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Abstract: What is the optimal level of chaos in a computational system? If a system is too chaotic,
it cannot reliably store information. If it is too ordered, it cannot transmit information. A variety of
computational systems exhibit dynamics at the “edge of chaos”, the transition between the ordered
and chaotic regimes. In this work, we examine the evolved neural networks of Polyworld, an artificial
life model consisting of a simulated ecology populated with biologically inspired agents. As these
agents adapt to their environment, their initially simple neural networks become increasingly capable
of exhibiting rich dynamics. Dynamical systems analysis reveals that natural selection drives these
networks toward the edge of chaos until the agent population is able to sustain itself. After this point,
the evolutionary trend stabilizes, with neural dynamics remaining on average significantly far from
the transition to chaos.

Keywords: agent-based modeling; artificial life; neural networks; evolution; chaos

1. Introduction

1.1. Chaos and Its Edge

Two hallmarks of chaos are aperiodicity and sensitive dependence on initial conditions [1].
The former indicates that chaotic systems appear disordered; it is difficult to find patterns in their
behavior even if they are completely deterministic. The latter indicates that arbitrarily similar initial
states eventually yield wildly different outcomes; long-term prediction of a chaotic system’s behavior
is thus impossible.

Many systems are capable of exhibiting both ordered and chaotic activity. The behavior of such
a system is often governed by control parameters—variables that, when manipulated, can cause chaos
to appear or disappear [1]. The “edge of chaos” refers to the transition between the ordered and
chaotic regimes.

Edge-of-chaos dynamics are found in many computational systems, both artificial [2–4] and
biological [5–7]. For example, in his analysis of one-dimensional cellular automata, Langton [2]
suggested that information storage, modification, and transmission are most effective in systems
approaching—but not fully reaching—chaos. Of particular relevance to the present study is the work
of Bertschinger and Natschläger [4], who showed that recurrent neural networks capable of performing
complex computations exhibit dynamics at the edge of chaos. In an example from biology, Skarda and
Freeman [5] proposed that chaotic activity in the neural dynamics of rabbits serves as a ground state
for olfactory perception, but only when this activity is constrained to low magnitudes.

These findings suggest that systems at the edge of chaos are better suited for information
processing, and that, if computational systems are permitted to self-organize, they may do so near this
transition [8,9]. Systems in this state are ordered enough to reliably store information, yet not so rigid
that they cannot transmit it [10]. However, it is important to note that edge-of-chaos dynamics do not
guarantee high performance on arbitrary tasks. Instead, the optimal level of chaos for a particular task
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is dependent on the nature of the task itself [11,12]. However, it is evident that the dynamics of many
systems may be separated into ordered and chaotic regimes, and that most interesting behaviors are
found between these extremes.

1.2. Polyworld

In this work, we investigate the relationship between neural dynamics and the edge of chaos
using the agent-based artificial life simulator Polyworld [13]. Shown in Figure 1, Polyworld’s ecology
consists of trapezoidal agents and rectangular food items on a flat ground plane that is optionally
partitioned into separate regions by vertical barriers. Each agent is controlled by a neural network.
The inputs to this network are mainly visual: at each timestep, the environment is rendered from
the agent’s point of view (as shown in the small boxes—one for each agent—at the top of Figure 1).
The resulting pixels are passed to the network as if they were light falling on a retina. The network’s
outputs control the agent’s seven behaviors: move, turn, eat, mate, fight, focus (adjust the agent’s field
of view), and light (adjust the brightness of a cluster of polygons on the front of the agent).

Figure 1. A Polyworld simulation.

Agents expend energy with all actions. In a typical Polyworld simulation, this includes neural
activity, but for the experiments discussed here, neural energy costs were disabled to avoid imposing
“physical” constraints on network topology. Energy is also lost by coming into contact with an agent
that is expressing its fight behavior. An agent may replenish its energy by eating the naturally occurring
food items. When its energy is exhausted or when it reaches a genetically specified maximum lifespan,
the agent dies.

An agent’s genome specifies characteristics of its physiology and neural structure. Mating between
two agents produces a child whose genome is a mutated combination of the two parent genomes.
Agents evolve under the influence of natural selection alone; in its standard mode of operation,
Polyworld has no fitness function other than survival and reproduction.

