
geosciences

Article

Surface State across Scales; Temporal and Spatial
Patterns in Land Surface Freeze/Thaw Dynamics †

Helena Bergstedt 1,2,* and Annett Bartsch 3,4,5 ID

1 Department of Geoinformatics, University Salzburg, 5020 Salzburg, Austria
2 Arctic Centre, University of Lapland, 96200 Rovaniemi, Finland
3 Zentralanstalt für Meteorologie und Geodynamik, 1190 Vienna, Austria; annett.bartsch@zamg.ac.at
4 Austrian Polar Research Institute, 1010 Vienna, Austria
5 b.geos, 2100 Korneuburg, Austria
* Correspondence: helena.bergstedt@sbg.ac.at; Tel.: +43-662-8044-7590
† This paper is an extended version of our paper published in Helena Bergstedt, Annett Bartsch (2016):

Surface Status Across Scales. Proceedings of the ESA Living Planet Symposium, Prag, Czech, May 2016.

Academic Editors: Ulrich Kamp and Jesús Martínez Frías
Received: 30 April 2017; Accepted: 25 July 2017; Published: 3 August 2017

Abstract: Freezing and thawing of the land surface affects ecosystem and hydrological processes,
the geotechnical properties of soil and slope stability. Currently, available datasets on land surface
state lack either sufficient temporal or spatial resolution to adequately characterize the complexity
of freeze/thaw transition period dynamics. Surface state changes can be detected using microwave
remote sensing methods. Data available from scatterometer and Synthetic Aperture Radar (SAR)
sensors have been used in the past in regional- to continental-scale approaches to monitor freeze/thaw
transitions. This study aims to identify temporal and spatial patterns in freeze/thaw dynamics
associated with the issue of differing temporal and spatial resolutions. For this purpose, two datasets
representing the timing of freeze/thaw cycles at different resolutions and spatial extents were
chosen. The used Advanced SCATterometer (ASCAT) Surface State Product offers daily circumpolar
information from 2007–2013 for a 12.5-km grid. The SAR freeze/thaw product offers information of
day of thawing and freezing for the years 2005–2010 with a nominal resolution of 500 m and a temporal
resolution of up to twice per week. In order to assess the importance of scale when describing
temporal and spatial patterns of freeze/thaw processes, the two datasets were compared for spring
and autumn periods for the maximum number of overlapping years 2007–2010. The analysis revealed
non-linear landscape specific relationships between the two scales, as well as distinct differences
between the results for thawing and re-freezing periods. The results suggest that the integration of
globally available high temporal resolution scatterometer data and higher spatial resolution SAR
data could be a promising step towards monitoring surface state changes on a seasonal, as well as
daily and circumpolar, as well as local scale.
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1. Introduction

Permafrost and seasonal frost-related phenomena affect large parts of the Earth’s surface and are
therefore important variables in climate research. This is especially true for Arctic areas where the
ground surface undergoes a yearly freezing and thawing cycle. Transitional periods play a special
role in the Arctic ecosystem; they can last several weeks, and changes in their duration and intensity
have been found to have significant impact on terrestrial carbon exchange and changes in ecosystem
productivity [1,2]. The freezing and thawing process has also been linked to hydrological processes
like surface runoff [3], geotechnical properties of soil [4], biogeochemical properties of thermokarst
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lakes [5] and slope stability in alpine regions [6]. In addition, freeze/thaw cycles are known to
influence methane emissions [7]. Therefore, their spatial extent, as well as changes in their dynamics
have implications for hydrological applications, climate modeling and ecosystem processes [8], which
occur at different scales. Regions underlain by permafrost are of special interest in this context as
they have been shown to undergo rapid warming [9–12], and changes in ground stability have direct
implications for roads, buildings and other forms of infrastructure [13]. Currently available datasets
describing the freeze/thaw state of the ground surface lack either the adequate spatial or temporal
resolution to describe these processes on a regional/local scale [14].

The surface state of the ground can be monitored using microwave remote sensing [15]. Brightness
temperature or backscatter varies due to changes in dielectric properties when water changes from
liquid to solid and vice versa. The water contained within the soil therefore influences the signal.
The dielectric constant of water changes substantially when it freezes. The change in the dielectric
constant results in a response of the backscatter signal or brightness temperature respectively, and it
can therefore be used to detect the timing of the status change of land surfaces [1].

A further advantage of microwave sensors is that microwave radiation can penetrate cloud cover
and is independent from the presence of daylight. Satellite data have been applied in several studies
to detect the state of the ground surface using active microwave and passive microwave sensors
(e.g., [16–19]). At C-band, the presence of snow can be a complicating factor during surface state
retrieval [20]. Melting snow causes backscatter variations, which are different from those caused by the
thaw of snow-free land surfaces [21]. When soil thaws, the liquid water content increases, and therefore,
the backscatter coefficient under snow-free conditions increases, as well [15]. In snow-covered areas,
the backscatter drops with the onset of snow melt due to the diminished effect of volume scattering
and the presence of shallow water ponds at the snow surface [20,22]. This effect enables the monitoring
of snow cover parameters, e.g., [23–29], and the characteristics of sea ice [30–33].

