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Abstract: The selection of a global geopotential model (GGM) for modeling the long-wavelength
for geoid computation is imperative not only because of the plethora of GGMs available but more
importantly because it influences the accuracy of a geoid model. In this study, we propose using
the Gaussian averaging function for selecting an optimal GGM and degree and order (d/o) for the
remove-compute-restore technique as a replacement for the direct comparison of terrestrial gravity
anomalies and GGM anomalies, because ground data and GGM have different frequencies. Overall,
EGM2008 performed better than all the tested GGMs and at an optimal d/o of 222. We verified
the results by computing geoid models using Heck and Grüninger’s modification and validated
them against GPS/trigonometric data. The results of the validation were consistent with those of
the averaging process with EGM2008 giving the smallest standard deviation of 0.457 m at d/o 222,
resulting in an 8% improvement over the previous geoid model. In addition, this geoid model, the
Ghanaian Gravimetric Geoid 2017 (GGG 2017) may be used to replace second-order class II leveling,
with an expected error of 6.8 mm/km for baselines ranging from 20 to 225 km.

Keywords: Heck and Grüninger’s modification; Gaussian averaging function; geoid; global
geopotential models; remove-compute-restore

1. Introduction

The remove-compute-restore (RCR) method divides the geoid computation into three stages: the
remove stage, where the long- and short-wavelengths are removed from the gravity anomalies to
give the residual gravity anomalies; the compute stage, where a residual geoid is computed from the
residual gravity anomalies; and finally the restore stage, where the long-wavelength (computed from a
global geopotential model, GGM) and the short-wavelength (indirect effect computed from a digital
elevation model, DEM) are restored [1]. As a result, these three components influence the accuracy of a
geoid model. The choice of a DEM for topography-generated gravity field quantities is dependent
upon the terrain. For low-lying regions, a low-resolution DEM will suffice. In fact, the indirect effect
(δN) for a topographic height of 3 km is less than 50 cm [1]. On the other hand, a very high resolution
residual terrain model (RTM) has been suggested for improving geoid accuracy over mountainous
regions [2]. In this work, we concentrate on the selection of a GGM and degree and order (d/o) for
modeling the long-wavelength of the Earth’s gravity field.

To this end, the main contribution of this paper is the extension of the Gaussian averaging function
from the traditional smoothing of the Earth’s gravity field [3] and determination of systematic errors
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in terrestrial gravity data [4,5] to the selection of an optimal GGM and d/o for geoid computation.
This is the first attempt at an informed selection of both GGM and d/o using a low pass filter and is
especially useful for regions with limited financial capital and low-resolution gravity data, albeit this
approach may be used even in regions with comparatively high-resolution gravity data. In addition,
we attempt to compute an improved gravimetric geoid model for Ghana, where the first known geoid
model has a standard deviation of almost 50 cm [6]. It is important to note that at present, Ghana does
not officially acknowledge/have a (gravimetric) geoid.

2. Materials and Methods

2.1. Study Area and Terrestrial Data

Ghana lies in the West African sub-region sharing boundaries with Burkina Faso to the North,
Togo to the East, Côte d’Ivoire to the West, and to the South, the Atlantic Ocean. Located in the area
between 3◦ W and 2◦ E longitude and 4◦ N and 11◦ N latitude, Ghana has a land mass of approximately
238,535.315 square kilometers (km2), with the Volta, Ghana’s largest river, taking up about 3.6% of the
total area and running from south to north. The topography of Ghana is fairly even. The southern part
of the country, which houses the Kwahu Plateau, has a relatively higher topography than the northern
part. About half of the country lies below 152 m above m.s.l., with mount Afadja (aka Afadjato), the
tallest point in Ghana, standing at 885 m above m.s.l. Ghana is rich in natural minerals such as gold,
manganese, diamonds, bauxite and iron ore. However, only the southwestern and northeastern parts
of Ghana are privileged with minerals and have thus been the focus of many gravity surveys in Ghana.

