, Mineral Commodity Summaries, January 2023; NA said no statistics.

However, despite this obvious economic importance, the study of barite deposits
genesis in Morocco remains very limited [12–21]. Barite deposits are widely distributed
over the whole Moroccan territory, hosted in various geological formations of varying
nature and age [14,22]. Three main types of barite deposits have been studied in Morocco,
based on their shape of mineralization (stratiform, karstic, and vein deposits) [14,16,22,23]
(Figure 1). Stratiform mineralization is rare and limited, and can only be seen embedded
within the Lower Paleozoic formations of the High Atlas [16]. Karstic mineralization is
exploited in the western Paleozoic Meseta, notably at the Jebel Irhoud mine [20,22] and
Bou Ouzel mine [15]. Barite vein deposits are mined extensively throughout the structural
domains of Morocco, spanning from the southern Anti-Atlas belt, including the Ougnat
Massif, to the northern Cenozoic Rif mountains (Figure 1).

Field-based structural constraints suggest that the vein-type barite deposits in the
High Atlas, Eastern Anti-Atlas, and western Meseta of Morocco, formed in response to an
extensional tectonic context related to the Central Atlantic opening [15–19,21,24–26]. These
deposits could be genetically correlated to certain barite deposits in central and western
Europe [23,27–32]. From a metallogenic point of view, the only research carried out in the
Ougnat Massif (Eastern Anti-Atlas) has successfully discussed the genesis process of the
Bou Madine Au-Ag-Pb-Zn ± Cu deposit as an epithermal-type deposit [33,34].

Studies on barite from the Ougnat Massif (Figure 2) have been relatively scarce,
with only a few notable studies including. [35], used electrical tomography to define the
alignment of barite veins with galena. However, Ref. [36] have discussed the environmental
impacts of barite mining in the Ougnat Massif. Recently, Ref. [18] discussed the genetic
relationships between faults and barite veins, describing that the barite of the Ougnat Massif
is vein-type, and that mineralization-bearing structures are hosted within NE-SW to E-W
and NW-SE strike-slip-normal fault system. In contrast to well-studied European deposits
such as those in the Catalonian Coastal Ranges (Spain), Western Erzgebirge (Germany)
and Sardinia (Italy) [36–41], where mineralogy, fluid chemistry, and emplacement ages
are thoroughly documented, the barite deposits in Morocco are relatively understudied
from a metallogenic perspective. The present, study therefore, aims to investigate, for
the first time, fluid inclusions in barite from the Ougnat Massif by combining Sr and S
isotopes to (1) characterize vein-type barite mineralization, (2) establish the fluid pathway
and source responsible for ore formation, (3) and understand the genetic process of the
ore. This research furnishes valuable insights into fault-controlled barite mineralization,
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thereby enhancing exploration possibilities for comparable deposits across diverse regions,
encompassing the Paleozoic cover of the entire Anti-Atlas.

Figure 1. Spatial distribution of the main barite deposits in the Atlas-Meseta and the Anti-Atlas
domains [22,37]. AAMF: Anti-Atlas Major Fault, SMF: South Mesetian Fault, SAF: South Atlasic
Fault, 1: Ougnat deposit, 2: Bou Ouzzal deposit, 3: Aouli deposit, 4: Jbel Irhoud deposit, 5: Sekssaoua
deposit, 6: Zelmou deposit, and 7: Bouznika deposit.

2. Geologic Setting

The Anti-Atlas belt of Morocco forms a broad crustal bulge extending in an ENE-
WSW direction at the northern fringe of the West African Craton (WAC) (Figure 2). It
is bordered to the south by the Carboniferous basin of Tindouf and to the north by the
southern margin of the High Atlas. The Saghro and Ougnat Massifs (inliers), located in
the eastern part of the Anti-Atlas, constitute important anticlinal structures composed of a
deformed Proterozoic basement partially overlain by Paleozoic formations, thus hosting
several important mineral-rich deposits [16,34,38–42].

Folding and faulting of the Paleozoic series are attributed to the Variscan and partially
Alpine orogenies [37,39,43–46]. The current elevation of the eastern Anti-Atlas, reaching
approximately 2700 m in the Jbel Amalou n’Mansour of the Saghro Massif, is due to the
latest Atlasic-Alpine shortening [47]. The Saghro and Ougnat Massifs, part of the Pan-
African orogenic system, extend northward from the Anti-Atlas Major Fault (AAMF) where
the Siroua and Bou Azzer ophiolites as well as the oceanic arc units occur [48–52]. The
oldest rocks in the eastern Anti-Atlas belt consist of turbidites and clastic sediments of the
Lower Ediacaran, belonging to the Saghro Group. They are unconformably overlain by the
late Ediacaran volcanic and volcano-sedimentary rocks of the Ouarzazate Group [53–56].
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The Saghro Group in the Ougnat Massif outcrops to the northeast in the Mellab and
Ighrane domes [56] (Figure 3). It consists of a series starting with rhythmic alternations of
fine-grained sandstones with centimeter to decimeter thickness, fine-grained sandstones,
arkoses, greywackes, and interbedded quartzwackes [56]. This group is generally de-
formed, schistose, and weakly metamorphosed in the greenschist to chlorite and sericite
facies during the Pan-African/Cadomian orogeny [57–59]. The granitoids of the Ougnat
Massif, which intrude the Saghro group, present two distinct petrographic facies: (i) quartz
diorite and (ii) granites [60,61]. The emplacement of these granitoids is assumed to be
synchronous [33,60,62–65], which led to contact metamorphism marked by characteristic
minerals such as biotite, cordierite, andalusite, and garnet in the metasedimentary se-
ries [36]. The Upper Ediacaran Ouarzazate Group features a thick sequence of volcanic
caiaand volcano-sedimentary rocks associated with huge plutonic masses [46,49,66–69].
According to Abia et al. [33], Pail. [70], and Radi et al. [71], this sequencepail includes
the following units from bottom to top: (i) conglomerates with angular and heterometric
elements, formed from erosion of metasedimentary series and granitoids; (ii) the Tamerzaga
Formation, composed of an ignimbritic stack and intercalated andesitic lava flows; (iii) the
Ouin Oufroukh Formation, which includes sedimentary and volcano-sedimentary rocks
such as limestone, chert, mudstone, sandstone, conglomerate, as well as rhyolite and an-
desite levels; (iv) the Aoujane Aïssa Formation, where ignimbritic rocks dominate with
intercalations of dacitic and basaltic lava flows.

