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Abstract: Object-based image analysis (OBIA) has been increasingly used to map geohazards such as
landslides on optical satellite images. OBIA shows various advantages over traditional image analysis
methods due to its potential for considering various properties of segmentation-derived image objects
(spectral, spatial, contextual, and textural) for classification. For accurately identifying and mapping
landslides, however, visual image interpretation is still the most widely used method. The major
question therefore is if semi-automated methods such as OBIA can achieve results of comparable
quality in contrast to visual image interpretation. In this paper we apply OBIA for detecting and
delineating landslides in five selected study areas in Austria and Italy using optical Earth Observation
(EO) data from different sensors (Landsat 7, SPOT-5, WorldView-2/3, and Sentinel-2) and compare
the OBIA mapping results to outcomes from visual image interpretation. A detailed evaluation of the
mapping results per study area and sensor is performed by a number of spatial accuracy metrics,
and the advantages and disadvantages of the two approaches for landslide mapping on optical
EO data are discussed. The analyses show that both methods produce similar results, whereby the
achieved accuracy values vary between the study areas.

Keywords: landslides; remote sensing; semi-automated mapping; object-based image analysis
(OBIA); manual mapping; visual interpretation; spatial accuracy metrics; Alps

1. Introduction

Optical Earth Observation (EO) data has proven beneficial for mapping the location and spatial
extent of landslides at various spatial scales, ranging from local to regional [1]. The interpretation
of optical EO data for landslide recognition may be conducted using manual, semi-automatic,
and automatic approaches [2].

Traditionally, manual visual image interpretation for landslide recognition has been based on
aerial photographs and recently extended to high resolution (HR) and very high resolution (VHR)
optical satellite imagery (e.g., WorldView-2/3, QuickBird) [2] and is still the most widely used method
for landslide detection and inventory preparation. Imagery with lower resolutions (e.g., SPOT, Landsat)
has also been successfully employed for delineating single, larger landslides [3], yet VHR optical data
has become the best choice for landslide recognition on the basis of landform analysis over larger
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areas [1]. The comparison between landslide maps derived from aerial images and satellite images
reveals that both data sources yield results of equal value [4,5]. Manual visual image interpretation of
optical imagery turned out to be practicable for landslide mapping, especially where landslides led to
significant changes in the land cover, as is usually the case for shallow landslides. Shape, size, pattern,
and texture with characteristic contrast in brightness (for black and white photography) or color
variation (in case of a multispectral image) are used for manual landslide interpretation [6]. One major
advantage related to visual image interpretation is the use of stereo-vision for landslide recognition,
as some landslide features are detectable only employing the third dimension [2]. However, manual
interpretation reveals several drawbacks; it is resource and time consuming and the quality of the
resulting landslide maps strongly depends on the experience and skills of the investigator [7–9].
The variability in human visual interpretation tasks across time and individuals is a common but
understated problem and has also been investigated for remote sensing image interpretation of features
in urban areas [10], in rural areas [11], and in slums [12]. This subjectivity issue is difficult to measure,
but influences the reliability of landslide mapping [13,14], which further depends on the persistence of
the landslide morphology, the quality and scale of the imagery, the complexity of the geological and
geomorphological setting, the presence of vegetation coverage, and the final map scale [9]. It has been
recognized that, when more than one compilation of landslide inventories is closely evaluated, different
operators produce unequal results in terms of the number and density of landslides, which also vary
in geometry and extent [7,8]. Ardizzone et al. [14] compared three independently produced landslide
inventory maps and conclude that the detail and precision of landslide maps primarily depend on the
experience and skills of the investigator and only secondly on the quality of the remote sensing data
and base maps used.

During the past decade, advances in computer science and machine intelligence and the
ever increasing number of satellite missions acquiring VHR data led to the development of novel
technologies, fostering the semi-automated interpretation of EO data. The current approaches can be
split into two categories [1,15], pixel-based and object-based, both containing techniques applicable to
single and multi-temporal images and frequently making use of additional data, e.g., digital elevation
models (DEMs) [16]. Pixel-based methods take into account the spectral information associated with
each pixel without considering its actual neighborhood [2]. Considering the resolution of HR/VHR
data and the size and spatial distribution of landslides, pixel-based methods tend to be additionally
sensitive to errors [17], frequently resulting in salt-and-pepper classifications, with single pixels being
demarcated as landslides.

Due to these circumstances, there has been a trend towards object-based landslide recognition
in recent years, as demonstrated by a range of studies [8,16–29]. Object-based image analysis (OBIA)
provides a set of innovative tools for semi-automatically delineating and classifying landslides based
on EO data. Object-based algorithms rely on the concepts of image segmentation and classification.
Regarding landslide recognition, landslides or landslide features are composed of aggregations of
homogeneous pixels rather than spatially uncorrelated cells and are then classified according to specific
characteristics. By supporting the use of a plethora of properties during the classification process,
e.g., spectral, spatial, textural, and contextual, OBIA is somewhat mimicking human perception and
thereby proves its potential for producing more accurate and realistic landslide maps than pixel-based
procedures [15,17,18]. OBIA therefore can be considered a specific type of model of the human
perception process [30]. This model type performs well in producing an understandable encoding of
explicit expert knowledge in rulesets for the production of repeatable image classification results, e.g.,
as demonstrated by Eisank et al. [31]. At the same time, OBIA is also a simplification of the human
perception process and has certain disadvantages. In practice, OBIA workflows are a tradeoff between
keeping a low complexity and covering all details and tend to ignore special cases in favor of generally
applicable classification rules. Therefore, like manual visual image interpretation, OBIA-derived
classification results are not free of error either. Consequently, the accuracy of semi-automated landslide
classifications should be documented, but, at the same time, the reliability of the reference should be
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critically scrutinized. Attainable accuracy values vary considerably between studies, often due to the
varying complexity and appearance of landslides. Accuracy values reach up to 95% for the detection
of landslide scars and range between 73% and 93.7% for the detection of landslide-affected areas
and between 44.8% and 90% for the identification of different landslide types such as debris slides,
rock slides, or debris flows [15–22,25–27]. Object-based landslide mapping routines are often tailored
to specific study areas and data and thus reveal a lack of transferability and robustness. Also the
selection of suitable segmentation parameters for the creation of “meaningful” image objects, which in
turn affects the accuracy of image classification as well as the application of user driven thresholds,
remain critical issues [27].