We have acquired 236 terrestrial gravity data points and 29,249 marine gravity data from the
Bureau Gravimétrique International (BGI) in addition to some 407 terrestrial gravity data procured from
the Geological Survey Department (GSD) in Ghana. Both terrestrial datasets are part of the 1957 and
1958 gravity survey [7]. Of the over 10,000 terrestrial gravity data available for the previous geoid
model [6], only 643 were acquired for this work. It should be noted that unsuccessful efforts were
made to obtain additional data. In addition, we have procured 11 GPS/trigonometric heights for
purposes of validation.

Although not enough information is publicly available regarding the terrestrial gravity data
acquired for this work, the scientific community generally accepts certain conventions regarding tide
systems. For example, all new reference gravity values are in the zero-tide system, following the
resolution by the International Association of Geodesy (IAG) in 1983 in Hamburg. However, where no
tidal corrections are applied to the field measurements, as is the case with the gravity data acquired for
this work, the mean-tide system is used. Regarding 3-D positioning and GGMs, the tide-free system is
used [8]. In view of the fact that the Global Navigation Satellite System (GNSS), specifically the Global
Positioning System (GPS), uses the tide-free system, and is used globally, we use the tide-free system
in our computations by converting from mean gravity to tide-free gravity using [9]:

g f = gm − δ
(
−30.4 + 91.2 sin2 ϕ

)
, (1)

and from mean heights to tide-free heights using [10]:

H f = Hm + (1 + k− h)
[
−0.198

(
1.5 sin2 ϕ− 0.5

)]
, (2)

where the subscripts f and m refer to the tide-free and mean tide systems, respectively, g is gravity, ϕ is
the latitude of the gravity station, and a value of 1.53 has been chosen for δ. We use values of 0.3 and
0.6 for the Love numbers k and h, respectively.
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2.2. Global Geopotential Models (GGMs) and Errors

Global geopotential models are used to approximate the Earth’s gravity potential and its
functionals. There are broadly three kinds of GGMs: satellite-only GGMs (e.g., Ref. [11]), combined
satellite GGMs (e.g., Ref. [12]), and high-resolution GGMs (e.g., Ref. [13]), which are a combination
of satellite and ground-based data. GGMs are generally known to record the long-wavelength of the
Earth’s gravity field more accurately than gravimeters. Thus, in the RCR technique, GGMs are used to
provide the long-wavelength contribution to the geoid. Though more accurate in the long-wavelength,
like all measurements, GGMs are not free from errors. Therefore, it is necessary to validate GGMs.
Assessing GGMs may be achieved locally by comparing GPS data and gravity potential and its
functionals computed from terrestrial gravity data with GGMs, for example, (quasi-)geoid heights and
gravity anomalies, and globally by comparing GGMs based on their degree variances. In terms of a
global inter-comparison of GGMs, the error degree variance σ2 at a certain frequency band is given
as [14]:

σ2 = Λ2
n

∑
m=0

(
σC2

nm + σS2
nm

)
, (3)

where σCnm and σSnm are the standard errors of the potential coefficients, and Λn is the eigenvalue of
the field. Equation (3) is valid for all functionals of the anomalous gravity field. Appropriate values for
Λ are R for geoid and GM

R2 (n− 1) for gravity anomaly, where R is the mean radius of the Earth and
GM is the product of the gravitational constant and mass of the Earth or the geocentric gravitational
constant. Note that the degree variances, c2

n may be computed in the same way as the error degree
variance by replacing the standard errors with the spherical harmonic coefficients Cnm and Snm.

We use the Earth Gravitational Model 2008, EGM2008 [13], and the fifth releases of the direct,
DIR-R5 [12], and time-wise, TIM-R5 [11] solutions of the Gravity field and steady-state Ocean
Circulation Explorer (GOCE); and GOCE and EGM2008 Combined Model, GECO [15]. These are
available online at http://icgem.gfz-potsdam.de/home.

2.3. The Gaussian Averaging Filter

Low-pass (LP) filters are used in geoscience disciplines to smooth, for example, the gravitational
field of the Earth [3]. We review LP filters because of their importance in the framework of comparing
terrestrial gravity data and GGMs.

