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Abstract: The Veria-Naousa ophiolite represents a dismembered unit in north Greece, which includes
variably serpentinised lherzolite and harzburgite, locally intruded by a sparse network of dykes
or thin layers of websterite and olivine-orthopyroxenite composition. The websterite and the
olivine-orthopyroxenite show abundant petrographic and geochemical evidence (relic olivines with
mantle affinities, Cr-rich spinels, low Al2O3, depletions in incompatible elements, and concave
upwards rare earth element patterns) that they comprise replacive bodies from refractory subarc
mantle precursors. The occurrence of these pyroxenites in dykes implies that channelled percolation
of melts account for their replacive character. High CaO/Al2O3, low Zr and crystallisation of diopside
suggest that a melt of ankaramitic/carbonatitic composition percolated in lherzolite replacing
porphyroclastic olivine and forming the pyroxenes in the websterite. At a shallower level, harburgites
were impregnated by boninitic melts (inferred by U-shape rare earth element patterns and very
rich in Cr spinels) triggering the replacement of porphyroclastic olivine by orthopyroxene for the
formation of olivine-orthopyroxenite. These peritectic replacements of olivine commonly occur in a
mantle wedge regime. The peculiar characteristics of the Veria-Naousa pyroxenites with LREE and
compatible elements enrichments resemble the subarc pyroxenites of Cabo Ortegal implying a similar
environment of formation. Whole-rock and mineralogical (spinel and clinopyroxene) compositions
are also in favour of a backarc to arc environment. It is recommended that the evolution of the
Veria-Naousa pyroxenites record the evolution of the subarc region and the opening of a backarc
basin in a broad SSZ setting in the Axios Zone of eastern Greece.
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1. Introduction

Subduction-related and subduction-unrelated ophiolites [1] form in a variety of tectonic settings
including oceanic spreading centres, backarc and forearc basins, arcs and other extensional magmatic
settings including those in association with plumes [2–6]. The chemical composition of ophiolitic rocks
is commonly used for recognising a variety of different tectonic settings, as well as the nature of mantle
sources. The ophiolites that form as a result of subduction initiation processes host of a sequence of
igneous rocks formed by a magma source that changed progressively in composition by the combined
effects of melt depletion and subduction-related metasomatism [7,8].

Pyroxenites with variable modal contents of olivine, garnet and spinel, ranging in composition
from orthopyroxenite through websterite to clinopyroxenite are important constituents of the
upper mantle, usually forming veins, layers, or dykes in peridotites [9–12]. Mantle-derived
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pyroxenites also occur as xenoliths in alkali basaltic or kimberlitic lavas, commonly associated with
peridotites [13,14]. They are genetically diverse and may have formed initially in the mantle, the oceanic
or even in the continental crust. Usually, mantle pyroxenites are interpreted as precipitates from
asthenosphere-derived melts that passed through the lithospheric mantle [15]. A small number of
these formed as high-pressure, pyroxenitic cumulates [10,15]. This rock type is of great importance for
the genesis of mid-ocean ridge basalt [16], ocean-island basalt [17–19], and arc magmas [20]. Moreover,
pyroxenite may be the missing link to explain the imbalance between the compositions of continental
crust and primary arc magmas [21,22], therefore it may play a key role in global dynamic processes.

Numerous studies are associated with diverse pyroxenites, which are commonly distributed
in the upper mantle. These rocks do not only influence mantle heterogeneity but also act as
inferred source materials of ocean island arc and mid-ocean ridge basalts [23–26]. Pyroxenites
are considered to be a significant component in the Earth’s mantle, yet their genesis remains
controversial [27,28]. They can be “secondary” products of reaction between mantle peridotite and
infiltrating melts, which may be derived from recycled crustal components or from the melting of
ambient peridotite [18,29,30]. The genesis of mantle pyroxenites is divided into three categories:
high pressure cumulates from basaltic magmas passing through the mantle, solid-state remnants of
subducted oceanic crust and metasomatic products resulting from the interaction of pervasive melts
with mantle peridotites [18,21,31]. Modal mineralogy and primary mineral compositions of the upper
mantle pyroxenites are considered as a key to constrain the extent of partial melting, fluid phase
enrichment and mantle-melt interaction processes subsequent to melt extraction [32].

In this study, we present for the first time textural, petrographic, mineralogical and geochemical
features of mantle pyroxenites from the Veria-Naousa ophiolite aiming at constraining their genesis
and the geodynamic processes during their formation.

2. Geological Setting

Extensive fieldwork in the Veria-Naousa ophiolitic complex focused mainly on the distribution
and mode of development of the ophiolitic rocks, as well as their relation to the adjacent formations.
These rocks extend throughout the area between Veria and Naousa towns and belong to the Almopias
subzone of the Axios geotectonic zone, in northern Greece (Figure 1). They represent remnants of
oceanic lithosphere which were thrust from one or more ocean basins and have been obducted
onto Late Triassic-Jurassic platform carbonates of the Pelagonian Zone during Upper Jurassic
to Lower Cretaceous [33–37]. The ophiolite is a dismembered suite and includes, from base to
top, serpentinised lherzolite and harzburgite, intruded by a sparse network of pyroxenitic dykes,
as well as gabbro, diabase and pillow basalt. The serpentinised peridotites are intensely tectonised,
showing a dense network of joints. Rare rodingite dykes occur in the serpentinised ultramafic rocks.
Neogene to Quaternary sedimentary formations (conglomeratic limestone, breccia limestone, flysch)
lie uncomfortably on the ophiolite. A granite to granodiorite body, of unknown age, penetrates
serpentinised peridotites near the village of Trilofos (Figure 1). A cataclastic zone of diabasic fragments
and albitite veins is observed along the eastern contact of the ophiolite with the Pelagonian carbonate
rocks (Figure 1).