In this study, we aim to compare the results of two independently performed landslide mapping
approaches; semi-automated detection of landslides by OBIA and manual mapping of landslides.
The analyses are based on optical satellite imagery obtained from different sensors, i.e., Landsat 7,
SPOT-5, WorldView-2, WorldView-3, and Sentinel-2. Based on five selected case studies in the Alps,
spatial accuracy values are calculated to evaluate if the results are comparable when the same data
basis is used for analyses.

2. Materials and Methods

2.1. Study Areas

Five landslide prone areas in the Alps with different geomorphic characteristics were selected as
test sites for the development and comparison of the mapping approaches. Two study sites are located
in the federal state of Salzburg, Austria, two in the federal state of Vorarlberg, Austria, and one in
Südtirol-Alto Adige Autonomous Province, Italy (Figure 1). The Italian test site is divided into two
sub-areas located in the Gader Valley.
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2.1.1. Study Areas I and II in the Federal State of Salzburg 

Study areas I and II (Salzburg; Figure 1) are located in a geologic domain that encompasses 
Quaternary until Permian units. They are respectively [32]:  

• The quaternary alluvial and moraine deposits  
• The tertiary Eocene-Miocene Molasse  

Figure 1. Study areas in Austria and Italy. Study areas I (Fürwag/Haunsberg) and II (Pinzgau) are
located in the federal state of Salzburg, Austria; study areas III (Montafon) and IV (Bregenzerwald) are
located in the federal state of Vorarlberg, Austria; and study area V (Gader Valley) is in Südtirol-Alto
Adige Autonomous Province, Italy. The Italian study area in the Gader Valley is divided in two
sub-areas (V(a) and V(b)).

2.1.1. Study Areas I and II in the Federal State of Salzburg

Study areas I and II (Salzburg; Figure 1) are located in a geologic domain that encompasses
Quaternary until Permian units. They are respectively [32]:
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• The quaternary alluvial and moraine deposits
• The tertiary Eocene-Miocene Molasse
• The Jura-mid Eocene continental margin Helvetic Zone
• The Lower Cretaceous-Eocene Penninic Rhenodanubian Flysch
• The Permo-Mesozoic Northern Calcareous Alps (NCA)

The Permo-Mesozoic Northern Calcareous Alps were deposited in a reef-submerged environment
corresponding to the opening of the Penninic Sea. At the very end of the Cretaceous Period, on the
active margin of the Austroalpine microplate, as a result of the subduction, an accretionary wedge was
formed, and a new deep water flysch-like deposition facies, the Rhenodanubian Flysch, took place [32].

The erosional debris of the Alpine uplift occurring between the Alpine orogenic front and the
European foreland formed the tertiary Molasse. During the Würmian, the extent of the Salzach glacier
reached the Inn basin to the north. The Salzach valley, an over-deepened Alpine valley, was filled
mainly with lacustrine and delta sediments. The melting outlet-glacier deposited big terminal moraines,
and the melt water runoff caused strong lateral erosion along the foot of the slopes, which locally
provoked deep-seated gravitational slope deformations [33].

The “Fürwag Landslide” (study area I) is located at the Haunsberg, approximately 10 km north of
the city of Salzburg, and covers an area of approximately 170 ha. The landslide-prone area consists of
various mudslides, which have been formed at different times. The sandstones, shales, and the Flysch,
in particular the Zementmergelserie (marl cement series), of this pre-alpine zone are very prone to
mass movements [34]. The latest sliding processes occurred between 1999 and 2003, and have almost
reached the valley floor, representing a constant threat to major infrastructure facilities [35].

In the Pinzgau region (study area II) the greywacke zone is especially susceptible to sliding
processes. The Central Alps are dominated by different metamorphic rock types, leading to a great
variety of mass movement types [34]. In June 2013 parts of this region have been declared a disaster
zone due to torrential rains, which caused severe flooding and numerous landslides. A mountainous
area (the Hundstein Mountain) characterized by a high relief and sparse vegetation, where several
geomorphological phenomena occur, has been selected as study area in the Pinzgau region.

2.1.2. Study Areas III and IV in the Federal State of Vorarlberg

The major tectonic units of study areas III and IV (Vorarlberg; Figure 1), can be subdivided from
North to South into three groups [36]:

• Molasse
• Helvetic Nappes and Vorarlberg Flysch (Eastern Alps origin)
• Northern Calcareous Alps and Silvretta Crystalline (Western Alps origin)

The gneisses, schists, and amphibolites of the Silvretta Crystalline of the Variscan age are the
oldest rocks in the area. The Helvetic limestones and marls (as well as the NCA) were formed in a
shallow sea in Mesozoic times, whereas the deep turbiditic origin of the Vorarlberg Flysch dates back
to the Late Cretaceous-Early Tertiary Period. The Molasse was deposited instead in the Alpine foreland
basin as a residual product of the mountain building process and consists of conglomerate sandstones,
claystone and marls of mixed marine and non-marine nature [36].

In the Montafon valley (study area III) tectonic deformation and weakening of rock strength
during Alpine orogenesis favors the occurrence of landslides [37]. Additionally, glacial erosion led to
the steepening of slopes, triggering tensional fissures and accelerating a number of geomorphological
processes, e.g., rock slides and rock falls [38].