Ground-based gravity data has the advantage that it contains information in the entire frequency
spectrum, while geopotential models only adequately represent data in the low frequency portion of
the spectrum, determined by the spherical harmonic coefficient (SHC) degree of expansion. Because
GGMs are generally known to be very accurate in the low frequencies, LP filters have been used as a
way of assessing systematic errors in ground-based gravity data [4,5] by filtering the terrestrial gravity
data so that they can be compared with GGMs. Following Huang et al. [4], an LP filter is generally
given by the equation:

∆gGG
L = F

[
∆gGG

]
, (4)

where ∆gGG
L is the filtered ground-based gravity (GG) data, F is an averaging function, e.g., Gaussian,

Pellinen, Ideal filter and ∆gGG is the (unfiltered) ground-based gravity data. We use a weighted
average so that ∆gGG

L is given by the expression:

∆gGG
L =

∑n
i=1 ∆giW(ψi)

∑n
i=1 W(ψi)

. (5)

∆gGG
L is realized by averaging gravity anomalies within a given radius α. At the distance of

the averaging radius, the weight will have dropped to half its value at the computation point [3].
W(ψ) is the weighting function of the Gaussian average and is a function of the spherical distance, ψ,

http://icgem.gfz-potsdam.de/home
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between the computation point and the running point and was normalized so that the global integral
equals 1 [16]:

W(ψ) =
ae−1(1−cos ψ)

2π(1− e−2a)
, (6)

where a is the dimensionless parameter which characterizes the smoothing process, and is given
by [16]:

a =
ln(2)

1− cos(α/R)
. (7)

It goes without saying that whether a normalized weight is used or not, one will obtain the
same results in Equation (5), simply because it is a weighted average. Thus, for the purpose of
filtering ground-based gravity anomalies, both the original Gaussian weight by Jekeli [3] and Wahr’s
normalization [16] will give the same results in terms of the averaged terrestrial gravity anomalies.

The systematic errors in this way are contingent on the accuracy of the LP filter and the d/o under
consideration. Following Huang et al. [4], if we decompose ground-based gravity anomalies into their
errors, i.e., the low- and high-degree systematic errors εGG

L and εGG
H , respectively, and the random error

εn, then we arrive at the expression:

∆gGG =
∞

∑
n=2

gn + εGG
L + εGG

H + εn. (8)

In much the same way, GGM-derived gravity anomalies may be expressed in terms of their
commission errors, εGGM

N , at maximum degree N as:

∆gGGM =
N

∑
n=2

gn + εGGM
N . (9)

Since a GGM is known to be more accurate than ground-based gravity data, it can be assumed
that its error is much smaller than the systematic error in the ground-based gravity data. Thus,
the difference between Equations (8) and (9), evaluated at the same point, will be the low-degree
systematic error (δεL = εGG

L − εGGM
N ) in the ground-based gravity data below degree N. Only when

the ground-based gravity anomalies have been smoothed can the low-degree systematic error in the
ground-based data be determined, using:

δεL = ∆gGG −
∞

∑
N+1

gn−εGG
H − εn − ∆gGGM. (10)

2.4. Geoid Computation

For the purpose of verifying the results of the averaging process, we give a brief summary of
geoid computation. A (quasi-)geoid and gravity anomalies may be computed respectively from a
GGM using the expressions (see, e.g., [17]):