Figure 2. Geological map of the Anti-Atlas belt [37,44,72].

The Paleozoic cover unconformably overlays the Precambrian basement, which begins
with the deposition of Lower Cambrian sandstones, known as “Grès Terminaux” [73,74].
In the middle Cambrian, fine-grained sediments were deposited together with alkaline
basalt flows [43,44,59]. The Upper Cambrian represents a possible hiatus [75,76] which was
followed by a resumption of clastic sedimentation that persisted until the Upper Ordovician.
Silurian black shales with graptolites accumulated throughout the region in response to a
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post-glacial eustatic transgression after the Saharan glaciation in the Upper Ordovician [77].
During Late Silurian–Devonian, sedimentation became more carbonate-rich [59,77].

Figure 3. (a) Geological map of the Ougnat Massif [78–80]. Rose diagrams of faults bearing barite vein (b)
and mapped faults (c). Tg: Taggat; Ms: Mouassae; An: Ansmine; Am: Amda; Tn: Tinchraramine; Is; Isk
n’Oudaden; Ti: Tismaght; Ai: Aghri n’Imacher; Ab: Aberchane. 1, 2, 3, 4, and 5: Isotope sample number.

3. Deposit-Scale Barite Vein Description

The Ougnat Massif constitutes one of the important barite metallogenic provinces
in North Africa, with over one hundred and fifty barite veins mapped over Precambrian
and Paleozoic basement. The most significant barite-bearing structures in the Ougnat
Massif are localized along NW-SE and NE-SW to E-W oriented faults (Figure 3). These
faults are particularly visible along numerous Precambrian–Paleozoic contact zones, thus
considered weak zones that facilitate the mineralized fluid flow. The mineralized structures
have length dimensions of a few hundred meters. However, it is common for several
structures to occur consecutively along the same fracture. This is particularly the case when
these extensional cracks meet almost continuously, when the rock is competent enough
to allow larger openings. For instance, at the Tiberguente deposit, which is hosted by
Middle Cambrian sandstones, mineralized faults extend over a distance of more than
8 km, whereas at the Taggat mine they extend over more than 12 km along the basement-
cover contact zone (Figure 3). The thickness of the structures is variable from place to
place, and also depends on the nature of the host rock; generally, of the order of 1 to 2 m
(Figure 4a), they can reach a few meters in the largest veins and exceptionally up to 6 m
at the Tichraramine mine. Vein depths also vary according to their extent, ranging from
a few dozen meters to over a hundred meters for the largest veins, e.g., the Mouassaie
vein currently being mined at −110 m depth. In some places, the mineralized veins may
occur as pairs of conjugate veins and stepped tension fractures. Ore-rich barite deposits,
characterized by increasing thickness and high ore concentration, are typically confined
to tectonic nodes, where several mineralized structures intersect. Barite mineralization
appears as sigmoidal lenses within lithological contact zones, interpreted as stratigraphic
boundary structures. It can also take the form of stepped tension fractures set obliquely to
the planes of the mineralized faults. Structural data conducted by [18] have shown that the
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geometry of these structures shows tectonic kinematics of sinistral–normal opening in a
brittle–ductile regime along the host faults, revealed at both microscopic and macroscopic
scales. The veins are mainly composed of barite, although other minerals such as calcite,
quartz, galena, and, in some places, malachite and azurite may be present (Figure 4e–h).
From a textural point of view, barite occurs as massive aggregates or white to pink crested
crystals, which are filled within the body. Carbonates are practically absent, but quartz can
be abundant.

Figure 4. (a) Panoramic view of a sub-vertical mined barite vein, showing tectonics criteria of sinistral–
normal kinematics within the Ediacaran Ouarzazate group. (b) Plan of fault-bearing unstriated barite
record slickenlines pointing to a dip–slip tectonic opening. (c) Schematic drawing showing transtensional
tectonic control of hydrothermal barite veins. (d) Massive white barite displaying large tabular crystals
and exhibiting oxidation stains. (e–g) Grey barite containing lead sulfides, malachite, and oxidation
stains. (h) Fault mirror featuring pink barite with malachite and azurite. OG: Ouarzazate Group,
Brt: barite, Gn: galena, Mlc: malachite, Azu: azurite, and Op: oxidation stains.