Pyroxenites are the least abundant rock units among the Veria-Naousa ultramafic section.
Websterite and Olivine-orthopyroxenite (Ol-orthopyroxenite) form tectonically disrupted dykes or
thin layers up to 1 m thick and a few tens of meters long, within serpentinised harzburgite. The small
sizes of the pyroxenite outcrops render their mapping difficult; hence, their occurrences are indicated
on the geological map with stars (Figure 1).
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Figure 1. Geological map of the Veria-Naousa region. Inset shows the geotectonic zones of Greece 
highlighting the Almopias, Paikon and Peonias (from west to east) subzones of the Axios zone; black 
rectangle shows the study area. 

3. Petrographic Features 

Pyroxenites show variable degrees of alteration and include two lithotypes: websterite and  
Ol-orthopyroxenite. 

3.1. Websterite 

The websterite presents generally porphyroclastic texture in places obliterated by secondary 
minerals. It consists of porphyroclasts of orthopyroxene and clinopyroxene, which are surrounded by 
neoblasts of orthopyroxene and clinopyroxene (Figure 2a,b). Overall, orthopyroxene (50–70 vol. %), 
clinopyroxene (20–40 vol. %), as well as minor olivine (<5 to 10 vol. %) percentages allow its classification 

Figure 1. Geological map of the Veria-Naousa region. Inset shows the geotectonic zones of Greece
highlighting the Almopias, Paikon and Peonias (from west to east) subzones of the Axios zone; black
rectangle shows the study area.

3. Petrographic Features

Pyroxenites show variable degrees of alteration and include two lithotypes: websterite
and Ol-orthopyroxenite.

3.1. Websterite

The websterite presents generally porphyroclastic texture in places obliterated by secondary
minerals. It consists of porphyroclasts of orthopyroxene and clinopyroxene, which are surrounded by
neoblasts of orthopyroxene and clinopyroxene (Figure 2a,b). Overall, orthopyroxene (50–70 vol. %),
clinopyroxene (20–40 vol. %), as well as minor olivine (<5 to 10 vol. %) percentages allow
its classification as websterite. Blebs and exsolution lamellae of clinopyroxene are observed in
orthopyroxene porphyroclasts. The clinopyroxene occurs either as subhedral tabular grains exhibiting
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sub-grain boundaries with orthopyroxene or as neoblasts at the rims of the subhedral clinopyroxene
(Figure 2a,b). Olivine generally occurs in the form of subhedral crystals. Variable amounts of secondary
serpentine, Cr-bearing chlorite, talc and Cr-magnetite were formed after orthopyroxene, olivine and
presumably spinel, during subsequent hydrothermal alteration (Figure 2b). Numerous serpentine veins
are observed within cracks and along grain boundaries of olivine, orthopyroxene and clinopyroxene.
In places, metasomatic garnet (Ti-andradite), clinopyroxene and rare magnetite developed in veins
crosscutting the rock.
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Figure 2. Textural characteristics of the pyroxenites from the Veria-Naousa ophiolite:
(a) photomicrograph of porphyroclastic orthopyroxene (opx) with lesser clinopyroxene neoblasts
(cpx2) with irregular shapes in a websterite (sample BE.6; Nicols +); (b) backscattered electron image of
subhedral clinopyroxene (cpx) surrounded by neoblastic clinopyroxene (cpx2), as well as secondary
serpentine (srp) and magnetite (mgt) in a websterite (sample BE.6; Nicols +); (c) photomicrograph of
porphyroclastic orthopyroxene (opx) and subhedral grains of chromite (chr) in an Ol-orthopyroxenite
(sample BE.28); (d) photomicrograph of porphyroclastic orthopyroxene (opx) with neoblasts of
clinopyroxene (cpx2) and chromite both subhedral and embayed (chr) in an Ol-orthopyroxenite (sample
BE.67B, Nicols +); (e) backscattered electron image of clinopyroxene neoblasts (cpx2) in orthopyroxene
(opx) in an Ol-orthopyroxenite (sample BE.67); and (f) backscattered electron image of a chromite (chr)
with lobate boundaries surrounded by orthopyroxene in an Ol-orthopyroxenite (sample BE.67B).
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3.2. Ol-Orthopyroxenite

The Ol-orthopyroxenite samples generally display a porphyroclastic texture and their primary
modal mineralogical composition includes orthopyroxene (70–80 vol. %), clinopyroxene (up to
5 vol. %), olivine (~10 vol. %) and Cr-spinel (5–10 vol. %) (Figure 2c,d). Rare Fe-Ni-Co sulphides
coexist with Cr-spinel. Orthopyroxene porphyroclasts (up to 2 cm long, Figure 2d) exhibit local kink
bands, undulatory extinction and frequent exsolution lamellae of clinopyroxene. Unstrained smaller
orthopyroxene and lesser clinopyroxene comprise a younger generation and are dispersed along
rims or enclosed in orthopyroxene porphyroclasts (Figure 2e). Two generations of Cr-spinel grains
occur: The first includes subhedral to anhedral magnesiochromites to chromites commonly with lobate
boundaries (Figure 2d,f). Infrequently, they form kelyphitic textures surrounded by orthopyroxene or,
more often, they occur along orthopyroxene grain boundaries. The second includes smaller subhedral
(rarely euhedral) magnesiochromite to chromite crystals (Figure 2c,d). Serpentine is the dominant
alteration product forming mesh and bastite textures; lesser amounts of chlorite, talc and magnetite
occur, as well.