ζ(r, ϑ, λ) = ζ0 +
GM
rγ

∞

∑
n=2

(
R
r

)n n

∑
m=0

(
Cnm cos mλ + Snm sin mλ

)
Pnm(cos ϑ) (11)

and

∆g(r, ϑ, λ) =
GM
r2

∞

∑
n=2

(n− 1)
(

R
r

)n n

∑
m=0

(
Cnm cos mλ + Snm sin mλ

)
Pnm(cos ϑ), (12)

where Cnm and Snm are the fully normalized spherical harmonic coefficients of the potential, r is the
radial distance, Pnm(cos ϑ) are the fully normalized associated Legendre functions, n and m are the
degree and order of the harmonic coefficients, respectively, and λ is the longitude of the point. The first
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term on the right-hand side (RHS) of Equation (11), ζ0, is the zero-degree term. The imperativeness
of accounting for the zero-degree term stems from the fact that the normal Earth and the real Earth
are not equal (i.e., W0 6= U0). Were it possible to measure the exact mass of the real Earth, a reference
ellipsoid could have been modeled to be exactly equal with the real Earth, in which case the potential
difference δW between the two Earths will equal zero. The first-degree term on the other hand is set to
zero by setting the center of the reference ellipsoid to the center of the Earth.

The equation, known as Stokes’s integral, given by [1]:

N =
R

4πγ0

x

σ

∆gS(ψ)dσ, (13)

is the expression for computing a gravimetric geoid where γ0 is the normal gravity and S(ψ) is
Stokes’s kernel:

S(ψ) =
1

sin(ψ/2)
− 6 sin

(
ψ

2

)
+ 1− 5 cos ψ− 3 cos ψ ln

(
sin

ψ

2
+ sin2 ψ

2

)
. (14)

The additive zero-degree term is expressed as (e.g., Ref. [18]):

N0 =
1

γ0

[
GMGGM − GMWGS84

R
− (W0 −U0)

]
. (15)

Owing to data limitation, we have decided to replace the original Stokes’s kernel with Heck and
Grüninger’s modification of Stokes’s kernel. Modified kernels aim at reducing the truncation error
resulting from integrating Stokes’s formula, i.e., Equation (13), over a portion of the Earth instead of
the entire Earth. This is achieved by subtracting the spherical Stokes’s kernel at the truncation radius
from the unmodified kernel. Heck and Gruninger’s modification applies Meissl’s modification on the
spheroidal Stokes’s kernel by Wong and Gore and is given by (see, e.g., Ref. [19]):

SP(cos ψ) =

{
SP(cos ψ)− SP(cos ψ0) for 0 ≤ ψ ≤ ψ0

0 for ψ0 ≤ ψ ≤ π
, (16)

where SP is Stokes’s kernel evaluated at the degree, P, of the spheroidal kernel.
In addition to Heck and Grüninger’s modification, we have considered using terrain correction

and indirect effect in the framework of Helmert’s gravity anomalies. We remark that because of the
relative evenness of our study area, these quantities will be small. As stated in the introduction, for a
topographic height of 3 km, an indirect effect δN of less than 50 cm is to be expected.

Again, owing to the scanty data available for this work, we have chosen to use Helmert’s gravity
anomalies, which differ from free-air gravity anomalies by the amount of the terrain correction, TC.
The TC and the indirect effect, are given, respectively, by [20]:

TC =
1
2

GρR2
x

σ

(h− hP)
2

l3
0

dσ (17)

and

δN = − 1
γ

πGρh2
p −

1
γ

1
6

GρR2
x

σ

(
h3 − h3

p

)
l3
0

dσ, (18)

where G is the gravitational constant, l0 is the distance between two points projected onto the geoid,
ρ is the density of the Earth with a value of 2.67 g·cm−3, h and hp are the heights of the running and
computation points, respectively.

We use the 30 arc-second SRTM30_PLUS topography and bathymetry DEM [21] as input data
for the computation of topography-generated gravity field quantities over the region bounded by
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4◦ W and 2◦ E longitude, 4◦ N and 12◦ N latitude. Panels (a) and (b) of Figure 1 show that the
values for the terrain corrections and indirect effect, respectively, are very small, reemphasizing the
relatively low-lying terrain of the study area, with the regions of Ghana housing mountains having the
highest amplitudes.
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Figure 1. Topography-generated gravity field quantities for the study area computed using
SRTM30_PLUS topography/bathymetry; (a) Terrain correction computed using SRTM30_PLUS
topography/bathymetry data as input for Equation (17); and (b) Indirect effect computed using
Equation (18).