4. Methodology

Field-based studies were conducted to establish the relationships among the min-
eralized vein field, the host rock, and their structures during the precipitation of barite
mineralization. Barite samples were collected for petrographic studies (thirty samples),
coupled Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray analysis (EDX)
(ten samples), strontium and sulfur isotopic analysis (five samples for both 87Sr/86Sr and
δ34S, respectively), and microthermometric studies of fluid inclusions (50 measurements).
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SEM combined with EDX enabled us to (i) examine the texture and microscopic
structure of the samples after carbon metallization and (ii) perform surface microanalysis
and qualitative multi-elemental analysis [81]. These analyses were carried out on a Quanta
200 FI SEM equipped with the EDAX probe model JEOL JSM-IT500HR/LA, with different
vacuum modes (high vacuum, low vacuum, and ESEM). It had a resolution of 3.5 nm, an
acceleration voltage of 0.5 to 30 KV, and 4 fully motorized axes. The EDX analyzer come
with Generis 2000 I software for integration with the Quanta.

Strontium isotope analyses were carried out at Activation Laboratories in Canada, on
barite powder samples. These powders were reacted with Milli-Q water for 24 h at 100 ◦C
and the solution dried. Chemical separation procedures for Sr follow the methodology
of [82] and [83]. Isotopic analysis for Sr used MC-ICPMS methods. All analyses are
presented relative to a value of 0.710245 for the SRM 987 Sr isotopic standard [82]. Sulfur
isotopic analyses were performed using Isotope Ratio Mass Spectrometry (IRMS)—MAT
253, Thermo Scientific, coupled with Elemental Analyzer (EA), and Fisons Instruments
at the Activation Laboratories in Canada. For the barite samples, the isotopic ratio was
calibrated against the barite standards NBS 127, IAEA-SO-6, and IAEA-SO-5 [82]. Therefore,
the analytical error of δ34S values was less than ±0.5‰.

Microthermometric measurements of fluid inclusions were conducted using the Chaix
Meca stage at Cadi Ayyad University in Morocco [84]. To calibrate the fluid inclusions,
we used three types of synthetic fluid inclusions: (i) H2O-CO2 fluid inclusions with a CO2
melting temperature (TfCO2) of −56.6 ◦C, (ii) pure H2O fluid inclusions with an ice melting
temperature (Tfg) of 0.0 ◦C and a critical homogenization temperature (Th) of 374.1 ◦C,
and (iii) H2O-NaCl fluid inclusions with a eutectic temperature (Te) of −21.2 ◦C. We chose
these types of inclusions because they allow for accurate calibration of the instruments.
The measurement accuracy was ±0.1 and ±0.5 ◦C for temperatures below 0 ◦C and around
400 ◦C, respectively. According to Ulrich et al. [85], fluid inclusions in barite can stretch
beyond 10 ◦C of their homogenization temperature. In our process, we measured only
fluid inclusions that had not stretched during their homogenization temperature.

5. Results
5.1. Barite Characterization: Textures, Petrography, Paragenesis, and SEM

Textural analysis of the various barite mineralizations discovered in the Ougnat Massif
revealed several textures (Figure 5). (i) Massive texture is the most dominant across the
veins of the Ougnat Massif (Figure 5a,d). It is frequently represented by large plate-like
or centimeter-scale tabular crystals or automorphic orthorhombic crystals (Figure 5a) of
varying sizes due to uniform growth rates. It typically appears as white, pink, or gray
masses (Figure 5d). (ii) Breccia texture: two different types of breccias were identified,
tectonic breccia and hydrothermal breccia. The former is easily recognizable in the field
due to grain reduction and fragment orientation. The latter is characterized by more or less
rounded fragments of barite and host rocks (Figure 5c), cemented by a hydrothermal matrix.
(iii) Banded texture is sparsely developed throughout the Massif, displaying palmate layers
of white and pink barite associated with iron and manganese oxides to form alternating
bands (Figure 5e). Generally, banded textures indicate a context of intermittent and slow
opening of mineralized veins [86,87], in an extensional tectonic environment. (iv) Crested
texture extends in several locations along the mineralized structures, consisting of gathered
flattened tabular crystal facets (Figure 5f).
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Figure 5. Hand specimen photographs of barite mineralization: (a) massive with orthorhombic
automorphs; (b) tectonically brecciated; (c) brecciated; (d) massive; (e) banded; (f) crested. Brt: barite,
Gn: galena, Mlc: malachite, Op: oxidation stains, and Mt: matrix.

The barite veins of the Ougnat Massif contained 80–90 vol% barite, ~10–20 vol% quartz-
calcite, and −1 vol% sulfide minerals in the form of galena, chalcopyrite, and their oxidation
minerals (malachite, azurite, iron oxide, and manganese oxide). Due to the remobilization
of silicates and sulfides along fractures by hydrothermal fluids, significant network tex-
tures have been observed in barite. Microscopically, barite appears as elongated, curved,
intertwined, and interlocking long prismatic rods with rolling extinction (Figure 6a–e).
The cleavages are perfect on (001), nearly perfect on (210), and good on (010) with weak
pleochroism. Galena is the most common sulfide in this paragenesis. It forms isolated
replacement masses, reaching sizes of a few centimeters, and is disseminated within barite
and sometimes in fine veinlets. It is characterized by a good polish and triangular fractures
(Figure 6c,d). Chalcopyrite was only found in certain samples (Figure 6h), especially in
the Amda mine. It was sparsely present on the surface of veins and forms irregular and
xenomorphic patches. Chalcopyrite inclusions in barite are often altered into copper ox-
ides. Late-stage silica, iron oxides, manganese oxides, and hydroxides originate from the
cleavages of barite (Figure 6d,f,i).