4. Analytical Methods

The mineralogical and textural characteristics of the samples were studied in polished-thin
sections in polarising optical and scanning electron microscopes (SEM). Mineral microanalyses
were performed using a JEOL JSM-6300 SEM equipped with energy dispersive and wavelength
spectrometers (EDS and WDS) and INCA software at the Laboratory of Electron Microscopy and
Microanalysis, University of Patras, Greece. Operating conditions were accelerating voltage 25 kV and
beam current 3.3 nA, with a 4-µm beam diameter. The total counting time was 60 s and dead-time 40%.
Synthetic oxides and natural minerals were utilised as standards for our analyses. Detection limits are
~0.01% and accuracy better than 5% was obtained. Whole-rock chemical analyses for major and trace
elements were performed at Bureau Veritas Mineral Laboratories, Vancouver, Canada. Major element
analyses were carried out using an XRF spectrometer and a sequential spectrometer (ICP-ES). Trace
elements and rare earth elements were determined on totally digested samples by inductively coupled
plasma-mass spectrometry (ICP-MS) in the same laboratory. Detection limits for major and trace
elements range from 0.01 wt % to 0.04 wt % and from 0.01 ppm to 10 ppm, respectively. The analytical
precision calculated from replicate analyses is better than 3% for most major elements and better than
5% for trace elements.

5. Mineral Chemistry

5.1. Orthopyroxene

Orthopyroxene crystals in the analysed Ol-orthopyroxenite and websterite are enstatites with
relatively homogenous compositions (Table 1). The Mg# (= 100 × Mg/(Mg + Fe2+) in atoms per
formula unit) of the orthopyroxenes in the Ol-orthopyroxenite is lower (87.1–91.4) than the Mg# of
the orthopyroxenes in the websterite (90.5–92.5) (Figure 3a,b). The porphyroclastic enstatites in the
Ol-orthopyroxenite and websterite are generally richer in Al (with large overlap) and poorer in Ca
and Cr than the secondary enstatites (Figure 3a,b). Overall, the enstatites of the websterite have
higher amounts of Al2O3 (1.90–3.15 wt %) and lower FeO contents (4.84–6.17 wt %) than those in the
Ol-orthopyroxenite (0.28–2.03 wt % and 5.47–8.20 wt %, respectively) (Figure 3b). All orthopyroxenes
have low CaO (<3 wt %) and Cr2O3 (<0.95 wt %).

5.2. Clinopyroxene

Representative clinopyroxene analyses from the investigated websterite and Ol-orthopyroxenite
are listed in Table 2. They comprise diopsides with low Al2O3, Cr2O3 and particularly TiO2 contents
(Figure 3c,d). The neoblastic and the porphyroclastic diopsides in these pyroxenites form two
geochemically distinct groups. The porphyroclastic diopsides display lower contents in Ca and
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Fe, and higher contents in Al, and Cr, Mg and Mg# (Mg# is particularly true for the websterite only)
having mantle affinities (Figure 3c,d). Some clinopyroxene neoblasts show slight enrichments in Mn.
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Mg# in orthopyroxene; (b) Al2O3 vs. Mg# in orthopyroxene; (c) Al2O3 vs. Mg# in clinopyroxene and
(d) Cr2O3 vs. Mg# in clinopyroxene.

5.3. Olivine

Representative olivine analyses from the Ol-orthopyroxenite are listed in Table 3. Fo contents
range from 88.9 to 89.6, which are similar to Fo values of olivines from typical supra-subduction zone
(SSZ) peridotites (Fo = 87–94 [38]). We were unable to obtain reliable microanalyses from the websterite
due to extensive serpentinisation. The analysed olivines show a rather uniform composition, having in
particular, very similar FeO (9.75–10.46 wt %) and MgO (46.22–49.10 wt %) contents. NiO contents
are rather high ranging from 0.22 to 0.46 wt %, in the range of average NiO concentrations for mantle
olivines (0.25–0.51 wt % [39]).

5.4. Spinel-group Minerals

Representative analyses of spinel-group minerals are reported in Table 4 and plotted in Figure 4.
Anhedral and subhedral to euhedral crystals comprise two texturally different generations of spinels
in the Ol-orthopyroxenite. Both are magnesiochromites to chromites and show similar ranges of
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Mg# (28.1–54.4) and Cr# (= 100 × Cr/(Cr + Al), atomic ratios, 52.5–86.9). A number of analyses from
both generations cluster in the field of spinels occurring in boninitic basalts, whereas some others are
plotted mostly in the field of spinels from marginal basins basalts (Figure 4).
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Figure 4. Compositional variations of the spinel-group minerals from the Ol-orthopyroxenites of the
Veria-Naousa ophiolite: (a) Cr# vs. Mg# chemical classification diagram; (b) TiO2 vs. Cr# diagram [40–42];
(c) Al2O3 vs. TiO2 diagram [43]; and (d) Mg# vs. Cr# diagram (boninite field after [32], MORB, forearc
basin and backarc basin fields after [40]).