In Bregenzerwald (study area IV), the valley slopes were oversteepened by glacial erosion,
leading to increased slope instability after deglaciation [39]. In May 2005, intense and prolonged
rainfall induced inundations and numerous landslides, leading to severe infrastructure and property
damages. Prominent examples of major landslides in the Bregenzerwald area are the Doren landslide
and the landslide Rindberg/Sibratsgfäll [40,41].
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2.1.3. Study Area V in Südtirol—Alto Adige Autonomous Province

The major lithological formations of study area V (Südtirol-Alto Adige Autonomous Province;
Figure 1) are [42]:

• Schiliar dolomites (detritic massive dolomite of Anisian age)
• Wengen formation (marls and calciturbidites mixed with volcaniclastic conglomerates of

Ladinian age)
• S. Cassian formation (grey mudstones and calciturbidites of Carnian age)

The geology of the Dolomite area is complex being the result of the dismantling of the Hercinian
mountains and Permo-Trias rifting tectonics in Permian times, which gave way to the Athesian
magmatism [42]. In Anisian times, the massive detritic Schiliar dolomite was formed as a consequence
of a rifting event. After another upper Ladinian paroxistic volcanic phase, the Wengen formation
was formed. The successive recovery of carbonate sedimentation allowed the right conditions for the
sedimentation of the S. Cassiano Formation [43].

The Gader Valley (study areas V(a) and V(b)) is prone to gravitational processes such as landslides
due to its geological and geomorphological conditions, particularly the upper parts of the valley [44].
In December 2012, after long and intensive rainfall, a large landslide destroyed several buildings
and endangered critical infrastructure in Badia. Further large landslides are located near the village
of Corvara. The Corvara landslide, which affects an area of more than 2.5 km2 and has an overall
volume of more than 300 million m3 [45], repeatedly causes damages to infrastructure. The most recent
landslide happened in April 2014 at the border between Corvara and Colfosco. Some areas on its
western part were reactivated in August 2016.

2.2. Data

For each study area, selected subsets of optical satellite images with different properties from
different sensors were used (Table 1). Digital elevation models (DEMs), and particularly the derived
slope information, were used as supplementary data. The database for Montafon and Bregenzerwald
was also complemented by a terrain roughness index (TRI) layer, computed as the sum of change in
elevation between a grid cell and its eight neighboring grid cells [46]. For the study areas in Salzburg,
a DEM derived from airborne laser scanning (ALS), which is freely available at a resampled resolution
of 10 m from the geodata portal of Austria (www.geoland.at), was used. For the two study areas
in Vorarlberg, an ALS-based DEM at 5 m spatial resolution provided by the federal government of
Vorarlberg was available. The ALS campaigns over the Austrian Alps were conducted between 2006
and 2013 by the regional governments. In Südtirol-Alto Adige Autonomous Province, a DEM at 5 m
resolution (acquired between 2004 and 2006) was provided by the Autonomous Province of Bolzano
via their geodata portal (http://geoportal.buergernetz.bz.it/default.asp).

Table 1. Selected database for each study area.

Study
Area

Size
(km2)

Optical
Sensor Acquisition Date Spectral Resolution 1 Spatial Resolution (m) DEM Resolution

(m)

I 4.7 Landsat 7 28 July 2002
1× pan 15

107× multispectral (blue, green, red, nir,
swir-1, thermal, swir-2) 30

II 2.8 SPOT-5 10 September 2011 3× multispectral (green, red, nir) 2.5 10

III 1.4 WorldView-2 29 August 2015 1× pan 0.5
54× multispectral (blue, green, red, nir) 2

IV 1.8 WorldView-3 13 August 2015 1× pan 0.5
54× multispectral (blue, green, red, nir) 2

V(a) 3

Sentinel-2 27 August 2016
13× multispectral (coastal aerosol, blue,
green, red, red edge 1-3, nir, red edge 4,

water vapour, swir cirrus, swir 1-2)

10 (blue, green, red, nir)

5V(b) 1.2
20 (red edge 1-4,

swir 1-2)
60 (other)

1 refers to the available panchromatic (pan) and multispectral bands for each dataset.

www.geoland.at
http://geoportal.buergernetz.bz.it/default.asp
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The image selection process relied primarily on the availability of cloud-free data acquired in
the summer season, possibly soon after a major landslide-triggering event or after the reactivation of
landslide processes. Regarding DEM information, the supply of multi-temporal and post-event data
was limited; the available data sets were therefore considered even if the acquisition date is not always
consistent with the respective optical images. Pre-processing of the satellite images was implemented
with ERDAS IMAGINE software (Hexagon Geospatial, Stockholm, Sweden) and included:

• Pansharpening if a panchromatic band was provided along with multispectral bands.
• Orthorectification supported by rational polynomial coefficients (RPCs) and/or ground control

points (GCPs) to achieve sub-pixel geolocation accuracies.

2.3. Object-Based Landslide Mapping

For semi-automated landslide mapping, object-based approaches were developed and applied
for each dataset and study area. Efforts were made to follow similar workflows; however, due to
the different characteristics of the satellite images and study areas and because of the varying
complexity and appearance of landslides, the transferability was limited. Thus, the classification
rules were adapted for each test case. Moreover, two different but interchangeable software products,
eCognition 9.2 (Trimble Geospatial, Sunnyvale, CA, USA) and InterIMAGE 1.43 (Pontifical Catholic
University of Rio de Janeiro (PUC-Rio) and Brazilian National Institute for Space Research (INPE),
Rio de Janeiro, Brazil), were used to develop the knowledge-based image analysis workflows. The two
products are similar in their logic and functionality, meaning that a workflow implemented in
eCognition can also be implemented in InterIMAGE and vice versa. Since the major objective of
this study is the evaluation of OBIA mapping results in comparison to manual mapping results, rather
than the development of sophisticated mapping routines, the implemented OBIA approaches were
kept as simple as possible to produce acceptable results in a fast and efficient manner.