Unlike many other artificial life models in which the relationship to biological life is tenuous or
purely metaphorical, Polyworld’s motivation is “to create artificial life that is as close as possible to
real life, by combining as many critical components of real life as possible in an artificial system” [13].
As such, Polyworld’s design and implementation are heavily biologically inspired—incorporating key
elements of natural life—but organized at a high enough level that it is still feasible to simulate and
analyze ecology-level dynamics. Compare this to models such as Tierra [14] and Avida [15] in which
fragments of computer code are evolved, or to models like Echo [16], where agents’ genetics, physiology,
and neural systems are approximated much more coarsely—or not at all. With a level of biological
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verisimilitude not seen in most other models, Polyworld “may serve as a tool for investigating issues
relevant to evolutionary biology, behavioral ecology, ethology, and neurophysiology” [13].

Indeed, since its initial development, Polyworld has been used in a variety of studies that may be
considered ethological [13,17,18] or neurophysiological [19–22], albeit in an artificial context—but why
use this context at all? If the goal is to study, say, animal behavior, why not investigate real animals
in the natural world? First, it is not always possible to collect the necessary data. As a computer
simulation, Polyworld allows virtually any phenomenon of interest to be instrumented in arbitrarily
fine detail. Consider the present study, which analyzes detailed neural activity from hundreds of
thousands of agents. Carrying out the corresponding study on real animals would, of course, be
infeasible. Second, Polyworld allows us to “rewind the tape” of evolution, performing identical
experiments with variations in initial conditions or simulation parameters. This is a crucial element
of the null reference model described in Section 1.3.1, which allows adaptive evolutionary trends to
be recognized.

1.2.1. Behavioral Adaptation

At the beginning of a simulation, Polyworld is populated with a group of seed agents.
This population is not viable and must evolve in order to avoid dying out. There is thus significant
selection pressure on the agents’ genomes, at least until the population becomes capable of sustaining
itself. Populations generally adapt behaviorally to the simple environment used for these experiments
within the first five to ten thousand timesteps. After this point, a typical agent exhibits evolutionarily
adaptive behaviors such as foraging for food and seeking mates for reproduction. Experiments using
more complicated environments have shown that populations are capable of distributing themselves
ideally with respect to resources [17] and tracking a moving food patch. (For videos of these and other
experiments, see [23].)

1.2.2. Neural Structure

Polyworld’s neural networks (see Figure 2) are separated into five input groups, a variable number
of internal groups, and seven output neurons. Three of the input groups provide red, green, and blue
color vision, with a variable number of neurons dedicated to each group. The other two input groups
consist of single neurons: (1) a neuron that tracks the agent’s current energy level; and (2) a neuron that
is activated randomly at each timestep. The seven output neurons correspond to the seven behaviors
described in Section 1.2.

Input Internal Output

Vision

Energy

Random
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Figure 2. A possible neural structure of a Polyworld agent. Input groups project to internal and
output groups. Internal and output groups project to each other and recurrently to themselves. Only
representative connections are shown; those involving internal groups other than the large central
group are mostly suppressed.
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An agent’s genome specifies much of its neural structure, including the number of vision neurons
dedicated to each color, the number of internal groups, and the number of excitatory and inhibitory
neurons within each internal group. Notably, synaptic weights are not stored in the genome. Instead,
connections between each pair of groups are described at a relatively high level in the genome
using two parameters: connection density (the proportion of possible connections that are actually
realized) and topological distortion (the degree to which connections are made randomly rather than
sequentially). Synaptic weights are randomized at birth, then updated throughout the agent’s lifetime
via a Hebbian learning rule. Weights have a maximum magnitude wmax that is identical for all agents
and held constant for the duration of a simulation. Since connections may be excitatory (positive
weight) or inhibitory (negative weight), all weights are constrained to the interval [−wmax, wmax].