Macroscopic and microscopic analysis revealed the existence of two distinct genera-
tions of barite, each with specific characteristics. (i) Barite I, which is the most predominant
type of barite. This first generation can be observed throughout the Ougnat Massif. It
takes the form of laths and aggregates of variable size, often with a pink color. The texture
of this barite can be massive or stockwork-like. (ii) Barite II forms later than the first
and quartz, as it is unaffected by silicification. It takes the form of flattened tablets, with
gradual color zonation from dark sandstone to white. Three-stage paragenesis has been
recognized based on mineralogical, textural, and cross-cutting relationships. Stage I is the
most economically important, accounting for over 80% of the total barite resources, e.g., the
Tinchraramine mine, with over 760,000 tons of barite stock [18]. The mineral paragenesis
consists of barite, quartz, calcite, and very rarely fluorite. Stage II consists of variably
colored, centimeter-sized barite occurring in crests and is associated with galena and other
sulfides. It also includes fluorite and drusy quartz crystals. Stage III is the result of primary
sulfide oxidation and comprises minor amounts of cerussite, malachite, azurite, and iron
and manganese oxides (Figure 7).
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Figure 6. Photomicrographs illustrating textural relationships of barite and associated minerals in the
Ougnat Massif. (a–e) Optical microscope photomicrographs with transmitted light of barite showing
euhedral grains associated with quartz. (f) Photomicrograph showing a network of quartz-filled
veins within the barite. (g–i) Optical microscope photomicrographs with reflected light of barite
associated with sulfides. Brt: barite, Qz: quartz, Gn: galena, Ccp: chalcopyrite and Py: pyrite.

Figure 7. Summary of the paragenetic sequence illustrating the various hydrothermal stages depicted
in the Ougnat Massif. The width of the bars is roughly proportional to the intensity or volume event.
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To better define the internal structure of barite, the scanning electron microscopy (SEM)
technique was applied to visualize the crystal arrangements. When observed using SEM,
barite often appears as a massive texture (Figure 8a,b), meaning it appears as a compact
mass of crystals with apparent crystal structure; this texture is the most dominant among
the studied barite. Barite can also, rarely, be observed as individual crystals, exhibiting
characteristic shapes and well-defined crystal structures, elongated or tabular crystals,
often in aggregates (Figure 8c,d). In the case of the studied samples, the presence of SiO2
(Figure 8e) indicates silicification due to hydrothermal activity.

Figure 8. BSE images and EDX spectroscopy of barite from the Amda deposit. (a) fragments of
massive textured-barite (arrows); (b–d) micron-scale barite flakes agglomerates; (e) EDX spectra of
studied barite showing the presence of an SiO2 phase.

5.2. Sulfur Isotopes

The sulfur isotopic compositions were obtained for five representative samples of
barite. These barite samples were collected from the main mineralized structures hosted
both in the Precambrian Ouarzazate Group formations and in the Cambrian–Ordovician
rocks. In accordance with the values of sulfates precipitated in Permian–Triassic seawater
(i.e., +11 to +18‰ δ34S) [88], all analyzed barite samples had uniform δ34S ratios ranging
from +10.8 to +15‰ (Figure 9a), except for sample MO-15 (Table 2), which exhibited the
highest δ34S value of 19.5‰. The distribution of δ34S ratios of vein barite in the Ougnat
Massif shows no spatial variation. These data are comparable to δ34S values of +8.9 to
+14.7‰ for vein and karstic barite deposits in the Western Jebilets (Meseta) [19], as well as
δ34S values ranging from +11 to +13.4‰ for vein and karstic barite deposits in the High
Moulouya [17]. Furthermore, in the High Atlas, the Bou Dher deposit (Pb-Zn-Ba) is hosted
within the Lower and Middle Triassic terrains showing δ34S values ranging from 17.2 to
20.4‰ [89]. Further north in the Rif belt, the Jebel Ouichane barite deposit is embedded
within iron-bearing skarns, developed within Jurassic–Cretaceous limestones and showing
δ34S values of around +16.39‰ [90]. However, these values significantly contrast with the
documented values for the Cambrian barite deposit in Bouznika (Meseta) (δ34S = +31 to
+38‰) [91].
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Figure 9. (a) Frequency diagram showing the distribution of δ34S values in barite from barite ± sul-
fides hydrothermal vein system of Ougnat, eastern Anti-Atlas. (b) Frequency diagram summarizing
the distribution of 87Sr/86Sr ratios for barite from the barite ± sulfides hydrothermal vein system.

Table 2. Radiogenic and stable isotope of selected barite samples from the important barite veins of
the Ougnat Massif.

Sl. No Sample No Latitude (N) Longitude (W) Mineral δ34S (‰ vs. CDT) 87Sr/86Sr

1 MO-3 31◦21′10.63′′ 5◦5′28.57′′ White barite 12.5 0.710787
2 MO-7 31◦22′11.98′′ 5◦2′19.11′′ Grey barite 14.3 0.710810
3 MO-9 31◦29′14.08′′ 4◦58′13.10′′ Grey barite 15 0.710772
4 MO-13 31◦33′33.92′′ 4◦50′30.84′′ Pink barite 10.8 0.710816
5 MO-15 31◦31′30.14′′ 4◦39′21.10′′ White barite 19.5 0.710793

5.3. Strontium Isotopes

Isotopic analyses of strontium were performed on (5) samples of barite originating
from veins in different directions. The results of these analyses are summarized in Table 2
and presented in the frequency histogram in Figure 9b. The 87Sr/86Sr ratios of the studied
barite samples ranged from 0.710772 to 0.710816. In the frequency histogram (Figure 9b),
a single group of Sr isotopic ratios can be distinguished. The 87Sr/86Sr ratios remained
consistently high and comprise all barite types located in veins of varying orientations,
regardless of the presence of sulfides.