Table 2 shows the software that was used for mapping landslides in each study area,
the segmentation method and the segmentation parameters that were used for creating image objects,
and the main classification parameters for identifying landslide objects. Slightly different segmentation
and classification parameters were used for mapping the two large landslides in study area V. Thus,
the sub-areas (V(a), a landslide near the villages of Badia and La Villa, and V(b), a landslide near
the village of Corvara) were treated separately during OBIA mapping. In general, the Normalized
Difference Vegetation Index (NDVI) and the slope information were most useful for the detection of
landslide bodies. For refining the classification, further parameters (e.g., brightness, length/width
ratio, relation to neighboring objects, compactness, perimeter/area ratio) were used additionally or in
combination with each other. Thresholds were selected based on (1) an exploratory analysis of image
object properties (e.g., mean slope, mean NDVI) and (2) recommendations in the literature [17,31].

Table 2. Software, the segmentation method and parameters (SP—Scale Parameter, S—Shape criterion,
C—Compactness criterion), and the main classification parameters used for object-based landslide
mapping for each case study.

Study Area Software Segmentation Method and Parameters Main Classification Parameters

I eCognition 9.2
(Trimble Geospatial) Multiresolution segmentation: SP: 25; S: 0.1; C: 0.5

Mean diff. to neighbors (NDVI) < 0
Mean slope > 10

Length/Width > 4

II eCognition 9.2
(Trimble Geospatial) Multiresolution segmentation: SP: 15; S: 0.3; C: 0.5

Mean NDVI < 0.04
Mean slope > 10

Mean brightness > 85

III InterIMAGE 1.43 Threshold segmentations based on NDVI and
brightness layer (Threshold = Mean of layer)

Mean slope > 35◦

Mean TRI > 1.5
Size > 100 m2

Perimeter/Area Ratio (P/A) < 0.55
Mean NDVI < 0.55
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Table 2. Cont.

Study Area Software Segmentation Method and Parameters Main Classification Parameters

IV InterIMAGE 1.43

1. Threshold segmentations based on NDVI and
brightness layer (Threshold = Mean of layer)
2. Multiresolution segmentation based on slope;
SP: 400; S: 0.5; C: 0.5

Same as III, except:
Mean slope > 15◦

No use of Mean NDVI

V (a) eCognition 9.2
(Trimble Geospatial) Multiresolution segmentation: SP: 150; S: 0.5; C: 0.5

Mean NDVI < 0.4 or < 0.5 (depending on fine
adjustment in combination with other features)

Mean slope > 10

V (b) eCognition 9.2
(Trimble Geospatial) Multiresolution segmentation: SP: 150; S: 0.3; C: 0.8

Mean NDVI < 0.4
Mean slope > 8

Length/Width > 1.6
Shape index < 3.6

2.4. Manual Landslide Mapping

Three different types of features were manually mapped. First, points at the central area of
landslide scars were located. Second, the same DEMs as for semi-automated mapping were used
to recognize and digitize the crown scars (if possible) and at last, for most of the mass movements
detected, polygons were drawn. Some basic information was recorded and stored in a GIS database
assigned with several attribute fields covering the following aspects:

• Technical aspects connected to the intrinsic characteristics of the sensors adopted (Table 3)
• Geomorphologic and physical aspects of the phenomena mapped (Table 4)
• Statistical information showing, for example, the number of mapped landslides and their size

(Table 5)

Table 3. Database fields that describe how the remote sensing image quality influences the manual
landslide mapping.

Band Combination Digitalization Level of Detail Geometric Quality Completeness Quality Landslide Classification Quality

R-G-B
Mapping Scale (varies between
1:1.000–1:20,000) depends on

spatial resolution

accurate (1) complete (1) certain (1)

low degree of
inaccuracy (2)

high degree of
completeness (2) low degree of uncertainty (2)

high degree of
inaccuracy (3)

low degree of
completeness (3) high degree of uncertainty (3)

inaccurate (4) incomplete (4) uncertain (4)

The technical aspects concerning the scale used for the manual mapping can be distinguished
between objective and subjective ones. The first group contains aspects such as the band combination
(most of the time false color composite infrared was used) and the spatial resolution, which influenced
the digitalization scale. For the second group, a broader distinction was proposed; for subjective
factors, which are synthesized in three quality fields (Table 3), scores from 1 (best) to 4 (worst) were
assigned to each polygon created.

The first quality field is related to the geometry that relies directly on the image resolution;
for example, landslides mapped on Landsat 7 result in a lower geometric accuracy than landslides
mapped on SPOT-5 and WorldView-2/3 images. The completeness quality field represents a purely
subjective index, being related to the ability of the operator to map a phenomenon as completely
as possible. In this case, the landscape context and local characteristics such as forest presence,
which obliterated parts of the phenomena, or the re-growing of vegetation, which concealed previous
landslide scars and deposits, played a very important role. Concerning the landslide classification
quality, the best score was reached when a VHR image was available for the manual mapping.

Visual interpretation partly allowed distinguishing between different subtypes and parts of
landslides (Table 4), depending on the specific geographical and geological settings of the five study
areas. If a landslide scar could be identified, then it was represented as polyline; when the scar
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could not be recognized due to data constraints, the accumulation and the transport areas were
mapped instead.