A further issue is the wavelength. Different wavelengths have been tested for freeze/thaw
retrieval. The interaction of the microwave signals with the ground surface differs, influencing
their suitability for freeze/thaw retrieval. Freeze/thaw products exist from L-band (e.g., [34]),
C-band (e.g., [20,35]) and at 37 GHz (in the case of the Special Sensor Microwave Imager (SSM/I))
(e.g., [36]) observations. Longer wavelengths, such as L-band, are considered as most suitable for
freeze/thaw application due to the potentially higher penetration depth into the soil [17,37,38]. Data
from active systems are available from scatterometer (real aperture) and Synthetic Aperture Radar
(SAR). Scatterometer data hold the advantage of a high temporal resolution and have a good coverage
of the Arctic due to overlapping orbits, yet the spatial resolution of scatterometer data is comparatively
coarse. C-band scatterometers have been shown to have the capability for monitoring the freeze/thaw
conditions of the ground surface and have been successfully used to map surface state conditions
on a circumpolar scale [20]. However, due to their lack of high spatial resolution, scatterometer data
are suspected to be insufficient to describe freeze/thaw processes on a local scale. The coarse spatial
resolution holds further disadvantages during transitional periods as the ground covered by one
scatterometer footprint is likely a mixture of frozen and thawed ground and not a homogeneous area,
as implied by the coarse resolution data [20]. An advantage of active systems is that they can also
provide observations in higher spatial resolution using SAR systems.

SAR has been shown to be a useful tool for monitoring of the surface state and other ground
surface properties on a finer spatial scale by several studies (e.g., [35,39,40]). Furthermore, outside
of freeze/thaw detection, especially C-band SAR has been used to complement data provided by
scatterometer sensors during unfrozen conditions [21]. However, it does not provide the global
coverage and temporal resolution that can be achieved by scatterometers.

The scarcity of suitable high resolution SAR datasets for the Arctic region prevents monitoring
of freeze/thaw cycles with adequate spatial and temporal resolution. This would be especially
crucial during transition periods when changes in surface state can occur on a daily basis. Freeze/thaw
products with high spatial resolution are only available from C-band and for selected regions (e.g., [41]),



Geosciences 2017, 7, 65 3 of 23

while circumpolar datasets are derived from coarse resolution data from both active sensors like the
Advanced SCATterometer (ASCAT) (C-band, 25-km spatial resolution; e.g., [20,42]) and passive
sensors like SMOS (L-band, 35–50-km spatial resolution; e.g., [17,43]). The Soil Moisture Active Passive
(SMAP) mission was expected to solve this problem [44], but its failure has left this gap open. Efforts
to enhance the spatial resolution of scatterometer data exist [45], but freeze/thaw products with both
high temporal and spatial resolution are not yet available. This could be overcome by downscaling
coarse resolution scatterometer data using additional information such as topography, landscape type,
vegetation or the climatological parameter. The lack of knowledge about the relationships of processes
detectable at different scales prevents such efforts until now [14]. Park et al. [35] provide initial analyses
of the influence of forest on step function-based C-band freeze/thaw detection. They conclude that the
canopy plays a significant role. Högström et al. [21] quantify the impact of lake backscatter variations
within the ASCAT footprint using ASAR wide swath data (150 m) for soil moisture retrieval, e.g., wind
can cause an increase of 5 dB in areas with 50% water fraction.

In this study, we analyze the spatial and temporal relationships between freeze/thaw processes
detectable at different scales. We employed two freely-available data products that are based on
C-band radar observations. They were derived from the ASCAT on board the MetOp satellite and
the Advanced Synthetic Aperture Radar (ASAR) sensor on board ENVISAT, a scatterometer and SAR
sensor, respectively, which deliver surface state information at different temporal and spatial resolutions.
The general objective of this study was to explore these relationships for different landscape types and
the representativity of coarse resolution scatterometer data for different permafrost environments.

2. Materials and Methods

The data products from the ASCAT and and ASAR sensors describe the surface state of Arctic
environments for differing extents at different spatial and temporal resolutions.

The first data product provides daily information on the freeze/thaw condition of the ground
surface on a circumpolar scale. It was derived from data obtained by the ASCAT sensor (C-band) on
board the meteorological MetOp satellite (A and B) [20,42]. ASCAT incidence angles range between
25◦ and 65◦. They were normalized to 40◦ [20] before further processing. The dataset contains
classes that reflect daily surface state information for the area above 55◦ N with a spatial resolution
of 25 km × 25 km, gridded to 12.5 km, for the time period of January 2007–December 2013 [42,46].
The surface state has been determined by applying an empirical threshold algorithm. The threshold
was determined for each single grid point in order to especially account for the impacts of vegetation.
A certain class (frozen, melting snow, unfrozen) has been assigned to each measurement [20]. Unfrozen
refers here to the condition without snow cover. The accuracy of the algorithm is highest in summer
and winter and lowest during spring and autumn [20]. The classification accuracy has been tested
using air temperature measurements from the nearest World Meteorological Organization (WMO)
stations, as well as surface temperature data from GLDAS-Noah [47] and ERA-Interim reanalysis
datasets [48]. It was found to be above 80% overall [20].