1.3. Prior Work

1.3.1. Driven and Passive

Much recent work on Polyworld has analyzed the information-theoretic and structural properties
of its evolved neural networks [19–22,24]. Trends toward increased complexity and small-worldness
have been observed over evolutionary time. But are these trends actively selected for by evolution,
or are they a consequence of the “left wall” of evolutionary simplicity [25]? In other words, the seed
population is so simple that it must complexify—there is no room for further simplification. Might the
observed trends be explained by a growth in variance coupled with the presence of this lower bound
of simplicity?

To answer this question, a null-model (passive) mode of simulation was developed to complement
Polyworld’s standard (driven) mode [19]. Here, driven and passive are used in the sense proposed by
McShea [26]: the former indicates evolution by natural selection, while the latter indicates a random
walk through gene space. In driven mode, a standard simulation is run under the influence of natural
selection, during which the birth and death of each agent are recorded. In passive mode, natural births
and deaths are disallowed. Instead, these events occur randomly, but in lockstep with the previously
completed driven simulation. At each timestep when a birth occurred in the driven simulation,
two random agents are mated in the passive simulation; at each timestep when a death occurred
in the driven simulation, a random agent is killed in the passive simulation. This results in a pair
of simulations—one using natural selection, the other a product of random genetic drift—that are
statistically comparable with respect to population.

1.3.2. Numerical Analysis

Qualitatively, driven simulations produce agents that exhibit evolutionarily adaptive behaviors
(e.g., foraging and mating), while passive simulations do not. In an effort to quantify this result, early
numerical analysis of Polyworld focused on information-theoretic metrics such as entropy, mutual
information, integration, and complexity [19,20,24]. Figure 3 shows the average complexity over
evolutionary time for ten driven/passive pairs of simulations. The complexity metric used here is
related to the interaction complexity of Tononi et al. [27,28], which measures the amount of a system’s
entropy that is accounted for by interactions among its elements:

C(X) = H(X)− ∑
x∈X

H
(
x
∣∣ X− x

)
. (1)

Figure 3 (and similar ones that follow) was generated by binning agents at 1000-timestep intervals
based on their time of death. For example, a data point at t = 1000 represents the mean of all agents
who died within the first 1000 timesteps. Differences between driven and passive means were assessed
for statistical significance using a dependent Student’s t-test, since driven and passive simulations
are generated in pairs. Significance is shown by the 1 − p-value trend over evolutionary time at the
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bottom of the figure. High values (exceeding 0.95) indicate a significant difference between the driven
and passive simulations (i.e., a selection bias relative to random genetic drift).
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Figure 3. Average complexity C over evolutionary time t for ten driven/passive pairs of simulations.
Light lines show the population-mean complexity for individual simulations, while heavy lines show
meta-means over all ten simulations. Statistical significance is indicated by the line at the bottom of the
figure, representing 1 − p-value for a dependent Student’s t-test. Reproduced from Yaeger [20].

Note that complexity initially grows significantly faster in the driven simulations, but only
for the first several thousand timesteps. This corresponds roughly to the period of behavioral
adaptation—the early portion of the simulation during which agents evolve adaptive behaviors.
After this period, driven complexity remains relatively constant or, in a number of cases, even decreases
(although some simulations produce a second growth spurt in complexity, as competition between
agent subpopulations drives a kind of punctuated equilibrium [18]). Passive complexity, however,
continues to grow for an additional 20,000 or so timesteps, ultimately attaining a much higher value,
despite the fact that agents in these simulations never evolve adaptive behaviors.

How can we explain this result? Yaeger et al. [19] propose that driven complexity is only correlated
with evolutionary fitness during the period of behavioral adaptation. Once a population’s complexity
is “good enough” to enable survival, evolution begins to select for stability instead of increasing
complexity, since any adaptation away from this “good enough” solution is likely to be detrimental.
In Dennett’s words, “the cheapest, least intensively designed system will be ‘discovered’ first by
Mother Nature, and myopically selected” [29]. Driven complexity thus stabilizes once the population
attains a sufficient fitness. In contrast, since passive simulations are not constrained by natural
selection, passive complexity continues to grow—simply as a result of the “left wall” of evolutionary
simplicity—until genetic variance is maximized. Complexity is not strictly tied to evolutionary
fitness, thus it is unsurprising that passive complexity growth is not accompanied by the evolution of
adaptive behaviors.