The presence of a DEM in order to delineate the exact boundaries of the landslides was useful;
even if it was mainly used for the confirmation of the scar extension highlighted in the VHR images
(by means of the hillshade and the contour lines). Bulges identification on the deposition area were
also supported by the digital elevation data, whereas, since the trail left at the transport section of a
landslide is enhanced by a difference in local re-growing of vegetation, only the optical images could
be used for identifying these landslide sub-parts.

The landslide activity field was derived from additional alternative data sources (e.g., a public
image Web Map Service (WMS) showing older aerial photography for the study areas I, II, and V),
published landslide data such as the multi-temporal landslide inventory of Vorarlberg [47] for study
areas III and IV, and from unpublished material such as the Austrian mass movement cadastre
GEORIOS [48] for study area II, since it was not possible to obtain this information from satellite
imagery from one point in time. Objects stored in the GEORIOS database were digitized from geological
maps published at different scales (ranging between 1:50,000 and 1:5,000). Although this information
represents historical evidence of mass movements, these kind of products only represent active (at the
time of the map release) phenomena that are larger than the surrounding geological feature [49]
and care should be taken when using this information in order to produce detailed (scale 1:10,000)
landslide inventories.

Table 4. Database fields that describe the geomorphological aspects of the manually
digitized landslides.

Landslide Type Landslide Subtype Landslide Accumulation Landslide Transport Landslide Activity 1

Landslide process
type classification

[50]

Landslide process
subtype classification

[50,51]

accumulation area complete (1) transport area complete (1) active (1)
incomplete (2) incomplete (2) probably still active (2)

absent (3) absent (3) dormant (3)
not active (4)

1 based on additional archived data and literature.

2.5. Comparison Methods

For comparing the semi-automated mapping results from OBIA to the mapping results of
the visual landslide interpretation, the traditional thematic accuracy assessment approach for land
use/land cover image classifications has been employed and adapted [52–54]. It has been applied for
landslide classifications by Hölbling et al. [23]. Accordingly, we calculated the landslide area that was
mapped by both methods (i.e., the overlapping area). Based on this overlapping area, the respective
producer’s (overlap expressed as share of the manual mapping area) and user’s (as share of the OBIA
mapping area) accuracies were computed. Furthermore, the difference in the landslide area mapped
by both methods was computed and expressed as a ratio relative to the manual mapping area.

Beyond the area-based comparison, we performed a comparison of the number of polygons
mapped as landslides. The difference in the count of landslide polygons between the OBIA result and
the manual mapping result was expressed as a ratio relative to the manual mapping count.

Additionally, a set of object-by-object comparison metrics was calculated, which has proven to be
useful in the geomorphological context of object-based landform delimitation [55]. Spatial accuracy
metrics were used to quantify the spatial match between the manually digitized landslide polygons
(considered reference areas) and the landslide polygons extracted with OBIA workflows (considered
test areas). In total, five established spatial accuracy metrics were selected [55–57]: (1) Quality Rate
(QR), (2) Area-Fit-Index (AFI), (3) Over-Segmentation Rate (OR), (4) Under-Segmentation Rate (UR),
and (5) a compound metric D, which combines OR and UR. All these metrics rely on area proportions,
i.e., the area of manual polygons, the area of OBIA polygons, and the spatial overlap between manual
and OBIA polygons. Except for AFI, the possible range of values is from 0 to 1. A value of 0 indicates
a perfect spatial match between the manual and the OBIA area, i.e., the areas have exactly the same
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spatial extent. In contrast, if the manual and OBIA polygons do not produce any spatial overlap,
a value of 1 is obtained. A value around 0.5 can be interpreted such that the majority of manual
polygons are overlapped by OBIA polygons but that the spatial extent of the overlapping polygons
is different and that some non-overlapping polygons exist. Only the values of AFI can be negative.
For the presented landslide mapping tests, it is therefore desirable to obtain metric values as close
as possible to 0. The computation of the metrics was automated in the open source software QGIS
(Open Source Geospatial Foundation, Beaverton, OR, USA), based on a tool that has been developed
previously for use in object-based software [55]. Metrics were computed (1) globally, i.e., for all
landslides per study site, and (2) locally, i.e., separately for each landslide. The formulas for and
mathematical notations of the spatial accuracy metrics can be found in Clinton et al. [56]. It is also
important to mention that there exists a mathematical relation between UA and UR, as well as PA and
OR; the total (not percentage) values of each pair (UA-UR, PA-OR) sum up to 1.

Next to the calculation of spatial accuracy metrics, a non-spatial accuracy metric, the so-called
Miss Rate (MR), was used. MR quantifies the completeness of the semi-automated landslide extraction
process. It is computed as the ratio between the number of undetected manual polygons and the total
number of manual polygons per study site [55]. The range of values is between 0 and 1. The closer the
values are to 0, the more complete is the OBIA landslide extraction.

3. Results

3.1. Landslide Mapping Results

3.1.1. OBIA Landslide Mapping Results

Figures 2–6 show the OBIA landslide mapping results in comparison to the manual mapping
results for each study area. There is good coincidence between most of the results; however,
several disparities can be observed that are often related to the ability of a human interpreter to
delineate a landslide body as whole, even if parts of the landslide are covered by vegetation. This is the
case, for example, for the large landslide near the villages of Badia and La Villa in Südtirol-Alto Adige
Autonomous Province (study area V(a)). Similarly, landslides that are still visible on the images but
are already overgrown by grass are difficult to detect semi-automatically due to the missing spectral
difference to the surrounding areas. This can be recognized in the southwestern part of study area IV,
where not all landslides, and particularly landslide tails, could be detected. The detection of landslides by
OBIA was most challenging in study area II, since it was hardly possible to differentiate landslides from
other processes using the SPOT-5 image and the DEM only. Statistics and detailed information about the
accuracy of the semi-automated mapping in comparison to the manual mapping are given in Section 3.2.
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Figure 4. Semi-automatically mapped landslides using the object-based image analysis (OBIA)
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the WorldView-2 image. Two subsets demonstrating the variation of the mapping results for selected
landslides are shown on the right. The black rectangles (A, B) indicate the location of the subsets.
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Figure 5. Semi-automatically mapped landslides using the object-based image analysis (OBIA)
approach (in yellow; left) and manually mapped landslides (in red; middle) for study area IV based on
the WorldView-3 image. Two subsets demonstrating the variation of the mapping results for selected
landslides are shown on the right. The black rectangles (A, B) indicate the location of the subsets.
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Figure 6. Semi-automatically mapped landslides using the object-based image analysis (OBIA)
approach (in yellow; left) and manually mapped landslides (in red; right) for study areas V(a) (top)
and V(b) (below) based on the Sentinel-2 image.