The second product was derived from data obtained by the ASAR sensor on board the European
environmental satellite ENVISAT operating at C-band. The dataset covers five regions (Alaska,
Mackenzie, Laptev Sea Coast, Central Yakutia and Ob Estuary, Figure 1) and gives information about
the day of thawing and freezing for the time period of 2005–2010 [41,46]. The information is given
at a spatial resolution of 1 km and provided with a nominal resolution of 500 m. The classification
accuracy is <±2 weeks for freezing and ±2 weeks for thawing [41]. The used mode (global mode) is
characterized by varying incidence angles (ranging between 20◦ and 40◦) and high noise, making a
threshold function not applicable. Data were normalized to 30◦, and a step function has been fit for
each location to all available measurements of a year [35]. The points in time for the change (increase
of backscatter to the level of unfrozen and snow free conditions and decrease for freeze-up) have
been extracted, resulting in two images per year with the day of thaw and day of freeze-up as values.
A third band provides the number of ASAR acquisitions that was available and used in the creation
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of the data product for each year. In general, all pixels with less than 52 acquisitions are masked.
The data product was validated using meteorological data, such as air temperature and snow water
equivalent [35]. The agreement in spring and autumn was found to be 90.6% and 87.5%, respectively.
The accuracy is linked with the temporal frequency of the input data [35], which varies between the
regions and the covered years and is documented in the dataset. Other factors influencing the accuracy
are land cover heterogeneity and frost action dynamics [35]. In their study, Park et al. [35] show an
increase of uncertainty with a decrease of temporal resolution of the input data. Pixels containing
values believed to be unreliable were masked out; this includes pixels with low coverage (less than
52 ASAR GM acquisitions per year), as well as pixels containing water bodies.

Figure 1. Extent of the surface state datasets; extent of circumpolar Advanced SCATterometer (ASCAT)
dataset [42] visualized by the black rectangle (total map extent); extent of Advanced Synthetic Aperture
Radar (ASAR) dataset [41] visualized by red polygons for the regions: Alaska (A); Mackenzie (B); Ob
Estuary (C); Central Yakutia (D); Laptev Sea Coast (E); in Regions A, B and C, black dots symbolize
selected ASCAT grid cells; colors correspond to landscape types (purple: tundra with partial floodplain;
blue: lake dominated tundra; pink: tundra; green: forest).

Acquisitions from ascending, as well as descending orbits are available from both ASAR and
ASCAT. The time of day for ascending and descending orbits is different, and measurements are
either from the morning or afternoon. This may lead to different results (frozen or unfrozen) for a
certain day due to daily temperature variations. The melting snow class in the ASCAT product has
not been considered as unfrozen for the purpose of this study, although the ground below may start
to thaw when snow is melting [49]. First, the detection of melting snow for a certain day depends
on actual acquisition timing (a.m. or p.m., not all days with melting might be captured), and second,
melting snow is not available from the ASAR product as it only gives information on the day of year
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of the freeze and thaw. Even though ASCAT and ASAR have different incidence angles, the results
are assumed to be comparable. The change from frozen to unfrozen can be considered similar to the
change from moist to dry. This has been demonstrated to be almost incidence angle independent [50].

Both algorithms (the one used for ASAR and the one for ASCAT) identify unfrozen ground surface
when a certain backscatter intensity (distinct from the winter values) is reached that corresponds to
summer values [20,35]. This value is higher than in winter and even much higher than under conditions
of snow melt. ASAR therefore corresponds in general to end of snow melt. Park et al. [35] found that
this differs for forested areas. Here, it corresponds to the beginning of snow melt. This is one of the
reasons that forested areas are analyzed separately in this study.

We analyzed discrepancies on a regional scale, using the extent of the SAR product. We studied
the years 2007–2010, as this is the time period covered by both datasets. To enable the comparison of
the two datasets, the SAR product was transferred from information of the day of freeze and day of
thaw into daily values of the freeze/thaw surface state for each 500-m pixel. Days after the recorded
thaw date were classified as thawed, all days before as frozen (respectively for days before and after
the freeze date). To further facilitate the comparison, the coarse ASCAT product was resampled to the
500-m grid of the SAR product without losing information through interpolation. We then checked the
agreement and discrepancy days for each ASCAT grid cell for the years of 2007–2010, comparing the
results to the number of acquisitions that went into the creation of the SAR product. Discrepancy days
on the regional level were calculated as the number of days the two data products did not report the
same surface state. This includes incidences where pixels are masked. In the case of the SAR product,
this occurs due to data unavailability or lake fraction, in the case of the ASCAT dataset, especially
when the surface is classified as melting snow. It does not distinguish between the different forms of
discrepancy that are described in Figure 2. To demonstrate the relationship between discrepancies and
terrain, we compared the discrepancies to a topographical map.