6. Whole-Rock Geochemistry

Major, trace and rare earth elements data from the pyroxenites from the Veria-Naousa ophiolite
are listed in Table 5 and their compositional variations are illustrated in Figures 5–7. One websterite
and three Ol-orthopyroxenite samples were analysed. Care was taken in screening the samples for
whole-rock analyses, as well as for the interpretations, as variable degrees of serpentinisation are
observed in the pyroxenites, therefore only the freshest samples have been considered. The websterite
has higher loss on ignition (LOI) (8.8 wt %) than the other orthopyroxenites (1.1–2.9 wt %) as a result
of its higher degree of alteration.

On a volatile-free basis, the Ol-orthopyroxenite samples are richer in SiO2 (Figure 5a) than the
websterite and are silica-hypersthene normative, as an indication for their chemical modification by
silica rich fluids. They show moderate Mg# ranging from 80.1 to 81.7 (Table 5). On a volatile-free
basis, the websterite is poor in Fe2O3 but it contains higher Al2O3 and expectedly higher CaO than the
Ol-orthopyroxenite (Figure 5b,c). It also shows the highest CaO/Al2O3 ratio (Figure 5d) and Mg# (87.9)
and has an olivine-hypersthene normative composition.
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All samples are poor in incompatible high field strength elements (HFSE) but, generally,
the websterite is the most depleted of all (Table 5). Ni contents vary strongly with the
Ol-orthopyroxenites having the lowest Ni values (81.3−655.0, Figure 6b, Table 5). The analysed
pyroxenites from Veria-Naousa show considerable geochemical similarities in terms of major and
some compatible and incompatible trace elements to pyroxenites from Cabo Ortegal (Figures 5 and 6).
The websterite and the Ol-orthopyroxenite are strongly depleted in REE, with many REE values
below detection limits. LREE in the websterite lie below their detection limits hence a general positive
fractionated REE normalised pattern can be inferred for this sample (Figure 7). The Ol-orthopyroxenites
are strongly depleted in middle REE showing enrichments in both LREE and HREE, resembling
rocks with concave upwards REE normalised patterns (Figure 7). These LREE enriched patterns are
similar to most of the well-known pyroxenite assemblages which show depletions in LREE relative to
HREE [27,45], and show considerable similarities to pyroxenites from Cabo Ortegal.
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Table 1. Representative electron microanalyses of orthopyroxenes from the Veria-Naousa pyroxenites (Porph.: porphyroclast, Neobl.: neoblast, -: below detection limit).

Sample BE.6-2 BE.6-7 BE.28-2 BE.28-4 BE.67-3 BE.67-17 BE.67-32 BE.67B-5 BE.67B-6 BE.67B-8 BE.67B-14

Rock-Type Webst. Webst. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop.
(wt %) Porph. Porph. Porph. Porph. Porph. Porph. Neobl. Neobl. Neobl. Porph. Porph.

SiO2 57.38 57.23 57.86 58.52 58.14 57.18 54.69 56.86 58.15 56.69 56.99
TiO2 - - - - - - - - - - -

Al2O3 2.18 2.61 0.51 0.41 0.87 0.79 0.76 0.82 0.81 0.81 1.40
FeO 5.87 5.45 6.10 6.63 7.18 7.73 9.07 5.54 5.95 7.37 7.38
MnO - - - 0.23 - - - - - 0.38 0.34
MgO 32.71 33.26 33.21 33.71 33.25 32.51 32.66 31.85 32.16 31.72 32.94
CaO 1.63 0.97 1.27 0.50 0.91 1.27 2.05 1.97 1.62 1.09 0.48

Cr2O3 - - - 0.29 - - - 0.45 0.45 0.29 0.40
Sum 99.77 99.52 98.95 100.29 100.40 99.48 98.32 97.49 99.14 98.35 99.93

Structural formula units based on 6 oxygens

Si 1.978 1.971 1.999 1.999 2.000 1.994 1.931 2.000 2.000 2.000 1.976
Aliv 0.022 0.029 0.001 0.001 0.000 0.006 0.000 0.000 0.000 0.000 0.024
Alvi 0.067 0.076 0.032 0.027 0.036 0.027 0.032 0.042 0.051 0.033 0.034
Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.107 0.000 0.000 0.000 0.000

Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Cr 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.013 0.012 0.008 0.011
Mg 1.681 1.707 1.721 1.727 1.706 1.690 1.719 1.677 1.664 1.668 1.703
Fe2+ 0.169 0.157 0.177 0.190 0.207 0.225 0.134 0.164 0.173 0.217 0.214
Mn 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.011 0.010
Ca 0.060 0.036 0.047 0.018 0.034 0.047 0.078 0.075 0.060 0.041 0.018
En 88.0 89.9 88.5 88.9 87.7 86.1 84.4 87.6 87.7 86.1 87.6
Fs 8.9 8.3 9.1 10.2 10.6 11.5 11.8 8.5 9.1 11.8 11.5
Wo 3.2 1.9 2.4 0.9 1.7 2.4 3.8 3.9 3.2 2.1 0.9

Mg# 90.9 91.6 90.7 90.1 89.2 88.2 87.7 91.1 90.6 88.5 88.8
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Table 2. Representative electron microanalyses of clinopyroxenes from the Veria-Naousa pyroxenites (Porph.: porphyroclast, Neobl.: neoblast, -: below detection limit).