Table 5 presents some basic statistics for the OBIA mapping results for each study area.

Table 5. Statistics of the OBIA mapping results for each of the five study areas.

Statistical Property Study Area I Study Area II Study Area III Study Area IV Study Area V

Number of landslides 2 85 9 11 5
Area affected by landslides (km2) 0.148 0.203 0.019 0.011 0.250
Smallest mapped landslide (m2) 59700 75 135 244 4200
Largest mapped landslide (m2) 87900 38741 12577 2400 148800

Average size of mapped
landslides (m2) 73800 2393 2110 992 49960

3.1.2. Manual Landslide Mapping Results

Table 6 shows the statistics of the manual landslide mapping results for each study area.
Probably the most notable case is the Pinzgau study area (II). This is a special area of interest, being a
mountainous area characterized by a high relief and sparse vegetation, where several geomorphological
phenomena such as snow scars induced by avalanches, gully erosions connected to torrent activity,
and rock glacier deposits could be perceived and mapped as mass movements. Surprisingly, a high
landslide density can be recognized. Since the differentiation of landslides from other mass movement
types only based on the SPOT-5 image and the 10 m DEM was hardly possible in this case, even by
visual interpretation, a 5 m DEM and aerial photography from 2011 (accessible through a free WMS
service) were additionally used for manual landslide mapping. Furthermore, some GEORIOS polygons
were used as guidance for the identification of landslide subtypes.
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Table 6. Statistics of the manual mapping results for each of the five study areas.

Statistical Property Study Area I Study Area II Study Area III Study Area IV Study Area V

Number of landslides 2 18 5 14 3
Area affected by landslides (km2) 0.140 0.031 0.011 0.010 0.320
Smallest mapped landslide (m2) 54855 247 66 30 10781
Largest mapped landslide (m2) 85339 8374 7200 1882 270966

Average size of mapped landslides (m2) 70097 1830 2157 709 106533

The three quality fields were introduced in order to trace back the logic used for the task of
manual landslide mapping and to communicate the perceived difficulties encountered during the
mapping process. The three quality indices are directly correlated to the spatial resolution of the used
satellite images. For each of the analyzed images, the achievable score varies. The best score reached
among all the quality categories is:

• Score of “1” for study area III and IV (1 m resolution)
• Score of “2” for area II (2.5 m resolution) and area V (10 m resolution)
• Score of “3” for study area I (15 m resolution)

In general, when considering all quality measures, the best results were achieved on the VHR
images (including area II with 2.5 m resolution), always bearing in mind the subjectivity introduced by
the interpreter.

3.2. Accuracy Assessment

A variety of different metrics was used to quantitatively capture the agreement between the OBIA
mapping results and the manual delineation. Comparisons were performed in all study areas and for
all datasets.

3.2.1. Comparison of Overlapping Areas

The metrics according to the general accuracy assessment approach for image classifications, as
presented in Hölbling et al. [23], are summarized in Table 7. Concerning the number of landslides,
the best agreement occurred in study area I (Fürwag), where both approaches detected two large
landslides. The highest discrepancy occurred in study area II (Pinzgau), where a large number of
objects were considered landslides only by the OBIA result but not by the manual delineation. In the
other study areas, the OBIA and manual results deviated from each other by two to four landslides.
Since the numbers of landslides were relatively low, with a count between three and 14, the difference
by percentage still showed high values between −20% and 80%. The comparison of the landslide
affected area reveals similar tendencies: again, study area I showed the best agreement with a difference
of only 5.28%, and study area II showed the highest discrepancy, with OBIA detecting an affected area
that is almost five times as large as the manual mapping. In study area III (Montafon), the difference
in the landslide-affected area was 76% and reflected the agreement already shown by the difference
in landslide numbers. For study area IV (Bregenzerwald) and study area V (Gader Valley), the OBIA
deviation from the manually mapped area is relatively low, with 9.91% and −21.8%., but here the
difference shows a contrasting direction related to the number of landslides. The producer’s and user’s
accuracy values in study area I and IV were very similar. For study area II, the values show that most
of the landslide affected areas identified with manual mapping have also been captured by OBIA
(producer’s accuracy 90.6%) but that many more areas were classified that were left out by manual
mapping (user’s accuracy 15.6%). Study areas III and V(b) show a similar situation to study area II but
not as pronounced. Study area V(a) showed the opposite behavior because a significant portion of a
landslide has been included in the manual mapping that was not covered by the OBIA result.
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Table 7. Comparison of OBIA mapping results and manual mapping results per study area.