McShea and Hordijk [30] provide further insight into the possible reasons for the observed
complexity trend. On the Darwinian view, complexity evolves monotonically via a process of
incremental addition: initially simple structures are steadily enhanced by the addition of new parts
through natural selection, with each addition representing a marginal improvement to overall fitness.
McShea’s and Hordijk’s alternative view of “complexity by subtraction” proposes that complexity
grows early in evolution “perhaps on account of the spontaneous tendency for parts to differentiate”
given the system’s initial simplicity. An overproliferation of structures results in a system that is
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functionally successful yet unstable and inefficient. A reduction in complexity follows, “perhaps
driven by selection for effective and efficient function”, which requires simplification following the
initially excessive complexity growth. This view provides a possible explanation for the decrease in
complexity observed in the later stages of some driven simulations.

More recent numerical analysis of Polyworld using graph-theoretic metrics has produced similar
results to those of Figure 3: during the period of behavioral adaptation, driven simulations exhibit a
statistically greater tendency toward small-world neural networks. Once the population is capable
of sustaining itself, the driven trend plateaus and is surpassed by the passive trend [21]. Thus, our
primary interest is in the rate of change of a quantity during the first several thousand timesteps, not in
the extremal value it attains later in the simulation.

To summarize, agents in a driven simulation adapt behaviorally to their environment within the
first several thousand timesteps, after which the population stabilizes around a “good enough” survival
strategy. Since strong selection pressure only exists during this period of behavioral adaptation, it is
during this time that we are interested in investigating the effects of evolution. Thus, our question of
“Is a particular trend actively selected for by evolution?” becomes “Does the driven trend significantly
outpace the passive trend during the period of behavioral adaptation?” Prior work—investigating
both information-theoretic [20] and structural [21] metrics of the evolved neural networks—indicates
that adaptive trends are significantly faster in driven simulations.

1.4. Our Hypothesis

At this point, we highlight two observations: (1) the edge of chaos seems to facilitate computation;
and (2) in Polyworld, natural selection drives adaptive trends significantly faster than a random
walk through gene space during the period of behavioral adaptation. Based on these observations,
our hypothesis is that agents’ neural dynamics should evolve in the direction of the edge of chaos,
and that, during the first several thousand timesteps, this trend should be significantly faster in driven
simulations than in passive simulations.

2. Materials and Methods

2.1. Neural Model

Polyworld uses discrete-time firing-rate neural networks with summing-and-squashing neurons.
At each timestep, a neuron updates its activation according to

xt+1
i = φ

(
θi + ∑

j
wt

jix
t
j

)
, (2)

where xt
i is the activation of neuron i at time t, θi is the genetically specified bias of neuron i, wt

ji is
the synaptic weight from neuron j to neuron i at time t, and φ is a squashing function. We define the
normalized synaptic weight as wt

ji = wt
ji/wmax (so that wt

ji ∈ [−1, 1]) and rewrite Equation (2) as

xt+1
i = φ

(
θi + wmax ∑

j
wt

jix
t
j

)
. (3)

Equation (3) allows us to use wmax as a control parameter in investigating the agents’ neural
dynamics. The squashing function used in Polyworld is the logistic curve

φ(x) =
1

1 + e−αx , (4)



Geosciences 2017, 7, 49 7 of 13

where α is a globally constant logistic slope. Throughout an agent’s lifetime, its synaptic weights are
updated according to the Hebbian learning rule

wt+1
ji = D

(
wt

ji + η
[

xt
j − 1

2

] [
xt+1

i − 1
2

] )
, (5)

where η is a genetically specified learning rate. The decay function D slowly weakens synapses whose
weights have a magnitude greater than 1

2 wmax:

D(w) =


w if |w| ≤ 1

2 wmax,

w
(

1− r |w|−
1
2 wmax

1
2 wmax

)
if |w| > 1

2 wmax,
(6)

where r is a globally constant decay rate.
Note that a neuron’s activation is a function of all neurons’ activations in the previous timestep:

xt+1
i = f

(
xt

1, xt
2, xt

3, . . .
)

. (7)

Though agents can make use of an input neuron that is activated randomly, Equation (7) itself
is deterministic. The network may therefore be viewed as a set of difference equations amenable to
dynamical systems analysis.