3. Numerical Results and Discussion

Figure 2 panels (a) and (b) show the global inter-comparison of the tested GGMs computed from
Equation (3). GECO has the smallest cumulative errors both in terms of geoid heights and gravity
anomaly while TIM-R5 has the worst root-mean-square of the errors (RMSEs). Notice that with the
exception of TIM-R5, all the other models have gravity anomaly RMSEs below 2 mGal. It is worth
noting that while this may appear to be a good metric for the selection of a GGM for geoid computation,
it is not advised since such a comparison does not take into account the effect of (local) terrestrial data,
which are used for geoid computation and thus, contribute to the accuracy of the geoid.

In contrast, the panels (c) and (d) of Figure 2 display the results of the standard deviation of
the differences between gravity anomalies from terrestrial data and GGM (see panel (c) of Figure 2),
and geoid heights from terrestrial data and GGM (panel (d) of Figure 2). We have found that beyond
d/o 234 and 222 (see panels (c) and (d) of Figure 2), where the smallest standard deviations are recorded
for gravity anomalies and geoid heights, respectively, very little signal change occurs. Thus, these
have been chosen as the best performing d/o, corresponding to gravity anomalies and geoid heights,
respectively. In addition, EGM2008 gives the smallest standard deviation in both cases (see panels
(c) and (d) of Figure 2). Figure 2c shows EGM2008 and GECO with smaller standard deviations than
TIM-R5 and DIR-R5 showing agreement with the results of the cumulative anomaly degree variances,
obtained using Equation (3) for gravity anomalies (panel (a) Figure 2). One may be tempted to use such
a comparison in the selection of a GGM for geoid computation. However, since this approach does not
take into account the differences in frequencies between terrestrial data and GGM, it may present a
bias in the results and is thus not a good metric for the comparison of terrestrial data and GGMs.

The Gaussian averaging function aims to filter terrestrial data for comparison with global models.
The averaging process requires taking the mean of gravity anomalies within a certain radius, which
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is a function of the degree of expansion (20, 000/nmax). We have compared averaged free-air gravity
anomalies with gravity anomalies computed from DIR-R5, EGM2008, GECO and TIM-R5 at d/o 90,
150, 200, 222, 234, and 250 (see Figure 3). Recall that the direct comparison of terrestrial and satellite
gravity data (see panels (c) and (d) of Figure 2) does not take into consideration the varying frequencies,
or as it were, assumes that the terrestrial data and satellite data have the same frequencies. Since this is
not the case, such a comparison may present a bias. Thus, the Gaussian averaging function may prove
a better method for the comparison and selection of an optimal global model and d/o.

Geosciences 2017, 7, 113  7 of 13 

 

In contrast, the panels (c) and (d) of Figure 2 display the results of the standard deviation of the 
differences between gravity anomalies from terrestrial data and GGM (see panel (c) of Figure 2), and 
geoid heights from terrestrial data and GGM (panel (d) of Figure 2). We have found that beyond d/o 
234 and 222 (see panels (c) and (d) of Figure 2), where the smallest standard deviations are recorded 
for gravity anomalies and geoid heights, respectively, very little signal change occurs. Thus, these 
have been chosen as the best performing d/o, corresponding to gravity anomalies and geoid heights, 
respectively. In addition, EGM2008 gives the smallest standard deviation in both cases (see panels (c) 
and (d) of Figure 2). Figure 2c shows EGM2008 and GECO with smaller standard deviations than 
TIM-R5 and DIR-R5 showing agreement with the results of the cumulative anomaly degree variances, 
obtained using Equation (3) for gravity anomalies (panel (a) Figure 2). One may be tempted to use 
such a comparison in the selection of a GGM for geoid computation. However, since this approach 
does not take into account the differences in frequencies between terrestrial data and GGM, it may 
present a bias in the results and is thus not a good metric for the comparison of terrestrial data and 
GGMs. 