Sample BE.6-12 BE6-13 BE.6-27 BE.6-58 BE.28-12 BE.28-13 BE.67-28 BE.67-21 BE.67B-1 BE.67B-4 BE.67B-9

Rock-Type Webst. Webst. Webst. Webst. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop.
(wt %) Neobl. Neobl. Porph. Porph. Porph. Porph. Porph. Neobl. Neobl. Neobl. Neobl.

SiO2 53.41 54.51 53.89 55.07 54.66 55.24 55.23 55.47 53.91 54.53 53.84
TiO2 - - - - - - - - - - 0.21

Al2O3 1.04 0.87 1.27 1.69 0.95 0.75 0.94 0.97 1.02 0.79 0.68
FeO 3.25 3.25 1.98 2.11 2.14 2.47 2.10 2.31 2.41 2.60 2.35
MnO - - - - - - - - 0.03 0.25 0.08
MgO 18.14 17.75 22.76 24.13 17.35 17.44 17.68 17.31 17.48 18.37 17.82
CaO 21.98 20.95 18.07 16.85 22.33 22.82 21.96 22.49 22.61 21.36 21.75

Cr2O3 0.69 0.77 - 0.61 0.60 0.74 - 0.57 0.49 0.51 0.32
Sum 98.51 98.10 97.97 100.50 98.03 99.46 97.91 99.12 97.95 98.41 97.05

Structural formula units based on 6 oxygens

Si 1.969 2.000 1.954 1.944 2.000 1.999 2.000 2.000 1.990 1.998 2.000
Aliv 0.031 0.000 0.046 0.056 0.000 0.001 0.000 0.000 0.010 0.002 0.000
Alvi 0.014 0.038 0.008 0.014 0.050 0.038 0.064 0.057 0.035 0.033 0.030
Fe3+ 0.000 0.000 0.038 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Ti 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006
Cr 0.020 0.022 0.000 0.017 0.017 0.021 0.000 0.016 0.014 0.015 0.009
Mg 0.997 0.973 1.230 1.270 0.950 0.944 0.966 0.937 0.962 1.004 0.987
Fe2+ 0.100 0.100 0.022 0.037 0.066 0.075 0.064 0.070 0.074 0.080 0.073
Mn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.008 0.003
Ca 0.868 0.826 0.702 0.637 0.879 0.888 0.862 0.875 0.894 0.839 0.866
En 50.7 51.3 61.8 64.5 50.1 49.5 51.0 49.8 49.8 52.0 51.2
Fs 5.1 5.3 3.0 3.2 3.5 3.9 3.4 3.7 3.9 4.5 3.9
Wo 44.2 43.5 35.2 32.4 46.4 46.6 45.6 46.5 46.3 43.5 44.9

Mg# 90.9 90.7 95.3 95.3 93.5 92.6 93.8 93.0 92.7 92.0 92.9
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Table 3. Representative electron microanalyses of olivines from Veria-Naousa Ol-orthopyroxenite (-: below detection limit).

Sample BE.28-2 BE.28-5 BE.28-6 BE.28-7 BE.28-8 BE.28-9

Rock-Type (wt %) Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop.

SiO2 41.55 42.73 42.55 41.34 42.62 41.40
TiO2 - - - - - -

Al2O3 - - - - - -
FeO 9.75 10.46 10.19 10.19 10.45 10.31
MnO - - - - - -
MgO 46.93 49.10 48.31 46.53 47.62 46.22
CaO - - - - - -

Cr2O3 - - - - - -
NiO 0.46 0.42 0.43 0.25 0.22 0.49
Sum 98.69 102.71 101.48 98.31 100.91 98.42

Structural formula units based on 4 oxygens

Si 1.029 1.019 1.025 1.029 1.032 1.030
Al 0.000 0.000 0.000 0.000 0.000 0.000
Ti 0.000 0.000 0.000 0.000 0.000 0.000

Mg 1.732 1.745 1.736 1.726 1.719 1.715
Fe2+ 0.202 0.209 0.205 0.212 0.212 0.215
Mn 0.000 0.000 0.000 0.000 0.000 0.000
Ca 0.000 0.000 0.000 0.000 0.000 0.000
Ni 0.009 0.008 0.008 0.005 0.004 0.010

Total 2.970 2.980 2.970 2.970 2.970 2.970

Fo 89.6 89.3 89.4 89.1 89.0 88.9
Fa 10.4 10.7 10.6 10.9 11.0 11.1
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Table 4. Representative electron microanalyses of spinel-group minerals from the Veria-Naousa Ol-orthopyroxenite (-: below detection limit).

Sample BE.28-2 BE.28-3 BE.28-4 BE.28-5 BE.28-6 BE.67B-9 BE.67B-14

Rock-Type Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop. Ol-Orthop.
(wt %) Chr Chr Chr Chr Chr Chr Cr-sp

TiO2 - - - - - 0.05 -
Al2O3 8.98 9.28 11.64 11.38 11.59 10.70 20.00
FeO 19.77 20.06 19.61 19.47 19.52 21.63 20.59
MnO 0.44 - - - - 0.46 -
MgO 9.57 9.41 10.11 10.84 10.77 8.72 11.49
K2O - - - - - 0.12 -

Cr2O3 61.67 60.09 57.89 57.46 58.97 59.47 48.72
NiO - - - - - - 0.18
ZnO - - - - - - 0.19
Sum 100.43 98.84 99.25 99.15 100.85 101.15 101.17

Structural formula units based on 3 cations

Al 0.351 0.368 0.452 0.441 0.442 0.410 0.731
Cr 1.616 1.597 1.510 1.493 1.509 1.545 1.195