Comparison Metric Study Area I Study Area II Study Area III Study Area IV Study Area V

Number of landslides (OBIA) 2 85 9 11 5
Number of landslides (manual) 2 18 5 14 3

Difference in numbers OBIA—manual (count; %)
0 +67 +4 −3 +2

0% 372% 80% −21% +67%

Landslide affected area (OBIA, km2) 0.148 0.203 0.0190 0.0109 0.250
Landslide affected area (manual, km2) 0.140 0.0351 0.0108 0.00993 0.320

Area difference OBIA—manual (%) 5.28% 480% 76 % 9.91% −21.8%
Overlap area (km2) 0.118 0.0318 0.0104 0.00691 0.208

Producer’s Accuracy (%) 84.3% 90.6% 95.8% 69.6%
V(a): 60.6%
V(b): 90.0%

User’s Accuracy (%) 80.1% 15.6% 54.4% 63.3%
V(a): 91.2%
V(b): 62.7%

3.2.2. Completeness of the Semi-Automated Extraction

Relatively low MR values in the range from 0 to 0.35 were obtained (Figure 7), demonstrating that
at least two thirds of the manual polygons were also extracted by the OBIA method. For the Gader
Valley and Fürwag, even all reference polygons were detected with the semi-automated workflows.
This is indicated by a MR value of 0. However, for these areas, the total number of reference polygons
was small (n = 1–2) and the spatial extent relatively large. Usually, the combination of low reference
number and large reference areas increases the success of the automated landslide detection, which is
also supported by the presented results.
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3.2.3. Spatial Accuracy of the Semi-Automated Extraction

Generally, global spatial accuracy values are below 0.5, indicating good to high spatial agreements
between the reference and automated landslide polygons for the selected study sites (Figure 8). Only for
the Pinzgau area higher values, and hence, lower spatial accuracies were achieved. For Pinzgau,
the high values of QR, D, and UR show that there is a high difference between the size of reference
and test polygons. As a result, small spatial overlaps are produced. Since OR is close to 0 and AFI is
negative (Figures 8 and 9), it can be concluded that the extracted landslide polygons are far larger than
the reference polygons and/or that landslides were extracted at the wrong locations, i.e., the automated
extraction over-estimates the spatial extent of the reference. To a lesser extent, the afore-mentioned
conclusion also holds true for the Montafon study site (III). From Figures 8 and 9, it is also obvious
that study area V(a) is the only area where the value of UR is lower than OR and where AFI is
positive. This means that the extracted landslide polygon is smaller than the reference polygon (n = 1),
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i.e., the extraction under-estimates the reference. The best spatial agreement between reference and
test polygons was obtained for the Fürwag area (n = 2). The spatial accuracy values are relatively
low, and the deviation between them is minimal. These characteristics are achieved if the over- and
under-estimated areas are relatively small and the area proportions of the overlap, test, and reference
polygons are similar.Geosciences 2017, 7, 37  14 of 20 
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Figure 9. Global values of Area-Fit-Index (AFI) for the selected study sites.

Figure 10 depicts the spatial accuracy signatures of individual landslides per study site.
The signatures are obtained by plotting the four metrics, QR, UR, OR, and D; each on one side
of the X- and Y-axis. In case of high spatial agreement, the shape of the graph is diamond-like
and the diamond is positioned as close as possible around the zero point. The afore-mentioned
characteristics are best met for the two Fürwag landslides. When looking at the deviation of spatial
accuracy signatures for the landslides per study area, it can be concluded that the lowest values are
obtained for Fürwag and Montafon, whereas for Pinzgau and Bregenzerwald higher deviations are
depicted in Figure 10. Higher deviations indicate a higher variation of results for a study area, i.e.,
some reference landslides are under-estimated by the test polygons, while others are over-estimated.
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Figure 10. Landslide-specific spatial accuracy values per study site I–V. Each graph in I–V depicts the
spatial accuracy signature of a detected landslide. Results presented for four metrics; Quality Rate (QR),
Under-Segmentation Rate (UR), Over-Segmentation Rate (OR), and the UR-OR compound metric D.

4. Discussion

Landslide maps produced with semi-automated methods are commonly compared to manually
mapped landslides in order to quantitatively assess the accuracy of results. Visual interpretation,
however, while still the most common method for mapping landslides on optical remote sensing
data, has some disadvantages: it is a time-consuming process, depends on various factors, and cannot
constitute a completely “true” reference. However, often it is the only available reference data [8,23].
A “true” reference, i.e., ground truth reference data, would require the reference dataset to be
of a significantly higher accuracy and to be collected independently from the tested dataset [58].
The manual delineation and the OBIA mapping are two independently performed processes, but they
employ the same satellite images, and thus their results cannot be considered fully independent. For the
same reason, the manual interpretation did not result in landslide delineation with a significantly
higher accuracy. Consequently, manual mapping implies some degree of uncertainty that cannot
be avoided, even if created by an expert. Therefore, if some of the disagreement between the two
compared datasets can be attributed to the uncertainty in the manual delineation, the accuracy of the
OBIA results may be larger than the calculated accuracy values suggest. At least they would fall in
the same range of acceptable uncertainty that commonly used manual delineations imply. Of course,
this could only be confirmed if a valid ground truth reference dataset was available that also allows
the accuracy of the manual delineation to be assessed. In the current practice of assessing the accuracy
of OBIA results with manual delineations, only strong disagreements can clearly be attributed to
mapping errors, e.g., in the case of study area II where a user’s accuracy value of only 15.6% occurred.
The conceptual problem remains that the manual mapping does not completely fulfill the standards as
a reference for a classical accuracy assessment. Due to the uncertainty inherent in the manual mapping,
we suggest to use the term “agreement” instead of “accuracy” when comparing the two classifications.
The concept of agreement for evaluating the quality of OBIA landslide mapping results also applies
to other fields of applications where a fully reliable reference is missing. The approach of assessing
the agreement may not yield as sharp a quality indicator as the classical approach of an accuracy
assessment, but it can still be highly valuable. The selection of appropriate quality indicators is a
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subject for a necessary discussion within the landslide community. It enables the design of a validation
approach for EO-based landslide mapping that conforms to the Quality Assurance Framework for
Earth Observation (QA4EO; http://QA4EO.org/).