To investigate possible relationships in greater detail, we identified 15 ASCAT grid cells for
different landscape types. Four different landscape types (forest, tundra, lake dominated tundra,
tundra with partial floodplain) were determined using the Global Land Cover 2000 (GLC2000) datasets
for North America [51] and Northern Eurasia [52]. The grid cells were selected in regions with lower
than 50% masked SAR pixels in all 4 years to guarantee meaningful results. Grid cells were chosen in
the regions Alaska (A), Mackenzie (B) and Laptev Sea Coast (E) (see Figure 1). The regions Central
Yakutia (D) and Ob Estuary (C) were not selected due to missing values for the day of thaw in Region
D in 2009 and the low number of SAR acquisitions in Region E in all years (see Figure 3). Due to the
low number of acquisitions, all pixel in Region C failed the condition of lower than 50% masking per
grid cell for at least one of the 4 years. All selected grid cells also have similar average transition times
as determined in [20] and are limited in elevation range (on average, 150 m). Due to the constraints
of these criteria, areas containing suitable grid cells were limited. This led to all selected grid cells
being located in continuous permafrost environments as defined by Brown et al. [53] and an uneven
distribution of certain landscape types across the regions. Using these grid cells as our study area
extent, we repeated the analysis already done on a regional level with a special focus on transitional
periods. We compared spatial and temporal patterns for spring and autumn, as well as the percentage
of frozen SAR pixels at the point of the surface state change reported in the ASCAT dataset. We further
divided the grid cells into four classes of landscape types (forest, tundra, lake dominated tundra,
tundra with partial floodplain).

To investigate the spatial and temporal variability of discrepancies between the data products,
the following statistical measures have been derived. A 4-year mean value for days of discrepancy
was calculated for each ASAR pixel for the years 2007–2010. Unlike the discrepancy days for the
regional analysis, all analyses on the grid cell level were done excluding masked SAR pixels from the
calculations. This focuses the analysis on the discrepancies between frozen and unfrozen (see Figure 2
for types of discrepancies). To achieve this, all SAR pixels that were masked at least once in the data
product were masked for our analysis. For the transitional periods, we analyzed the percentage of
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already thawed/frozen SAR pixels within each ASCAT grid cell with respect to the surface state
reported by the ASCAT product. To quantify the spatial variability within each grid cell in spring and
autumn, we calculated the standard deviation of discrepancies, taking into account all grid cells that
were not masked in the years 2007–2010. The differences between landscape types were assessed and
visualized using box plots of the percentage of frozen and thawed SAR pixels per ASCAT grid cell
at the time of the surface state change reported in the ASCAT product. The influence of the number
of SAR acquisitions considered in the freeze/thaw product on the number of discrepancy days was
explored, calculating the median for both parameters for each grid cell for spring and autumn for each
year separately.

For a more detailed analysis of temporal patterns, we used air temperature and near-surface soil
temperature data from a measurement station located within the Alaska 2 grid cell [54,55]. It is the
only cell with available in situ records. We compared the in situ measurements to the ASCAT surface
state and the SAR surface state. To mitigate the effect of artifacts in the SAR product and to account for
its resolution of 1 km, we chose the maximum value of the four closest pixels (4 × 4 pixel window).
The measurement station is located on a slope that increased the number of artifacts in the vicinity.

Figure 2. Temporal discrepancies in freeze thaw data (SAR-ASCAT) between the ASCAT [42] and
SAR [42] datasets for selected ASCAT grid cells in Alaska. The percentage of areas is given for all
possible types of combinations between the two datasets (averaged for 2007–2010).
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Figure 3. ASAR acquisitions included in the freeze/thaw dataset [41] for the Ob Estuary in 2007–2010.

3. Results

The analysis of discrepancies on a regional level revealed spatial and temporal patterns that
underlined the need for further analysis on a pixel level (Figures 4–6). Higher differences occur for
mountainous regions and lake-rich environments. Landscapes of a more homogeneous nature show in
general fewer discrepancy days. Figure 7 exemplifies the high discrepancy day values in mountainous
areas. Large proportions of the Alaskan and Canadian subsets are characterized by mountain regions.
The different regions show regional mean values of discrepancy days (spring and autumn all four
years) from 96.3 days (Central Yakutia) to 192.3 days (Ob Estuary), meaning that the discrepancies
extend beyond transitional periods. In the case of smooth terrain, this difference is mostly less than
one month. Discrepancies between the two datasets are influenced by the number of acquisitions
considered in the SAR dataset (see Figures 3 and 5). The Ob Estuary region acts as a good example
for the importance of temporal resolution. The region (as seen in Figure 3) has a low number of
acquisitions considered in the SAR dataset. It is also the region with the highest spatially consistent
number of discrepancy dates. There is a gradient of acquisition numbers from southeast to northwest,
which leads to a similar gradient in discrepancy days. The northern part of the Alaskan subset is also
affected by a lower number of used SAR acquisitions. The number of discrepancy days more than
doubles north of 70◦N.

Figure 2 shows an example of the temporal differences of freeze/thaw products for the selected
ASCAT grid cells in Alaska, averaged for 2007–2010. The discrepancies are mainly limited to May
and September (with small differences in April, June, July, August and October), emphasizing the
importance of transitional periods. The visible differences in the remaining months (up to 8.4% in
the case of Alaska 1) are limited to areas masked within the SAR product. More than 50% of the area
(accumulated for all days) remains frozen in May in SAR, as well as ASCAT in the shown examples.
The switch for ASCAT occurs in September with only approximately 30% of agreement with SAR.
Almost 20% of the landscape already freezes before the switch in ASCAT.