Fe3+ 0.033 0.035 0.038 0.066 0.048 0.043 0.074
Ti 0.000 0.000 0.000 0.000 0.000 0.001 0.000

2.000 2.000 2.000 2.000 2.000 2.000 2.000
Mg 0.473 0.472 0.497 0.531 0.520 0.427 0.531
Ni 0.000 0.000 0.000 0.000 0.000 0.000 0.004

Fe2+ 0.515 0.528 0.503 0.469 0.480 0.555 0.460
Mn 0.012 0.000 0.000 0.000 0.000 0.013 0.000
Zn 0.000 0.000 0.000 0.000 0.000 0.000 0.004
K 0.000 0.000 0.000 0.000 0.000 0.005 0.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cr# 82.2 81.3 76.9 77.2 77.3 78.9 62.0
Mg# 47.9 47.2 49.7 53.1 52.0 43.7 53.6
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Table 5. Representative geochemical analyses of pyroxenites from Veria-Naousa ophiolite (-: below
detection limit).

Sample BE.6 BE.28 BE.67 BE.67B

Rock-Type Websterite Ol-orthopyroxenites

Major Elements (wt %)

SiO2 45.76 54.79 57.65 54.79
TiO2 0.01 - 0.02 0.02

Al2O3 1.84 0.66 1.03 1.30
Fe2O3

t 4.34 7.69 7.78 8.57
MnO 0.14 0.16 0.17 0.18
MgO 28.39 30.96 29.01 30.97
CaO 9.64 1.71 2.14 2.40

Na2O - - 0.02 -
K2O - - - -
P2O5 - - - -
LOI 8.8 2.9 1.2 1.1
Total 98.92 98.87 99.02 99.33

Trace Elements (ppm)

Cr 2812 3188 2901 3147
Co 66.7 75.4 66.4 69.8
Ni 1563.4 268.4 81.3 655.0
Cu 23.9 3.2 3.9 5.4
Zn 22 10 6 5
Rb 0.5 2.5 1.7 1.4
Sr 7.7 19.6 4.2 2.6
Y 0.4 0.3 0.3 0.2
Zr 0.1 0.3 0.5 0.4
Nb 0.1 - - 2.1
Pb 8.9 6.1 1.5 0.2
Ba 4 5 3 2
V 108 45 92 132
Sc 20 13 21 29
Ga 3.2 3.2 1.3 0.6
Hf - - - -
As - 0.6 - -
Hg - 0.01 0.02 -
Ta - - - -
Th - - - -
U - - - -
Be - 2 - -

Au (ppb) 2.3 3.3 2.2 -

Rare Earth Elements (ppm)

La - 0.5 0.7 0.4
Ce - 0.3 0.3 0.2
Pr - 0.02 0.03 -
Nd - - - -
Sm - - - -
Eu - - - -
Gd 0.05 - - -
Tb - - - -
Dy - - - 0.09
Ho - - - -
Er 0.06 0.03 0.03 0.06
Tm 0.01 - - -
Yb 0.09 0.07 0.06 0.06
Lu 0.02 - 0.02 0.01

Mg# 87.9 81.7 80.6 80.1
CaO/Al2O3 5.24 2.59 2.08 1.85

Zr/Y 0.25 1.00 1.67 2.00
La/Lu - 7.14 11.67 6.67
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7. Geothermometry

The equilibration temperatures for websterite and Ol-orthopyroxenite were determined using
two-pyroxenes (clinopyroxene-orthopyroxene) thermometry proposed by Wood and Banno [47]. Rim
composition of the coexisting mineral pairs has been used for geothermometry calculation. We selected
co-existing mineral phases for estimation of temperature. These co-magmatic mineral phases have
a well-defined common boundary with no evidence of alteration and similar Mg#, which indicate that
they have attained the equilibrium condition.

Two-pyroxene thermometry indicates equilibration temperature of 1136 ◦C for the websterite and
972–974 ◦C for Ol-orthopyroxenites (Table 6).

Table 6. Temperature (T ◦C) estimates on pyroxenites from the Veria-Naousa ophiolite.

Sample BE.6 BE.28 BE.67 BE.67B

Rock-Type Websterite Ol-orthopyroxenite

Opx-Cpx thermometry (◦C) Wood and Bano [47] 1136 972 974 974

8. Petrogenetic and Geodynamic Considerations

8.1. Origin of Ol-Orthopyroxenite and Websterite

Several lines of evidence suggest that the Ol-orthopyroxenite and the websterite are results
of melt-rock reaction. The occurrence of porphyroclasts of orthopyroxene and olivine with mantle
affinities in the pyroxenites suggests mantle peridotite precursors. Their highly depleted nature in
HFSE and the high Cr (and Ni in the websterite) contents strongly suggest a residual character for their
precursors, which must have been affected by plastic asthenospheric deformation. Spinel with lobate
boundaries is compatible with a dominant partial melting process, which is normally observed in
such residual peridotites. A harzburgite precursor appears most probable for the Ol-orthopyroxenite
whereas a residual lherzolite is more likely the precursor of the websterite, as inferred from the
presence of abundant diopsidic porphyroclast relics. This evidence is compatible with the host rocks
of the collected lithotypes. Microtextures, like interstitial orthopyroxene and clinopyroxene, as well as
subhedral to euhedral Cr-spinels are commonly related to melt-rock reactions and refertilisation [48,49].
Such a formation of orthopyroxene and clinopyroxene neoblasts involves two possible reactions, which
can describe the formation of the Ol-orthopyroxenite and the websterite, respectively:

forsterite + Si-rich melt→ enstatite + Si-poorer melt (1)

forsterite + melt 1→ enstatite + diopside + melt 2 (2)