2.2. “In Vitro” Analysis

Polyworld logs the neural anatomy (i.e., the neural network connection matrix) for each agent at
both birth and death. As shown in the following sections, we use a variety of metrics to recognize and
quantify chaos “in vitro”: after a simulation has completed, we reconstruct the networks from these log
files and analyze their behavior in response to different inputs. In order to more directly extend prior
information-theoretic [20] and structural [21] analyses, we use the neural anatomy recorded at death
to calculate these metrics. Synaptic weights are held constant during the analysis (i.e., the Hebbian
learning rule and decay function of Equation (5) are not applied) so that the analyzed neural anatomy
remains exactly the same as the recorded neural anatomy.

Why not perform an “in vivo” analysis? In other words, why not analyze the actual time series
of neural activations recorded during agents’ lifetimes? Since our aim is to investigate the edge of
chaos, our analysis must allow the manipulation of a control parameter (in this case, wmax). This is not
possible using “in vivo” neural dynamics, as wmax is fixed during a Polyworld simulation. It is thus
important to note that the results presented here investigate the dynamics that Polyworld’s neural
networks are capable of in general, not the dynamics they happen to exhibit during a simulation.

2.3. Maximal Lyapunov Exponent

Lyapunov exponents measure the average rate at which predictability is lost in a system [1].
The rate of divergence of two initially close trajectories is dominated by the maximal Lyapunov
exponent (MLE), defined as

λ = lim
t→∞

lim
ε0→0

1
t

ln
εt

ε0
, (8)

where ε0 is the initial separation between the two trajectories and εt is the separation at time t. The
sign of the MLE is indicative of the overall behavior of the system: for λ < 0, trajectories converge
over time, while for λ > 0, trajectories diverge over time. A positive MLE may thus indicate chaos,
although this condition alone is not sufficient to determine whether a system is truly chaotic or merely
sensitive to initial conditions. Intuitively, as systems approach the edge of chaos, their MLEs should
tend toward zero.
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General techniques exist for calculating the MLE from sets of equations [1] and time series [31].
Here, we use a method adapted from Albers et al. [32] that is targeted toward neural networks. First,
we iterate the network 100 times using random inputs. This is analogous to showing visual noise
to the agent, which moves the network into some random area of its phase space. Next, we iterate
the network 1000 times with all inputs set to zero. This is analogous to plunging the agent into total
darkness, which allows the network to quiesce toward an attractor.

At this point (t = 0), we create a copy of the network, slightly perturb the neural activations,
and measure the effect of this perturbation over time. To accomplish this, we take the network’s
activations as the vector x0. We ignore the input neurons, since their activations are completely
determined by the agent’s environment. This vector is copied into y0 and displaced by a small δ0 with
magnitude ‖δ0‖ = ε0 = 10−3:

y0 = x0 + δ0. (9)

This results in two networks with slightly different activations (conceptually, two trajectories
separated by ε0). Both networks are iterated once with all inputs set to zero, yielding activation vectors
x1 and y1 that are separated by

ε1 = ‖δ1‖ = ‖y1 − x1‖ . (10)

The network’s response to the perturbation can be determined by comparing ε1 to ε0. If ε1 < ε0,
the trajectories converged, representing a negative contribution to the MLE. If ε1 > ε0, the trajectories
diverged, representing a positive contribution. Prior to performing the next iteration, δ1 is rescaled to
the magnitude of the original perturbation:

δ∗1 =
ε0

ε1
δ1. (11)

The copied network’s activations are then reset to x1 + δ∗1 so that the trajectories are again
separated by ε0 (see Figure 4). After n = 1000 iterations, the MLE is estimated as

λ =
1
n

n

∑
t=1

ln
εt

ε0
, (12)

where εt indicates the separation between trajectories at time t before rescaling:

εt = ‖yt − xt‖ . (13)

y0

y1

y2 yn

x0 x1

x2 xn

ϵ0 ϵ0

ϵ0
ϵ1

ϵ2 ϵn

Figure 4. Calculation of the maximal Lyapunov exponent. Adapted from Boedecker et al. [8].