Figure 2. GGM inter-comparison and comparison with terrestrial data. The dashed lines in panels (a) 
and (b) are the cumulative RMSEs, while the solid lines represent the degree amplitudes. (a) Inter-
comparison of GGMs based on gravity anomaly; (b) Inter-comparison of GGMs based on geoid 
heights; (c) Comparison of terrestrial gravity anomaly and gravity anomalies computed from GGM; 
(d) Comparison of GPS/trigonometric heights with GGM geoid undulations. 

The Gaussian averaging function aims to filter terrestrial data for comparison with global 
models. The averaging process requires taking the mean of gravity anomalies within a certain radius, 

which is a function of the degree of expansion ( ). We have compared averaged free-air 

gravity anomalies with gravity anomalies computed from DIR-R5, EGM2008, GECO and TIM-R5 at 
d/o 90, 150, 200, 222, 234, and 250 (see Figure 3). Recall that the direct comparison of terrestrial and 
satellite gravity data (see panels (c) and (d) of Figure 2) does not take into consideration the varying 
frequencies, or as it were, assumes that the terrestrial data and satellite data have the same 
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(a) Inter-comparison of GGMs based on gravity anomaly; (b) Inter-comparison of GGMs based on
geoid heights; (c) Comparison of terrestrial gravity anomaly and gravity anomalies computed from
GGM; (d) Comparison of GPS/trigonometric heights with GGM geoid undulations.

We have decided to select the coordinates of the smoothed gravity anomalies to coincide with the
coordinates of the original data points as opposed to grid knots, as used in reference [5]. This decision
was partly influenced by the likelihood of errors arising from resampling the original data into a
grid. Nevertheless, one may circumvent the problem of interpolation errors (when grids are used)
by treating the GGM anomalies in exactly the same way as the ground-based anomalies. That is,
GGM gravity anomalies should be computed at the original data points and then gridded. This way,
any interpolation errors will be canceled out because of differencing. Notwithstanding, we note that
care should be taken in using grids as it may result in biased error estimates, particularly in cases
where data is scanty (and is slightly time-consuming).

Although the standard deviations for the different GGMs are quite close for the d/o under
consideration, EGM2008 recorded the smallest standard deviations for all d/o, while GECO came
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second in most of the d/o except 150 and 250 (Figure 3). DIR-R5 recorded the worst performances for
all d/o except 150 (see Table 1).
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Figure 3. Comparison between filtered gravity anomalies and GGM anomalies in mGal. Each row
represents a degree and order (d/o) of expansion, where row 1 (panels a–d) shows the values for d/o
90, row 2 (panels e–h) shows the values for d/o 150, row 3 (panels i–l) shows the values for d/o 200,
row 4 (panels m–p) shows the values for d/o 222, row 5 (panels q–t) shows the values for d/o 234, and
row 6 (panels u–x) shows the values for d/o 250. The columns represent the tested models arranged
from left to right as DIR-R5, EGM2008, GECO, and TIM-R5, respectively.

Table 1. Standard deviation of the smoothing process (mGal).

Model
Degree and Order

90 150 200 222 234 250

DIR-R5 7.907 5.832 6.430 5.975 6.408 6.952
EGM2008 7.890 5.821 5.870 5.590 5.751 6.332

GECO 7.903 5.867 6.325 5.902 6.004 6.706
TIM-R5 7.903 5.838 6.418 5.928 6.285 6.671

It should be noted that with the exception of EGM2008, the GGMs recorded better standard
deviations at d/o 150 than at 222. Needless to say, the differences between the standard deviations
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of the two-aforementioned d/o are small with negligible geoid error differences, i.e., the differences
between their error contribution to the geoid. For example, the effect of the difference between the
standard deviations of DIR-R5 at d/o 150 and 222 is a geoid error of 1.53 cm for an integration radius
of 100 km and latitudes 2◦ N, 6◦ N and 12◦ N, see Equation (2-433) of Ref. [1] (p. 127). Obviously,
for the computation of a centimeter-level accuracy, such a difference is significant.