The above reactions commonly involve the formation of an Al-rich phase, which, in the case
of the Veria-Naousa pyroxenites, is spinel and have been described in Archean cratons [29,50]
or subcontinental mantle regions such as the Lherz Mountains [51], Ronda [11,52,53] and Cabo
Ortegal [45,54]. However, quite recently, it was documented that such reactions producing two
pyroxenes after dissolution of olivine can also occur in abyssal pyroxenites [55]. Quantification
of the melt/rock ratio is a complicated task that involves a number of parameters, such as changes
in modal abundances and the trace element compositions of minerals and can be obtained with
confidence if an adequate number of samples is available. In the limited samples available in the
Veria-Naousa region, we can only provide qualitative estimations and we interpret that the rather rich
in olivine Ol-orthopyroxenites indicate a moderate melt/rock ratio whereas the websterite with limited
olivine suggest a higher melt/rock ratio, which is compatible with the much higher CaO/Al2O3 ratio
in the websterite.

Reaction (1), which causes Si metasomatism, frequently occurs in the mantle wedge. Natural
and experimental data reveal that Si-rich melts [56,57], or aqueous [58] or supercritical fluids [59]
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are released from the underlying subducted oceanic slab into the sub-arc region driving the
dissolution of mantle olivine and the neoformation of pyroxenes and Al-phases in a range of
pressures between 0.8 and 3.4 GPa [60–68]. Experimental results of Grant et al. [69] at 800 MPa
suggest that neoblasts of orthopyroxene and clinopyroxene form at a relatively narrow temperature
range of around 800 to 900 ◦C (with few exceptions up to 1100 ◦C). Topological conditions like the
existence of veins and the SSZ geotectonic environment proposed below (see Section 8.2) render
the conditions of the studied Veria-Naousa ophiolite comparable to those of Grant et al. [69] and
hence, our geothermometric calculations for the Ol-orthopyroxenites are consistent with the calculated
temperatures of these authors.

The metasomatic orthopyroxene and clinopyroxene are generally poorer in Al, but richer in
Ca relative to porphyroclasts whereas the metasomatic orthopyroxenes are richer in Cr relative to
the porphyroclasts in both rock-types. This behaviour of Ca and Cr is not in agreement with other
natural examples [61,70,71] and may imply percolation of a melt that was richer in Ca and Cr than
the pyroxenite’s precursors. Relic crystals with lobate boundaries and newly-formed, euhedral spinel
crystals in Ol-orthopyroxenite show a range of Cr# resembling spinels from both marginal basins and
boninitic basalts (Figure 4b–d). This evidence implies that apart from the crystallisation of spinels with
boninitic affinities, residual mantle spinels have also been modified by impregnation from a boninitic
melt. The mechanisms for formation and transformation of spinels in the upper mantle through a
necessary peridotite-melt reaction process were recently reviewed by Arai and Miura [72]. The elevated
Mg# of these rocks, as well as their high Cr and low Ti and Al abundances are compatible with an
imprint of a boninitic geochemical signature. This hypothesis is in agreement with the enrichments in
LREE and HREE in the REE patterns of the Ol-orthopyroxenites, as boninitic melts, which are typically
known to fractionate MREE, may have imprinted their REE signature on the investigated rocks
(Figure 7). Similar U-shaped REE patterns have been reported and modelled describing the nature of
melt/rock interactions in Greek and other ophiolites [73–77]. Several authors have attributed LREE
enrichments in ultramafic rocks to secondary events and particularly to serpentinisation (for a review
see [78]), however such a hypothesis is less likely, as the Ol-orthopyroxenites are the least altered and
no striking LREE enrichments are observed in any of the pyroxenites. The very low Al contents in the
neoblastic pyroxenes also support this hypothesis, as experimental data have shown that such crystals
form from hydrous melts with a low Al/Si ratio similar to boninites [79].

The websterite is the most LREE depleted pyroxenite showing however HREE contents similar to
the Ol-orthopyroxenite. This resemblance points towards a precursor with similar levels of depletion
for both rock-types, however the occurrence of clinopyroxene porphyroclasts along with the lower Cr
contents in the websterite indicate a more fertile character for its precursor, compatible with its host
refractory lherzolite. Both the websterite and Ol-orthopyroxenite show rather elevated CaO/Al2O3