Figures 8–11 show the actual time series of thawed SAR pixels within one ASCAT grid cell
for the situation in spring and autumn as indicated by the day of the year. The results confirm
differences between spring and autumn, but differences between the analyzed years, as well. Figure 8
shows the results for the two selected ASCAT grid cells in Alaska (as in Figure 2). Both grid cells
have a high variability in the SAR data between the observed years for spring compared to autumn.
Especially the onset of the thawing process is more variable than the onset of the freezing process.
These characteristics can also be found in most, but not all, of the other selected ASCAT grid cells
(Figures 9–11).
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Figure 4. Days of discrepancies (yearly mean) between the ASCAT [42] and SAR [42] datasets for the
regions covered by the SAR dataset; Alaska (A); Mackenzie (B); squares represent selected grid cells,
colors correspond to landscape types (purple: tundra with partial floodplain; blue: lake dominated
tundra); the red outline around Region A indicates the extent of the terrain map (Figure 7).

Figure 5. Days of discrepancies (yearly mean) between the ASCAT [42] and SAR [42] datasets for the
regions covered by the SAR dataset; Ob Estuary (C); Central Yakutia (D).
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Figure 6. Days of discrepancies (yearly mean) between the ASCAT [42] and SAR [42] datasets for the
regions covered by the SAR dataset; Laptev Sea Coast (E); squares represent selected grid cells; colors
correspond to landscape types (pink: tundra, green: forest).

Figure 7. Topographical map of area covered by SAR dataset, region Alaska (A) as in Figure 4.
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Figure 8. Percentage of thawed SAR pixel within one ASCAT grid cell during transitional periods
(indicated by the Day Of the Year (DOY)), including DOY of the last surface state change in the ASCAT
product (red symbols) for the selected grid cells with no assigned landscape type (Alaska 1, Alaska 2),
for the ASCAT [42] and SAR [42] datasets.

Figure 9. Percentage of thawed SAR pixel within one ASCAT grid cell during transitional periods
(indicated by the DOY), including DOY of the last surface state change in the ASCAT product (red
symbols) for the selected grid cells with the assigned landscape type Lake dominated tundra (Mackenzie
1, Mackenzie 2, Mackenzie 3, Mackenzie 4), for the ASCAT [42] and SAR [42] datasets.
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Figure 10. Percentage of thawed SAR pixel within one ASCAT grid cell during transitional periods
(indicated by the DOY), including DOY of the last surface state change in the ASCAT product (red
symbols) for the selected grid cells with the assigned landscape type Tundra (Laptev Sea 1, Laptev Sea
2, Laptev Sea 3, Laptev Sea 4, Laptev Sea 5), for the ASCAT [42] and SAR [42] datasets.

Figure 11. Percentage of thawed SAR pixel within one ASCAT grid cell during transitional periods
(indicated by the DOY), including DOY of the last surface state change in the ASCAT product (red
symbols) for the selected grid cells with the assigned landscape type Forest (Laptev Sea 6, Laptev Sea 7,
Laptev Sea 8, Laptev Sea 9), for the ASCAT [42] and SAR [42] datasets.

An example of a more detailed view of the progress of thawing SAR pixel within one ASCAT grid
cell is shown in Figure 12. The shape of the curve is different in all of the studied years and cannot be
described adequately with a linear regression. R2 ranges from 0.75–0.89, but the slope and intercept
varies from year to year. The shape is sigmoid, suggesting a better fit with a logistic function.

During the beginning of the transitional period, the surface state as reported by the ASCAT dataset
can change from frozen to thawed and back in spring (from thawed to frozen and back in autumn)
several times due to day to day fluctuations in the air temperature. The percentage of thawed/frozen
SAR pixels within the ASCAT grid cell at the timing of the last surface state change reported by the
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ASCAT product varies greatly; not only between the different grid cells, but also for each of the sites
individually, in spring, as well as in autumn. The percentage of already thawed or frozen SAR cells
within one ASCAT grid cell, as well as the variability of this parameter varies between landscape types.
Figure 13 shows the median, minimum and maximum of the percentages of frozen and thawed SAR
pixels for autumn and spring, respectively visualized as box plots. During freeze-up, lake-rich pixels
show the largest variability, while all values for forest lie above 60%. Pixels dominated by tundra
and lake-rich environments both show a smaller variability during thawing compared to freeze-up.
For pixels dominated by forest environments, this is reversed: the percentages of frozen SAR cells
are more variable for thawing conditions than freezing. The percentage of thawed/frozen SAR pixels
within one ASCAT footprint at the timing of the first surface state change shows a larger variability as
illustrated by Figure 14. All landscape types show a high variability of percentages for both spring
and autumn, except for landscape type tundra, which shows low variability in autumn.

A comparison of the median number of SAR acquisitions in each year with the median of
discrepancy days for each grid cell revealed no clear relationship between the two parameters
(see Figure 15). The number of available acquisitions in the SAR archives differs between North
America and Eastern Siberia. It is in general less than 100 or more than 200, respectively. The median
is in both cases usually in the order of two weeks and can be more than a month in both cases.