2.4. Bifurcation Diagrams

Bifurcation diagrams are used to depict the long-term behavior of a system in response to a
varying control parameter [1]. They are generated by selecting a random initial condition and iterating
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the system a large number of times. The final value of the system is plotted against the value of the
control parameter. Many such points are plotted as the parameter is swept through the desired range.

In nonchaotic regimes, the bifurcation diagram collapses to a single point (representing a stable
equilibrium) or a set of n points (representing a stable limit cycle of period n). Chaotic regimes appear
as widely spread points, indicating the system’s aperiodicity and long-term unpredictability. As with
the MLE, this condition is not sufficient to indicate chaos; quasiperiodicity may also appear as widely
spread points in a bifurcation diagram.

After Albers et al. [32], we use the maximum synaptic weight wmax as our control parameter.
In all the simulations investigated, wmax was fixed at 8. This analysis varies wmax from 0.1 to 50 in
increments of 0.1. For each value of wmax, we first iterate the network 100 times with random inputs.
Next, we iterate the network 100 times with all inputs set to zero. Finally, we plot the activation of a
selected output neuron against the current value of wmax. This procedure is repeated 100 times for
each value of wmax, yielding a total of 50,000 points for wmax ∈ [0.1, 50].

2.5. Onset of Criticality

For different agents, the first appearance of rich dynamics occurs at different values of wmax.
We define the onset of criticality (OOC) as the least value of wmax for which the MLE exceeds some
threshold. Like the MLE, this metric provides an indication of the level of chaos in the agents’ neural
networks. However, unlike the MLE, the OOC takes into account much more of the possible neural
dynamics, since it investigates a range of wmax values. Intuitively, if dynamics are being tuned toward
the edge of chaos, the OOC should tend toward the actual value of wmax = 8. Note that an MLE of
zero is observed at not only transitions to chaos but also, e.g., Hopf bifurcations. The onset of criticality
should thus not necessarily be taken as an onset of chaos, but rather as indicating a transition to richer
neural dynamics.

Using the method in Section 2.3, we calculate the MLE for each agent while varying wmax from 1
to 100. The OOC is recorded as the least value of wmax for which the MLE exceeds some threshold
λθ . We only consider integral values of wmax in order to make this analysis computationally feasible;
the fine-grained analysis described in Section 2.4—varying wmax in increments of 0.1—becomes
prohibitively time-consuming when applied to ten pairs of simulations, each consisting of tens of
thousands of agents. Restricting wmax to integral values is relatively coarse but leads to conservative
results since the reported OOC will be no smaller than the actual OOC.

The threshold value must be chosen with care. Even at arbitrarily high values of wmax, some
agents’ MLEs remain significantly negative or even undefined. If λθ is chosen too close to zero, these
agents’ MLEs will never exceed it. In such cases, the OOC is undefined, and the corresponding agents
are excluded from the analysis. However, if λθ is chosen too far from zero (in an attempt to include
more agents in the analysis), the OOC will fail to capture its intended meaning. Despite this, the OOC
trend appears stable over a range of thresholds. We report λθ = −1 here, as this includes the majority
(roughly 85%) of all agents.

3. Results

3.1. Maximal Lyapunov Exponent

As shown in Figure 5, the average MLE over evolutionary time behaves as predicted: during
the period of behavioral adaptation, the driven MLE increases faster than the passive MLE. This
difference is statistically significant for the first 6000 timesteps, after which the driven MLE plateaus
and is surpassed by the passive MLE. This is the same trend observed for complexity (see Figure 3)
and may be explained using similar reasoning: once a population’s neural dynamics are sufficiently
rich to implement a “good enough” survival strategy, evolution begins to select for stability. Note,
however, that the MLE remains significantly distant from its critical value of zero, indicating that the
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relatively simple environment used for these experiments may be “solved” using relatively stable
neural dynamics.
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Figure 5. Average maximal Lyapunov exponent (MLE) λ over evolutionary time t for ten
driven/passive pairs of simulations. Light lines show the population-mean MLE for individual
simulations, while heavy lines show meta-means over all ten simulations. Statistical significance is
indicated by the line at the bottom of the figure, representing 1 − p-value for a dependent Student’s
t-test. Shading emphasizes the period of behavioral adaptation (t . 5000).