Generally, lower degrees of truncation are preferred to match low resolution terrestrial gravity
data. However, it has been shown here that a degree and order must be carefully chosen to avoid the
risk of introducing larger errors. For example, the geoid error for a standard deviation of 7.907 mGal
for DIR-R5 at d/o 90 for an integration radius of 100 km and a latitude of 2◦ N is 80.8 cm and 61.1 cm
for a standard deviation of 5.975 mGal corresponding to d/o 222, a difference of almost 20 cm.

Clearly, these large errors suggest a poor quality of the terrestrial data, rather than the Gaussian
averaging function. It goes to emphasize why a precise geoid is presently impossible for Ghana and
why this work is important to provide an improved gravimetric geoid model.

Next, we compute gravimetric geoid models for all the GGMs and the degrees and orders
using Heck and Grüninger’s modification, e.g., [18] on a 5′ × 5′ grid. For the computation of the
zero-degree term, we use 62,636,856.00 m2·s−2 and 62,636,851.7146 m2 s−2 as the potentials on the
geoid W0 and WGS 84 ellipsoid U0 [1,22]. We validate these geoid models by first comparing them
with 11 GPS/trigonometric data in what is known as absolute validation, where the geoid heights
from the gravimetric geoid are compared with geometric geoid heights from GPS/trigonometric data
(NGPS = hP − HP).

The statistics of this comparison in Table 2 shows EGM2008 to be the best performing GGM for
the investigated d/o. In addition, the d/o 222 recorded the smallest standard deviations for all the
GGMs. As was expected, the d/o 90 gave the largest standard deviation reiterating the importance of a
carefully chosen degree and order over an assumed selection of a smaller d/o to match the resolution
of terrestrial data.

Table 2. Statistics of absolute validation of gravimetric geoid models using GPS/trigonometric data (m).

Statistics
Degree and Order

Models
90 150 200 222 234 250

Min −1.321 −1.246 −1.248 −1.216 −1.198 −1.245

DIR
Max 0.454 0.532 0.460 0.408 0.403 0.389

Mean −0.344 −0.373 −0.402 −0.430 −0.436 −0.449
STD 0.534 0.487 0.471 0.468 0.468 0.483
SEM 0.161 0.147 0.142 0.141 0.141 0.146
Min −1.329 −1.219 −1.192 −1.155 −1.160 −1.211

EGM2008
Max 0.452 0.537 0.486 0.445 0.474 0.479

Mean −0.348 −0.371 −0.382 −0.403 −0.390 −0.410
STD 0.534 0.482 0.460 0.457 0.460 0.464
SEM 0.161 0.145 0.139 0.138 0.139 0.140
Min −1.323 −1.243 −1.247 −1.223 −1.229 −1.236

GECO
Max 0.454 0.530 0.463 0.410 0.441 0.438

Mean −0.345 −0.374 −0.399 −0.425 −0.415 −0.436
STD 0.534 0.487 0.471 0.471 0.478 0.483
SEM 0.161 0.147 0.142 0.142 0.144 0.146
Min −1.322 −1.242 −1.241 −1.206 −1.206 −1.251

TIM
Max 0.455 0.531 0.463 0.406 0.412 0.421

Mean −0.344 −0.372 −0.401 −0.429 −0.433 −0.439
STD 0.534 0.487 0.470 0.466 0.469 0.486
SEM 0.161 0.147 0.142 0.141 0.141 0.147

In comparison to the previous geoid [6], with a standard deviation of almost 50 cm (0.497 m),
the geoid models computed at the tested d/o except d/o 90 in this work are an improvement. Selecting
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EGM2008 at degree 222 (Figure 4) gives an improvement of 8%, while the best performing satellite-only
model, TIM-R5, gives a 6% improvement at the same d/o.
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Next, we carried out a relative validation of the gravimetric geoid models (Table 3). This allows
for a sense of the measure of errors per km of leveling line. Given two points, A and B, on the surface of
the Earth at a distance sAB apart, the relative error is expressed in units of mm for every kilometer as:

ppm =

∣∣∆NGPS
AB − ∆Ngrav

AB

∣∣∣
sAB

(mm)

(km)
. (19)

Table 3. Statistics of relative validation of gravimetric geoid models using Equation (19). All values are
in meters.