5.4. Fluid Inclusions

This study focused on fluid inclusions (FI) in barite samples of various colors and
textures from the main vein systems of the Ougnat Massif. The samples show a wide
range of FI. The identification of primary (P) and secondary (S) FI follows the guidelines
of [92,93]. Most of the inclusions analyzed appear to be streaks of various shapes, including
oval, rounded, or elongated, distributed either within growth zones (PFI) or along sec-
ondary fractures and cracks that intersect primary growth zones (SFI) (Figure 10b,c,e and
Figure 10a,c,d respectively). In addition, a few isolated and scattered inclusions of tabular,
elongated, or regular shapes were also identified. At room temperature, most FI exist in a
two-phase state containing both liquid and vapor phases. The liquid phase makes up the
bulk of the composition, accounting for 70–80%, while maintaining a constant vapor/liquid
ratio. In some FI, solids may be present, resulting in a three-phase system of liquid, vapor,
and solid. Note that CO2 was not detected at room temperature or during cooling.



Geosciences 2024, 14, 83 12 of 25

Figure 10. Photomicrographs of the different FI studied in the various barite from Ougnat. These pho-
tographs were taken at a temperature of +22 ◦C under transmitted polarized light. (a,c,d) Secondary
FI are aligned along fractures. (b,c,e) Primary FI, comprising approximately 85%, occurs in clusters
parallel to growth zones. These inclusions are rich in liquid. (f–i) Primary FI containing a solid body
inside. PFI: primary fluid inclusions, SFI: secondary fluid inclusions, Sd: solid, H2O L: H2O Liquid
and H2O V: H2O vapor.

Some samples exhibited FI composed exclusively of liquid (monophasic), but they
were rare. FI that are biphasic display distinct petrographic characteristics because of the
distinct physical properties of barite. Most FI are clear, angular, and small (5–15 µm), but
some are larger (up to 35 µm) and have a more uniform, darker appearance. Please refer
to Figure 10f. These FI have liquid-to-vapor ratios ranging from 10 to 20% gas volume
(Lw) and sometimes 60 to 80% (Vw), and often occur as isolated clusters along streaks.
In most barite samples, the ratios between liquid and vapor within a particular range
or trail can vary. Triphasic inclusions composed of liquid, vapor, and solid phases are
relatively infrequent, and the solid phase is identified as halite (Ls). These inclusions are
typically sub-spherical in shape and vary in size from 5–30 µm. The gas volume ranges
from 10 to 20%, whereas the solid percentage occupies 4 to 12% of the total inclusion
volume. Microthermometric measurements were carried out on inclusions that became
homogenized by the disappearance of the vapor bubbles. In this study, we identified
the initial (Te) and final (Tm_ice) fusion temperatures of ice, along with the final fusion
temperature of the solid phase (halite; Tm_Solid) (Figure 10f–i) and the homogenization
temperature (Th) for 50 inclusions (Lw, Vw and Ls) (Figure 11c). The temperature of the
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last solid phase fusion was recorded for 9 of these inclusions (Ls). We used the halite
dissolution temperature based on the [94] method to calculate the fluid salinity (Figure 11d).
The analytical data are presented in Table 3 and Figure 11.

Figure 11. Frequency diagrams summarizing the temperature distribution of FIs trapped in barite.
(a) Frequency vs. start ice melting temperature (Te). (b) Frequency vs. final ice melting temperature
(Tm_ice). (c) Frequency vs. homogenization temperature (Th). (d) Frequency vs. fluid salinity
(EqWt%NaCl).

Table 3. Summary of microthermometric data of fluid inclusions hosted in barite from the Ougnat Massif.

Measurement No. Barite
Studied FI Type RV% Te Tm_Ice Tm_Solid Th % NaCl

1 8/3. Lw 10% −21.6 −0.1 208.3 0.18
2 6/4. Lw 10% −21.5 0 216.2 0
3 1/1. Lw 10% −22.1 −0.1 180.1 0.18
4 2/2. Lw 20% −22.1 0 183.2 0
5 7/4. Lw 10% −22.1 0 183.2 0
6 8/1. Lw 15% −21.8 0 185.3 0
7 14/2. Lw 10% −22.3 −0.3 188.6 0.35
8 10/2. Lw 10% −24.5 0 200.4 0
9 12/3. Lw 10% −22.4 0 201.7 0

10 13/4. Lw 10% −22.6 −0.1 227.6 0.18
11 1/2. Lw 12% −21.1 0 229.3 0
12 10/3. Lw 10% −22.8 0 234.1 0
13 12/4. Lw 20% −23.1 −1.4 244.6 0.7
14 7/2. Lw 12% −21.9 0 245.2 0
15 13/3. Lw 15% −22.2 −0.1 246.3 0.18
16 16/5. Lw 15% −22.1 0 246.3 0
17 6/3. Lw 10% −21.1 −0.1 255.4 0.18
18 16/4. Lw 15% −21.3 −0.3 263.2 0.35
19 16/6. Lw 15% −22.1 0 263.2 0
20 5/1. Lw 15% −22.2 −0.1 285.3 0.18
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Table 3. Cont.