3.2. Bifurcation Diagrams

Typical bifurcation diagrams are shown in Figure 6, arranged in chronological order of agent
death. Each diagram is accompanied by a plot showing the MLE over the same range of wmax values.
All agents were taken from a single driven simulation.

Note that these diagrams represent a small fraction of the population for this simulation. We
include these results—without comparison to the corresponding passive simulation—for two reasons:
(1) to demonstrate the various routes to chaos exhibited by the evolved networks; and (2) to provide
context for the results presented in Section 3.3 examining the OOC. While the bifurcation diagrams
shown here are helpful in exploring the detailed neural dynamics of individual agents, the OOC is a
much more effective metric for meaningfully extrapolating these results to an evolutionary trend.

Agent (a), one of the seed agents of the population, exhibits virtually no change in neural dynamics
for varying wmax. Agent (b) is typical of agents that have evolved marginally from this seed population:
varying wmax induces a monotonic increase or decrease in neural activation, but there is no evidence
of chaotic behavior (indeed, for both agents (a) and (b), the MLE is undefined, indicating that these
agents’ networks do not respond to perturbation). Agent (c) exhibits richer dynamics at relatively high
values of wmax. This regime tends to expand and move leftward toward wmax = 8 over evolutionary
time, as seen in agents (d) through (g). Evidence of period-doubling bifurcations and quasiperiodicity
can be seen in agents (e) and (f). Agent (g) appears to be tuned precisely to critical behavior: the MLE
approaches zero precisely at wmax = 8. Agent (h) is an example of an agent tuned past this critical
point, with chaotic behavior evident at wmax < 8.

3.3. Onset of Criticality

The average OOC over evolutionary time is shown in Figure 7. The approach toward wmax = 8 is
significantly faster in the driven simulations during the period of behavioral adaptation. As with the
MLE, the driven OOC plateaus after this period, remaining somewhat distant from its critical value.
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Figure 6. Bifurcation diagrams and maximal Lyapunov exponents for eight different agents in a
driven simulation. The dashed vertical line denotes the actual maximum synaptic weight wmax used
in the simulation. Diagrams are shown in chronological order, with t indicating the timestep of the
agent’s death.
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Figure 7. Average onset of criticality (OOC) over evolutionary time for ten driven/passive pairs of
simulations. Light lines show the population-mean OOC for individual simulations, while heavy lines
show meta-means over all ten simulations. The dashed horizontal line denotes the actual maximum
synaptic weight used in the simulations. Statistical significance is indicated by the line at the bottom of
the figure, representing 1 − p-value for a dependent Student’s t-test. Shading emphasizes the period
of behavioral adaptation (t . 5000).
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4. Discussion

Polyworld’s evolved neural networks are driven in the direction of the edge of chaos. There are
two main pieces of evidence for this claim: over evolutionary time, (1) the average MLE increases
toward zero; and (2) the average onset of criticality decreases toward the actual maximum synaptic
weight wmax. During the period of behavioral adaptation to the environment, these trends are
significantly faster when driven by natural selection than in a random walk through gene space.
Both of the metrics studied remain distant from their critical values, but this is unsurprising: previous
work indicates that once a “good enough” survival strategy is found, evolution begins to select for
stability.

Future work could supplement these results by addressing a number of questions. How does
the MLE change as a function of distance in parameter space from evolved network parameters?
What is the distribution of MLEs for networks generated randomly within this space? How are neural
dynamics related to adaptive behavior? For example, are agents at the edge of chaos more likely to
exhibit behaviors such as foraging and mating? How much of a role do developmental changes (via
Hebbian learning) play in the trends we observe over evolutionary time? What correlations are there
between the metrics discussed here and the previously investigated information- and graph-theoretic
metrics?

This work could also motivate some modifications to Polyworld. For instance, rather than using a
fixed wmax, this quantity could be pushed into the agents’ genomes, allowing a population to evolve
its value in concert with their neural topologies.

Supplementary Materials: The source code for Polyworld is available online at https://github.com/polyworld/
polyworld.
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