A difference between freezing and thawing periods can be also observed in the spatial patterns.
They differ considerably between the selected landscape types for spring and autumn. While some grid
cells have no clear patterns, others show distinct differences for spring and autumn. An overview of
all selected grid cells, including the standard deviation of discrepancies between the two freeze/thaw
products, is summarized in Table 1. The standard deviation of discrepancy values in spring is higher
compared to autumn for most investigated grid cells. This is supported by the patterns seen in Figure 16,
which shows scatterplots of the four-year mean values of discrepancy days for the selected grid cells.
While most grid cells show a higher standard deviation in spring compared to autumn, the variability
between the two seasons is differently pronounced (see Table 1). Grid cells that are dominated by lakes
(see Table 1) show higher values of the standard deviation in autumn compared to tundra-dominated
sites (except Laptev Sea 5 (SD = 22.6)). Within landscape types, tundra shows the most differences
with standard deviations in autumn ranging from 7.58 (Laptev Sea 2) to 22.66 (Laptev Sea 5). Laptev
Sea 5 shows the lowest elevation of all tundra grid cells; Table 1.

The comparison of ASCAT and SAR data with in situ temperature measurements for the grid
cell Alaska 2 for two years is shown in Figure 17. The difference can be negative, as well as positive
in both spring and autumn, e.g., ASCAT freeze-up in 2007 occurs when when temperatures drop to
almost zero at the measurements site, but SAR shows a later switch when below zero temperature
values are reached locally. This differs in 2008 where the freeze-transition is smoother than in 2007. The
unfrozen day in spring occurs in all cases after a period with temperatures close to zero. In the case of
soil temperatures (as available in 2008), this period can be interpreted as a melting snow situation [19].
Freeze-up occurs comparably late at the Sagwon site in both years. With an altitude of 278 m, it is
located higher than the average elevation in this grid cell.
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Figure 12. Detailed view showing the % of thawed SAR pixels and the DOY for the ASCAT grid cell
Laptev Sea 5 (type Tundra) for the years 2007–2010; based on the SAR [41] and ASCAT [42] freeze/thaw
datasets; data are displayed from the last day of 0% thawed pixel each year to the first day of 100%
thawed pixel each year; including a linear regression and a logistic fit with respective R2 and residual
standard error (RSE).

Figure 13. Median, maximum and minimum of percentages of thawed and frozen SAR pixels (with
black dots symbolizing outliers) within one ASCAT grid cell at the time of the last surface state change
in spring and autumn in the ASCAT product for different landscape types, for the ASCAT [42] and
SAR [42] datasets.
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Figure 14. Median, maximum and minimum of percentages of thawed and frozen SAR pixels (with
black dots symbolizing outliers) within one ASCAT grid cell at the time of the first surface state change
in spring and autumn in the ASCAT product for different landscape types, for the ASCAT [42] and
SAR [42] datasets.

Figure 15. Median discrepancy days between the ASCAT [42] and ASAR [41] datasets for all selected
grid cells for spring and autumn in relation with median SAR coverage for all selected ASCAT grid
cells for the years 2007–2010.
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Figure 16. Scatterplot of four-year mean values of discrepancy days between the ASCAT [42] and
SAR [41] product for spring and autumn for all selected grid cells.

Figure 17. Air and near surface soil temperature for Sagwon [54], ASCAT surface state change date for
the corresponding grid cell (red), percentage of thawed SAR pixels within the ASCAT grid cell and
SAR surface state change date for the location of the measurement site (blue).
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Table 1. Selected Advanced SCATterometer (ASCAT) grid cells, including landscape type (Lake-dominated tundra: L; Tundra: T; tundra partially including Floodplain:
FL; Forest: F), elevation range in meters [56], standard deviation of 4-year mean values for days of discrepancies in spring (SD Sp.) and autumn (SD At.) and average
acquisition times for the Advanced Synthetic Aperture Radar (ASAR) and ASACT; the standard deviation is calculated using the sum of days of discrepancies between
datasets on the SAR grid for spring (April, May and June) and autumn (September, October and November) 2007–2010.

Site Latitude Longitude Type EL.Range SD S. SD A. Av.ASAR Acqu.Times Av.ASCAT Acqu.Times

Al.1 69.698 −146.842 FL 147–328 21.25 17.17 6–8 a.m.; 8–10 p.m. 04–7:30 a.m.; 7:30–11 p.m.
Al. 2 69.458 −148.765 FL 149–360 14.63 14.85 6–8 a.m.; 8–10 p.m. 04–7:30 a.m.; 7:30–11 p.m.
Mack.1 67.534 −128.027 L 155–283 23.84 21.64 4–6 a.m.; 5–8 p.m. 3–6 a.m.; 6–9 p.m.
Mack. 2 68.342 −126.270 L 150–286 27.35 22.90 4–6 a.m.; 5–8 p.m. 3–6 a.m.; 6–9 p.m.
Mack. 3 67.927 −127.694 L 150–299 21.82 18.72 4–6 a.m.; 5–8 p.m. 3–6 a.m.; 6–9 p.m.
Mack. 4 67.766 −127.747 L 235–380 19.27 19.70 4–6 a.m.; 5–8 p.m. 3–6 a.m.; 6–9 p.m.
Lap.Sea1 70.737 111.738 T 98–330 21.36 16.24 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 2 70.607 110.869 T 375–508 7.64 7.58 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 3 70.967 104.118 T 331–487 12.34 8.76 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 4 70.657 109.495 T 429–606 15.62 17.93 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 5 70.623 113.418 T 16–163 31.31 22.66 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 6 69.023 104.712 F 180–328 27.65 17.19 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 7 68.964 105.309 F 189–304 30.85 20.16 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 8 68.853 105.228 F 179–272 27.77 17.52 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
Lap.Sea 9 68.823 105.524 F 231-301 29.57 18.54 2–4 a.m.; 11 a.m.–3 p.m. 2–5 a.m.; 9 a.m.–1 p.m.
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4. Discussion