Statistics
Degree and Order

Models
90 150 200 222 234 250

Min 0.104 0.031 0.056 0.256 0.030 0.018

DIR
Max 41.092 39.772 39.369 39.711 40.212 39.980

Mean 7.623 7.126 6.930 6.979 6.972 7.133
STD 8.342 8.365 8.515 8.379 8.537 8.639

Min 0.082 0.014 0.057 0.004 0.016 0.065

EGM2008
Max 41.107 39.675 38.845 38.474 38.674 39.371

Mean 7.620 7.075 6.807 6.842 6.824 6.858
STD 8.347 8.352 8.470 8.341 8.442 8.745

Min 0.102 0.062 0.030 0.245 0.008 0.042

GECO
Max 41.093 39.778 39.279 39.358 39.587 40.193

Mean 7.622 7.122 6.930 7.013 7.056 7.158
STD 8.342 8.364 8.514 8.353 8.488 8.735

Min 0.101 0.058 0.036 0.255 0.118 0.042

TIM
Max 41.090 39.791 39.243 39.731 40.086 39.779

Mean 7.623 7.123 6.922 6.947 6.974 7.117
STD 8.343 8.362 8.507 8.375 8.526 8.639
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To determine whether a leveling survey is acceptable, misclosures are compared with permissible
values on the basis of either number of setups or distance covered. Generally, the allowable misclosure
is given, in terms of distance as C = k

√
s, where C is the allowable loop or section misclosure in

millimeters, k is a constant and s the total length leveled in kilometers. Values for the constant k may
be 4, 5, 6, 8, and 12 mm for five classes of leveling specified as first-order class I, first-order class II,
second-order class I, second-order class II, and third-order, respectively, as proposed by the Federal
Geodetic Control Subcommittee (FGCS) of USA.

EGM2008 again gives the best performance with the smallest error at d/o 222. Thus, one is
expected to record an error of ±6.8 mm for every kilometer of leveling and for distances ranging
from 20 to 225 km, corresponding to the minimum and maximum distances, respectively, between the
GPS/trigonometric stations. It should be noted that the mean value of the errors for all models for d/o
222 meet the 8-mm level tolerance for second-order class II leveling.

4. Conclusions

We have shown in this study the importance of using a method for carefully selecting a GGM,
degree and order for the computation of a gravimetric geoid model in the RCR technique. We showed
that because terrestrial gravity anomalies and gravity anomalies computed from GGMs have different
wavelengths, a direct comparison might introduce biases. Thus, we suggested the extension of the
Gaussian averaging function, which takes into account the different frequencies of terrestrial and GGM
data for the selection of a degree and order and GGM for the long wavelength contribution in the RCR
technique. EGM2008 gave the best performance at all degrees and orders.

We verified the results from the Gaussian averaging function by computing geoid models
and comparing them with GPS/trigonometric data for the study area. The degree and order 222
was chosen as the optimal, resulting in an improved geoid model over the previous gravimetric
geoid. The EGM2008 geoid recorded a standard deviation of 0.457 m, an 8% improvement over the
previous model.

A relative validation of the geoid models reemphasized that the degree and order 222 and
EGM2008 were the optimal d/o and GGM. The d/o 222 EGM2008 gravimetric geoid model may be
used to replace second-order class II leveling for baselines between 20 and 225 km with an expected
error of 6.8 mm for every kilometer of the leveling line.

It is clear that while the quality of the terrestrial gravity data is low, an informed computation of a
gravimetric geoid model, e.g., the careful selection of an optimal GGM and degree of truncation, will
give improved results. The d/o 222 EGM2008 geoid has been named the Ghanaian Gravimetric Geoid
2017 (GGG 2017), and is available for the general user community through the geoid model repository
of the International Service for the Geoid (IGS) at http://www.isgeoid.polimi.it/.
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