The accuracy assessment achieved a number of different metrics that were used for assessing
the accuracy of the OBIA landslide maps. In addition to classical PA and UA, which were computed
separately for each site, this study proposes to integrate spatial accuracy metrics for quantifying
the spatial agreement between manual and automated landslide polygons on an object-by-object
basis. The use of landslide-specific accuracies allows a more detailed interpretation of the results.
For instance, the deviation of landslide accuracy values within a study area may give clues about the
stability/robustness of the automated extraction workflow. The best results where all measures show
similar values were achieved for study area I, with PA and UA of approximately 80% and QR, UR,
OR, and D of approximately 0.2. However, for area I only two reference polygons were extracted.
The results of this study confirm that lower accuracies are achieved for areas where a larger number of
landslides have to be mapped by OBIA methods. We also compared delineations of single landslides
that performed equally well or even better. However, what makes it difficult to interpret the calculated
accuracy values is the lack of information about the accuracy thresholds accepted within the landslide
community. Such information would be highly valuable for estimating the quality of landslide maps
derived from EO data with semi-automated methods.

The results in this study obviously show that the very high spatial resolution of the optical
satellite image does not necessarily guarantee a high quality of the automated landslide mapping.
The relative quality of semi-automated landslide mapping can be better for Landsat 7 data than
for WorldView-2/3 images, as exemplified by the Fürwag test case. However, when drawing such
conclusions, one has to keep in mind that there is a direct relationship between the spatial resolution
of the optical satellite image and the reliability of the reference polygons digitized therefrom. It is
not surprising that VHR images allow the mapping of smaller landslides and to some degree also the
differentiation of subtypes, particularly during manual mapping. On the other hand, Landsat 7 and
Sentinel-2 proved their applicability for identifying and delineating larger landslides, whereby the
agreement between both results was high (apart from the special case of study area V(a), as described
below). Especially Sentinel-2 can be considered a relevant data source for semi-automated landslide
mapping and landslide change detection, also because of its high revisiting frequency.

Both methods produced acceptable and comparable results. However, the differentiation of
landslide types and sub-parts with OBIA was not possible with the available data. Very high
resolution DEM data from different dates would be helpful for that, but data availability was
limited. Also, optical data acquired directly after a landslide triggering event and another image
taken several weeks or months later could be helpful for the semi-automated differentiation of
source, transport, and accumulation area, since landslide tails tend to revegetate faster than landslide
scars [23]. These difficulties become obvious when looking at the results from the Pinzgau study
area, where different mass movement processes are present. While the OBIA approach classified too
many areas as landslides due to similar spectral properties, only a few landslides were identified by
manual mapping. In such a case, ground truthing would be necessary to create a reliable landslide
inventory. An example that requires expert interpretation can be found in the southwestern part of the
Bregenzerwald study site where some small shallow landslides were manually mapped, which could
not be identified by OBIA despite the use of WorldView-3 since they were already grassed over.
Study area V(a) is an interesting case because a significant portion of a landslide has been included
in the manual mapping that was not covered by the OBIA mapping. This part of the landslide is
covered by vegetation. In the manual interpretation, the inclusion of this part was logically inferred
by expert knowledge, an element that is difficult to implement in automated mapping workflows.
Eisank et al. [31] proposed a knowledge-based landslide mapping system, but further research is
needed in this direction to compete with a human interpreter.

http://QA4EO.org/
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Two OBIA software products with a different range of functionalities were used for
semi-automated landslide mapping, both delivering acceptable results for the presented case studies.
OBIA workflows were developed in such a way that they can potentially be set up in any of the two
software products, but each image analysis tool consists of different implemented approaches for
image segmentation and classification. As a consequence, the workflows may produce different results,
particularly related to the object delineations. Further studies could focus on a systematic comparison
of the applicability of different software products to identify the most adequate tool for each sensor
and landscape characteristic. However, this also depends on the data used and on the preferences and
skills of the software user.

By combining both approaches, i.e., starting with the semi-automated detection of landslide
candidates and then refining this classification manually, the whole mapping process could be
improved while achieving adequate mapping results. Particularly large-scale mapping tasks would
probably benefit from a degree of automation [59]. By implementing such a combined approach in an
interactive and easy-to-use web service intended for practitioners with at least a certain knowledge
in landslide recognition, landslide mapping could become faster and more efficient [60,61]. Such a
web service can be relevant, especially for users and practitioners who might not be familiar with
sophisticated image analysis software.

5. Conclusions

In this study we compared two landslide mapping approaches, OBIA and manual mapping, in five
selected test areas with various geological and geomorphological settings in the Alps. Satellite images
with different resolutions from different sensors were used. The analyses show that both methods
produce similar results, whereby the achieved accuracy values vary between the study areas. It is
important to note that using manual mapping for reference is critical, and the associated uncertainty
should be considered when interpreting the accuracy values. While visual expert interpretation has
advantages for differentiating landslides subtypes and for delineating single landslides as single objects
and thus to identify the number of mapped landslides, it is a subjective and time-consuming task.
This subjectivity issue is difficult to measure but influences the reliability of the landslide mapping.
We proposed a scheme for including different quality measures in manual mapping. This might
be useful for evaluating the reliability of manual mapping as reference data, even if some of these
measures are subjective and rely on the interpreter. On the other hand, the OBIA approach is more
transparent due to the use of replicable classification rules, but the expert knowledge required for
the mapping of complex landslides or landslides that are partly covered by vegetation is difficult to
implement in automated mapping workflows. Semi-automated landslide mapping approaches show
high potential and would find even more acceptance if a set of generally agreed quality indicators and
accuracy thresholds for the validation of EO-based landslide maps were commonly used.
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