Measurement No. Barite
Studied FI Type RV% Te Tm_Ice Tm_Solid Th % NaCl

21 8/4. Lw 10% −22.2 −0.9 286.3 0.7
22 16/3. Lw 10% −24.6 0 296.9 0
23 7/3. Lw 10% −22 0 321.4 0
24 7/1. Lw 10% −21.1 0 329.3 0
25 6/5. Lw 10% −21.5 0 328.9 0
26 2/1. Lw 15% −21.4 −0.2 331.2 0.35
27 11/1. Lw 15% −21.3 0 335.5 0
27 11/1. Lw 15% −21.3 0 335.5 0
28 6/7. Lw 10% −22.1 −0.2 347.8 0.35
29 8/2. Lw 15% −21.9 0 347.8 0
30 11/2. Lw 10% −21.5 0 348.7 0
31 2/3. Lw 10% −21.3 0 352.3 0
32 16/2. Lw 12% −24.6 −0.1 355.4 0.18
33 6/6. Lw 10% −22.1 −0.1 359.7 0.18
34 8/5. Vw 75% −24.6 −0.2 389.8 0.35
35 8/6. Vw 70% −21.5 −0.3 364.6 0.35
36 8/7. Vw 65% −26.4 −0.4 375.3 0
37 11/3. Vw 70% −25.2 0 368.1 0
38 11/4. Vw 60% −24.8 0 425.3 0
39 12/1. Vw 70% −28.3 −0.2 372.3 0.35
40 12/2. Vw 65% −26.4 −0.1 405.6 0.18
41 14/1. Vw 80% −25.3 −0.1 364.8 0.18
42 6/1. Ls 10% −26.5 −12.6 256.5 392.5 29.5
43 6/2. Ls 10% −24.2 −10.5 238.5 368.4 27.5
44 7/5. Ls 12% −22.6 −16.2 285.2 412.9 30.5
45 10/5. Ls 12% −25.1 −14.4 280.1 345.2 30
46 10/6. Ls 10% −23.8 −6.2 228.6 336.3 25.3
47 13/1. Ls 15% −39.1 −14.5 251.8 328.8 29.2
48 13/2. Ls 20% −27.7 −13.6 202.5 329.5 27
49 16/1. Ls 15% −28.2 −5.6 293.6 358.6 31.2
50 16/7. Ls 15% −21.6 −17.3 288.7 388.2 30.3

The liquid biphasic fluids (Ls) had the highest representation and demonstrated Te
values ranging from −21.6 to −39.1 ◦C and TfG values from −5.6 to −17.3, which align with
NaCl contents ranging from 25.3 to 31.2% NaCl. Additionally, Th values varied between
328.8 and 412.9 ◦C. In the case of biphasic vapor fluids, Te values ranged from −21.5 to
−28.3 while TfG values ranged from 0 to −0.4 which correlates to NaCl contents of 0 to
0.35%. Th values ranged from 364.6 to 425.3 ◦C. The higher homogenization temperatures
observed in barite were likely a result of re-equilibration after trapping, including neck
shrinkage or expansion, which may be due to variations in the FI H2O liquid/vapor ratio
as reported by [19].

Three-phase fluid inclusions (Ls) can provide microthermometric data across a wide
temperature range. The ice melting temperatures had an initial value of −39.1 ◦C to
−21.6 ◦C, while the final melting temperatures (Tm_ice) range from −6.2 ◦C to −17.3 ◦C
(Figure 11b). These higher temperatures indicated Na+ as the dominant cation in this
inclusion but did not eliminate the possibility of smaller amounts of other cations, such
as Ca++ [95]. A decrease in the initial melting temperature of ice is generally observed
with increasing salinity. This suggests a preference for Ca++ as the primary cation in fluid
inclusions [96]. Salinities of three-phase inclusions ranged from 25.3 to 31.2% wt NaCl
equivalence, with halite dissolution temperatures varying between 202.5 and 293.6 ◦C.
Homogenization temperatures for vapor–liquid–solid inclusions in the liquid phase ranged
from 328.8 to 412.9 ◦C.
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6. Discussion
6.1. Sources of S, Sr, and Ba in the Barite Deposits

The S and Sr isotopic ratios are widely used to determine the sources of mineral-
izing fluids [19,97–101]. The isotopic compositions of S in the barites from the study
area (10.8 to 19.5‰) mainly fell within the range of δ34S values of Late Triassic to Juras-
sic seawater (11 to 14‰) [15,17,19,91,102]. This suggests that a portion of the sulfide
(SO2

−) in barite originates from sulfate present in seawater (Figure 9a). This range of δ34S
values also roughly corresponds to hydrothermal barites (with δ34S values in the range
of 1.5 to 20.0‰) [103]. The δ34S range of the barites in the Ougnat Massif resembles those
previously studied in the Jbelets and High Moulouya Massifs [17,19].

Barite is found in different ore formation contexts associated with various types of
deposits. In Sedex-type deposits, barite typically exhibits stratification with δ34S values
ranging from 19.7 to 33.6‰ and 32.3 to 41.6‰ [104]. Massive sulfide volcanic deposits
display δ34S values ranging from 13.8 to 22.5‰ [105], while those associated with orogenic
gold and Carlin-type deposits show variable δ34S values. Early-formed barite is character-
ized by δ34S values ranging from 25.9 to 47.1‰, whereas late-formed barite exhibits δ34S
values between 14.5 and 39.4‰ [106]. In Mississippi valley type (MVT) deposits, where
sulfur originates from an evaporite source, δ34S values range from 9.6 to 15‰ [102,107,108].
Our δ34S data show close similarity to MVT barite deposits. Furthermore, the vein-like
structures of the Ougnat barite show no sedimentary structure but exhibit epigenetic
hydrothermal characteristics (Figure 12). These features are essential characteristics of
tectonically controlled vein-type barite mineralization [109–111].