4.1. Spatial Patterns

The observed spatial discrepancies between freeze/thaw data from the two datasets [41] and [42]
show distinct regional differences. The lake mask, included in the SAR product, causes pronounced
differences between the SAR and the ASCAT datasets. This is visible in the regional results, which show
a high number of discrepancy days in the regions of the Mackenzie Delta and the Lena River Delta
(see Figures 4 and 5). The backscatter over lakes drops after melt and does not increase afterwards
as for the surrounding land area. Wind action over the lakes can increase the average backscatter
within the ASCAT footprint on a short-term basis [21], which may lead to misclassifications. The
regional results also show linear artifacts, which are caused by SAR processing issues with the NEST
software [41].

Snow and snow melt are known to influence the freeze/thaw detectability [57] of coarse resolution
products. The variability in the onset of snow melt leads to a spatial heterogeneity in the timing of
the following freeze/thaw transition on a small scale [1], which can potentially be picked up by the
1-km resolution of the SAR product, but is overlooked by the ASCAT sensor, leading to high spatial
variability in discrepancies during the spring transition on a grid cell level.

Discrepancies for grid cells in tundra regions can be partially attributed to uncertainties in the
lake mask used to create the SAR product, lakes not covered by the lake mask due to their small size
and the fact that lakes are not masked in the ASCAT product and therefore influence the resulting
values. Additionally, lake-rich landscapes exhibit heterogeneity in soil moisture [58], which influences
the freeze-back process, as well as the intensity of the backscatter response [27]. These areas therefore
partially exhibit a freezing pattern not representative of the overall ASCAT cell extent. To analyze
spatial patterns in greater detail, especially in heterogeneous landscapes, freeze/thaw products based
on enhanced resolution scatterometer data (e.g., [45]) would be beneficial, but are not yet available.

The comparison of discrepancy days in spring and autumn as shown in Figure 16 reveals distinct
groupings of pixels showing large discrepancies in both spring and autumn and smaller groupings of
pixels with low discrepancy values for both seasons.

4.2. Temporal Patterns

The temporal analysis of discrepancies in freeze/thaw data focused on the transitional periods, as
this is the only time the datasets were inconsistent with the exception of masked areas. The difference
in surface state information of the two data products is dependent on the day of the year and with
that the advance of the freezing and thawing progress. The percentage of already thawed or frozen
SAR pixel at the time of the surface state change in the ASCAT product varies between the analyzed
years, as well as between the selected study sites. These variations occur in both spring and autumn.
This is also demonstrated in Figure 17. The increase in percentage of frozen and thawed SAR pixel per
ASCAT grid cell is a non-linear process, especially in the beginning of the freezing and thawing of the
grid cell. This, together with the different percentages of frozen and thawed pixels at the time of the
ASCAT surface state change would impact future attempts to downscale spatially coarse freeze/thaw
products. The SAR product used in this analysis gives no information about temporal dynamics, as it
only includes a single DOY for freezing and thawing, respectively. The ASCAT product shows the
temporal dynamics of the freezing and thawing process; multiple changes of the surface state happen
during every transitional period covered by this dataset. Only the last change in spring and autumn
respectively is considered for this study. Due to this difference, the two datasets naturally disagree on
temporal dynamics.

Additionally, the difference in the acquisition times of ASCAT and ASAR data is thought to
influence the results. ASCAT, as well as SAR datasets include afternoon acquisitions for Alaska and
Mackenzie. For Siberia, data from ascending orbits are acquired earlier for both SAR and ASCAT.
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Diurnal freeze/thaw cycles of the snow surface [23] and subsequently the ground surface occur during
transitional periods [59]. Consequently, a comparison of freeze/thaw values retrieved at different
(local) times might not be appropriate during spring and autumn when the surface state can be highly
dynamic [23,60]. However, a detailed analysis of the influence on the spatial patterns cannot be made,
as the number of SAR acquisitions differs considerable between the sites and data from both orbits,
and thus, different timings have been used in the case of both SAR and ASCAT products.

The comparison of in situ measurements with the results for grid cell Alaska 2 revealed a good
agreement between the timing of ASCAT and SAR surface state, as well as with air and near-surface soil
temperature. A more comprehensive comparison of the results with additional in situ measurements
would be beneficial for possible downscaling attempts, but is limited by data availability. None of
the other selected grid cells (complying with the strict criteria of data availability, etc.) contained
measurement sites with openly accessible data. An alternative might be reanalyses data, but they have
only coarse spatial resolution of about 80 km [61].

In this study, we considered the timing of thaw as the conditions after snow melt. While the
ASCAT product gives information about melting snow [20], we did not consider this in our analysis
as the ASAR product contains no such information [35]. As discussed above, temporal dynamics
of discrepancies have been found to be variable between years and study sites. A similar analysis
focusing on the start of snow melt might produce different results. The start and duration of snow
melt is highly variable across the Arctic [62] as derived from QuikScat, which provides high temporal
resolution that allows one to consider diurnal effects, which are of relevance in the case of snow melt
detection [23]. A sensor with higher acquisition intervals than ASCAT over the Arctic land area would
be required. The issue is even more problematic in the case of SAR acquisitions.

4.3. Importance of Landscape Types on the Issue of Scale

The landscape types show distinct differences in their variability of the share of thawed or frozen
SAR pixels at the time of the last change in the ASCAT dataset. While tundra and lake-rich landscapes
show a smaller variability in spring, forest landscapes show a smaller variability in autumn. The high
variability of forest landscapes in spring could be attributed to snow melt, which is a heterogeneous
process in forest-dominated landscapes [63]. Park et al. [35] found different relationships for the
spring transition date and the timing of snow melt for tundra and forest environments. While the
spring transition date for tundra landscapes corresponded to the end of the snow melt, it was
correlated with the beginning of the snow melt period in forest landscapes [35]. The variability
of the percentages of thawed or frozen SAR pixels at the time of the first surface state change as
reported in the ASCAT product shows a larger variability. While the variability is high for both autumn
and spring, all landscape types show a lower median in autumn. The difference between the landscape
types is not as distinct as the difference between the two seasons. This could partially be due to the
influence of snow cover in spring, which influences the thaw timing. This would also account for the
different variability of the results for timing of the first and the last surface state change as reported in
the ASCAT product. Snow melt or still present snow cover within the ASCAT footprint would have
more influence on the results during the time of the first surface state change. The accuracy of the SAR
data product is generally believed to be higher during freeze-up compared to thaw [41], leading to a
more reliable detection of early frozen SAR pixel within one ASCAT grid cell. A higher accuracy in
detecting early freeze-up in the SAR product could therefore account for the lower medians in autumn
for the time of the first surface state change.

The high variability of lake-rich landscapes could be attributed to the influence of lake ice break-up
and formation, which is known to influence backscatter at C-band [64], as well as the presence of
remaining open water in autumn. Floating ice produces relatively high backscatter (higher compared
to summer values) [49]; therefore, the presence of lakes reduces backscatter in summer, under calm
conditions, increases short term under windy conditions [65], and floating ice remains after snow
melt [66] and increases backscatter in winter (depending on ice growth patterns). This all introduces
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noise that may lead to a lower performance of the threshold and edge detection algorithms. While
being mainly masked out in the SAR product, lakes potentially influence the ASCAT backscatter signal
and with this the accuracy of the ASCAT freeze/thaw detection capability. While it is clear that the
ASCAT product is influenced by sub-pixel lakes, the SAR information might also be partially affected
due to uncertainties in the lake mask and the abundance of ponds much smaller than can be captured
with the 1-km resolution [67].

4.4. Influence of Data Quality

The importance of the number of acquisitions considered in the SAR freeze/thaw product
is visible in the regional results when comparing results for the Ob Estuary region (E) with the
corresponding SAR coverage (see Figures 3 and 5). However, when comparing the median number
of discrepancy days with the median number of considered SAR acquisitions for the selected grid
cells, no relationship between the two parameters can be detected (see Figure 15). This suggests the
importance of adequate SAR coverage up to a certain threshold, but also points towards a robustness
of the surface state retrieval algorithm once the threshold of the minimum number of acquisitions as
selected by Park et al. [35] is reached. As the ASCAT grid cells were specifically chosen to have similar
coverage numbers each year, the results do not allow conclusions about site-specific relationships of
discrepancies and coverage.

Acquisition timing may play a role for detection accuracy with both approaches, the location-based
threshold, as well as the step function method. Both freely-available products mix ascending and
descending orbit data for higher temporal sampling. Further investigations are required to investigate
this issue.

5. Conclusions

The analyses in this paper provide a first step in developing a downscaling scheme for coarse
resolution C-band scatterometer-based land surface freeze/thaw information. The importance of land
cover, especially forests and lakes, is confirmed and its impact quantified. Differences between the
two data products in both spring and autumn were found for all sites; the intensity of the observed
discrepancies varied considerably between the studied grid cells. Results for different landscape
types showed distinctly different standard deviations in spring and autumn, with lake-dominated
landscapes showing comparatively high standard deviations in autumn. Forest-dominated grid cells
are especially variable in spring due to the influences of a delayed snow melt process. The differences
are smallest for tundra sites without water bodies for both thaw and freeze-up, with highest agreement
in autumn. Compared to L-band, frequent C-band SAR observations are freely available for the past
and will increase in the future with the Sentinel-1 mission. The latter will even allow 10–30-m spatial
resolution analyses. A further advantage of C-band is the current developments in the resolution
enhancement of ASCAT data.

Results from this analysis underline the importance of landscape-specific approaches when
dealing with active microwave remote sensing data at different spatial and temporal resolutions.
Especially in down- or up-scaling approaches, this becomes of major importance. Besides highlighting,
the discrepancies between the scales, this study also shows the findings of the spatial heterogeneity of
the thaw and freeze-up process for different permafrost landscapes. The identified differences between
forest and tundra landscape match previous findings by Park et al. [35]. We found the progress of
thaw and freeze-up within an ASCAT grid cell to be specific to study site and year. Preliminary tests
showed that the progression is best described by a logistic function.
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