Figure 12. Plot showing δ34S and 87Sr/86Sr isotope values for barite samples showing source
(after [112–114]. Dotted lines explain present-day seawater Sr and S isotope ratios.

According to the studies conducted by [115] and [116], the isotopic composition of
strontium in barite reveals the isotopic composition of the fluid involved in the hydrother-
mal process (Figure 12). The 87Sr/86Sr ratio fractionates either below 400 ◦C or during
hydrothermal crystallization or dissolution. Additionally, the parent of 87Sr, namely 87Rb,
generally does not incorporate into the crystal lattice of barite [116]; thus, the strontium
composition of barite remains relatively constant over time. In the Ougnat Massif, mea-
surements revealed a moderate to high 87Sr/86Sr ratio (ranging from 0.710772 to 0.710816)
(Figure 9b). These values lie between the radiogenic isotopic compositions of strontium in
the mineralization deposit by hydrothermal solutions interacting with crustal brine [114]
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and the non-radiogenic isotopic signature of seawater from the Triassic to Jurassic peri-
ods [19]. This type of deposit resembles those observed in cratonic rifts [117]. Similar
strontium isotopic compositions have been found in other deposits [10,11], supporting the
concept of a common source for mineralizing fluids. Furthermore, Ref. [103] proposed
that elevated 87Sr/86Sr isotopic ratios (>0.707) are characteristic of crustal brines derived
from the basement, while lower 87Sr/86Sr ratios (<0.707) correspond to fluids derived from
sedimentary cover. In summary, isotopic analyses of strontium in barite provide valuable
information on the origin and evolution of fluids involved in hydrothermal processes,
shedding light on the geological conditions that led to these deposits.

The main minerals responsible for releasing strontium into fluids circulating in crys-
talline rocks such as granodiorite, rhyolite, dacite, and andesite are plagioclase, potassium
feldspars, and mica. These minerals produce Sr with high 87Sr/86Sr ratios [118–120]. The
relatively radiogenic Sr isotopic compositions of many barites indicate that potassium
feldspars and micas from these rocks are the most probable sources of Sr. Therefore, these
two minerals are also the most probable sources of Ba for barite mineralization. Further-
more, geochemical analyses conducted by [33], have shown that volcanic facies in the
Ouarzazate group (rhyolites, andesites, and ignimbrites) in the Ougnat Massif are rich
in Ba (713 to 2069 ppm) and slightly in Sr (140 to 399 ppm). These concentrations are
sufficiently high to suggest that these facies could have been a potential source of Ba for
the hydrothermal alteration-induced barite mineralization in the Ougnat Massif, involving
the alteration of feldspars and micas.

6.2. Fluid Mixing Model

The data projection of PFl: In barite growth zones, Vw and Ls are present along
with SFl that intersect the PFl planes. As shown in the diagram (Figure 13a), the salinity-
temperature homogenization discrimination suggests fluid homogenization at (i) moder-
ately high temperatures and high salinity during the initial phase (Vw and Ls), followed
by (ii) moderate temperatures and low salinity during later phases (Lw). The range of
salinity levels found in Ls-type fluid inclusions in the examined barites indicates a sig-
nificant mixture of a colder, less salty fluid composed of seawater, meteoric water, and
hydrothermal fluids within the system (Figure 13b). The analysis suggests that fluid im-
miscibility occurred before entrapment as a result of high salinity and homogenization
temperature [93,99]. The simultaneous existence of saline and less saline fluid inclusions
was likely during the ultimate stage of barite crystallization [92]. The decrease in salinity
of the fluid occurred due to the formation of sulfides, including galena and chalcopy-
rite, through combination with seawater during temperatures ranging from 360 to 180 ◦C
(Figure 13b).

Microthermometry has enabled the identification of two types of hydrothermal fluids,
L1 and L2, associated with barite in the Ougnat region. L1 and L2 originate from the boiling
of an initial fluid (Lin H; Figure 13a), assumed to contain about 15% NaCl eq., and estimated
to have a density and temperature between 425 and 365 ◦C (Figure 13a), corresponding
to a pressure between 346 and 187 bar and a depth between 3.45 and 1.86 km. Fluid L1,
which is represented as Lw, has an average temperature of 390 ◦C, a salt equivalence of
0.18%, an average pressure of 246 bar at a depth of 2.45 km, and a density of 0.30. Fluid L2,
represented as Ls, has an average temperature of approximately 362 ◦C, which represents
a salt equivalence of 25.89%, resulting in a density near 0.90. The pressure is around
182 bar, corresponding to a depth of around 1.81 km. This situation is similar to many
hydrothermal barite ± sulfide deposits formed along faults between the basement and
cover rocks worldwide [17,92,99,103,109,121]. We can conclude that the deposition and
precipitation of barite mineralization is the result of mixing two or more fluids. One of
these fluids originates from depth and has leached the granodiorites as well as the volcanic-
sedimentary complex of the Ouarzazate group, thereby contributing to the hydrothermal
system by mainly supplying Ba, radiogenic Sr, as well as a portion of dissolved Ca, Na, and
S. The second fluid is of surface origin and corresponds to Late Triassic to Jurassic seawater.
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This low-temperature fluid was enriched in SO4
−2 and Na and depleted in Ca compared to

the upwelling hot fluid.

Figure 13. Homogenization temperature vs. salinity of PFI trapped in different generations of barite
from the hydrothermal barite vein system of the Ougnat Massif adopted from [122] (a) and [123] (b).
Vw, Ls, and Lw: FI types, L in H?: initial fluid, V: Vapor, H: Halite, L: Liquid, hH: Hydrohalite and I: Ice.
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6.3. Barite Ore Genesis

Based on our field observations, structural studies, fluid inclusions, and sulfur with
strontium isotope analyses, we propose a metallogenic model to explain the setting process
of the barite mineralization in the Ougnat Massif (Figure 14). Hydrothermal alteration
resulted in the hydration of potassium feldspars present in the granodiorites and magmatic
formations of the Ouarzazate group (rhyolites, dacites, etc.), leading to the dissolution
of alkalis, silica, and barium. Barium was gradually released from potassium feldspars
and micas as temperatures decreased, thus entering the mineralizing fluid. Through high
hydrostatic pressure, barium-rich deep fluids were able to ascend to shallow levels along
opening faults. Concurrently, infiltration of late Triassic to Jurassic seawater introduced
sulfates (SO4

−2), causing the precipitation of barite along strike-slip/normal fault systems
(Figure 14). This is further supported by sulfur isotope (δ34S) data and 87Sr/86Sr isotopes.
Boiling and fluid mixing resulted in the separation of less saline vapors from the mineralized
fluid containing Ba. Increasing concentrations of Ba+2 also reduced the solubility of barite
in the solution, promoting its precipitation.

Figure 14. Genetic model illustrating the formation of barite mineralization through the mixing of
multi-component fluids and the development of mineralized veins.

During the fluid mixing process, barite precipitation was predominant in the study
area. Barite veins without sulfides form when fluids lack a reducing agent [99]. Further-
more, certain conditions favor high salinity (8–20.66% NaCl eq.) in a neutral environment.
However, the formation of sulfur-bearing barite likely happens when the fluids are mixed
with seawater. To achieve this, reducing agents such as methane need to be added to
the mixing of aqueous fluids [99,123]. Veins of sulfur-bearing and non-sulfur-bearing
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barite formed in spatial and temporal proximity. Structural analyses and Sr-S isotope
studies of barite have yielded valuable insights, firmly establishing that the barite within
the Ougnat Massif is indeed of tectonic origin, specifically formed through hydrothermal
vein processes.

6.4. Geodynamic Context

Based on structural evidence [18] and strontium-sulfur isotopes here studied here, it is
apparent that the formation of barite mineralization in the Ougnat Massif is intimately tied
to the geologic events related to the rifting and opening of the Central Atlantic. The opening
of the Central Atlantic Ocean led to multiple phases of extension, uplift, and subsidence of
the continental crust, which directly influenced the geology and metallogeny of the passive
margin of North Africa and North America. During the first phase of the central Atlantic
opening (Anisian–Hettangian), the formation of large subsiding continental basins was
followed by thermal uplift of the rift margins during the second phase of rifting [124]. This
thermal uplift of the rift margins can be attributed to the formation of an asthenospheric
diapir, which altered the distribution of isotherms and locally induced the formation of
small-scale convection cells in the continental crust [124]. These convection cells could
have caused the heating and circulation of deep basic fluids. These hot fluids would have
migrated to shallower levels of the crust, where they would have mixed with colder, less
saline fluids from the surface, creating an environment particularly favorable for barite
precipitation. This scenario, according to Emery et al. [125], is supported by the fact that
the late mineralization stage approximately coincides with the thermal subsidence of the
African passive margin and the onset of seafloor spreading.

7. Conclusions

The isotopic data of S and Sr, along with the microthermometry of fluid inclusions in
barite from the Ougnat Massif, allow us to understand the origin of the fluids responsible
for mineralization. These data support a genetic model based on the mixing of two types
of fluids with different thermal and geochemical properties. The sulfur in barite is derived
from both late Triassic to Jurassic seawater and leaching from granodiorites and the volcano-
sedimentary complex of the Precambrian Ouarzazate group, which contribute dissolved
sulfur to the hydrothermal system. Sr and Ba are mainly released by minerals such as
plagioclase, potassium feldspar, and mica found in crystalline rocks such as granodiorites,
rhyolites, dacites, and andesites. Data on fluid inclusions indicate that the fluids involved
in ore formation are the result of the mixing of two or more fluids. A deep, hot fluid with
an average temperature of 368 ◦C has leached the granodiorites and volcanic-sedimentary
complex of the Ouarzazate Group. This fluid has provided the hydrothermal system with
most of the Ba, radiogenic Sr, and some of the dissolved S. A second, shallow fluid with
an average temperature of 242 ◦C was derived from Late Triassic to Jurassic seawater. A
dynamic two-component mixing model between deep, saline fluids and shallow fluids
satisfactorily reproduced the S and Sr isotopic data of barite deposits. The genetic analogy
between Paleozoic and Mesozoic barite deposits in Spain, France, Germany [126–131], and
the Ougnat Massif suggests that they formed in similar tectonic context resulting from
the rifting and opening of the central Atlantic, and they are part of a single large-scale
mineralization event encompassing North Africa and Central and Western Europe.
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