ratios (5.24 and 1.85–2.59, respectively) with nevertheless a much higher ratio in the websterite. This is
a strong indication for the involvement of higher amounts of percolating magma in their origin.
Furthermore, CaO/Al2O3 ratios higher than 5 have been assigned to the interaction of peridotites
with carbonatite magmas [80], which commonly share their origin with ankaramitic magmas. It is
known that boninites and ankaramites have similar origins (both with highly magnesian olivine and
Cr-rich spinels) but they differ in that boninites include enstatite or bronzite whereas ankaramites
involve the crystallization of diopside [81,82]. Thus, the diopside neoblasts further advocate to the
incorporation of ankaramitic melts in the evolution of the websterite. It has been documented that
such a process may result in depletions of Zr and reduction of Zr/Y ratios [83–85] similar to the
studied websterite, which shows lower Zr and Zr/Y ratio than the Ol-orthopyroxenite (see Table 5).
However, no primary carbonates have been observed that would further support this hypothesis. The
high Mg# of the neoblastic pyroxenes suggests crystallisation from a nearly primitive magma, which
may also account for the whole-rock high Mg# and Ni of the websterite. High pressure (>1.5 GPa)
melting of refractory lherzolites or clinopyroxene-bearing harzburgites is required and can be triggered
from variations in the CO2 and H2O contents in the mantle wedge, which may have been fluxed
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from the subducted Pelagonian sediments [86,87], to produce carbonatitic or picritic-ankaramitic
melts [88–90]. Ankaramitic melts are highly magnesian as boninites and are produced at around
1300–1350 ◦C, at 40–70 km depth [90]. The calculated temperature of 1136 ◦C for the websterite does
not contradict such an ascending, percolating melt, which had slightly cooled prior to the interaction
with the wall-rock peridotite. Ankaramitic melts are generally enriched in incompatible elements.
The low amounts of incompatible elements in the websterite can be explained by the late quantitative
imprint by H2O-rich fluids, which are poor in these elements. This is a common process in subarc
mantle, as demonstrated by Green et al. [90]. We recommend that these melts may have subsequently
differentiated to the boninitic melts, which impregnated harzburgite, perhaps at a higher level, to form
the Ol-orthopyroxenite. This is a process similar to what has been proposed for the pyroxenites of
Cabo Ortegal [54].

Koloskov and Zharinov [91] have proposed a multivariate statistical diagram of clinopyroxene
compositions in ultramafic and mafic rocks discriminating tectonic zones of clinopyroxenes in
equilibrium with garnet (zones I and II), spinel (zones III and IV) and plagioclase (zones V, VI and VII).
Despite that the statistical treatment has been questioned by Buccianti and Vaselli [92] other authors
have tested the validity and argue for the significance of this diagram, even though a precise setting of
different clinopyroxene origins may not be well enough established [45]. The analysed clinopyroxenes
from both the Ol-orthopyroxenite and the websterite plot in the field of island arc peridotites (Figure 8)
with the first being moreover very similar to clinopyroxenes from the Izu Bonin Marianna forearc
peridotites. This is compatible with the replacive character of the Veria-Naousa pyroxenites and their
genesis in a mantle wedge or sub-arc setting.
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− 2.26Na2O + 8.0; and P2 = 0.93TiO2 + 0.07Al2O3 + 1.23Cr2O3 − 0.46FeO + 1.74MnO + 0.36MgO +
0.10CaO− 1.66Na2O + 8.0. Fields: I, peridotite xenoliths in kimberlites; II, eclogites and pyrope-bearing
pyroxenites in kimberlites; III, spinel peridotites; IV, spinel pyroxenites; V, island arc peridotites; VI,
island arc pyroxenites; and VII, plagioclase-bearing xenoliths in volcanic rocks from island arcs. Data
sources: island arc and mid-ocean ridges [91]; Izu-Bonin-Mariana forearc [93]; Ronda pyroxenites [94];
Mid-Atlantic Ridge Kane Fracture Zone (MARK area [95]).



Geosciences 2017, 7, 92 18 of 23

8.2. Tectonic Setting

Unzoned pyroxenes occur in the pyroxenites from the Veria-Naousa ophiolite, which may indicate
slow cooling during crystallisation. It is believed that the slowly cooling, unzoned minerals are
indicative of crystallisation in a high-pressure environment [96]. The existence of highly magnesian
olivine, pyroxene neoblasts and the absence of plagioclase are in line with high pressure crystallisation
of basaltic melts [97]. Al contents of the clinopyroxenes and orthopyroxenes in both lithologies are
compatible with formation in a SSZ regime. The compositions of the magnesiochromites-chromites
in the Veria-Naousa pyroxenites vary widely in Cr# and Mg#, and have low TiO2 contents showing
affinities similar to boninitic or backarc forming spinels. This evidence is in agreement with the
composition of the clinopyroxenes in these pyroxenites that have affinities analogous to crystals from
arc peridotites.

The REE patterns of the Ol-orthopyroxenite provide further evidence for their impregnation from
boninitic melts (Figure 7). The enriched in Al2O3 and relatively poor Mg# nature of the analysed
pyroxenes in the Ol-orthopyroxenites can be explained from the influence of metasomatic impregnation
from fluids generated in a supra-subduction zone setting (Figure 4a,c) [98]. The low TiO2 content in
the clinopyroxene from websterite and Ol-orthopyroxenite is interpreted as the result of crystallisation
from a Ti-poor magma, similar to that typically generated in SSZ settings [6].

9. Conclusions

New occurrences of websterite and Ol-orthopyroxenite have been discovered in the Veria-Naousa
ophiolite. The precursor of the websterite is a more fertile clinopyroxene-bearing lherzolite.
Geochemical signatures imply that it was formed from the replacement of olivine from two
pyroxenes, induced by the channeled flow of a nearly primitive ankaramitic/carbonatitic melt.
The Ol-orthopyroxenites are replacive formations after a harzburgitic precursor with the progressive
replacement of olivine by orthopyroxene, induced by channelled flow of boninitic melts, perhaps at
a higher level than the websterite. The evolution of both the Ol-orthopyroxenite and the websterite
is attributed to the mantle wedge of a sub-arc region. We recommend that the occurrence of the
pyroxenites record the evolution of the mantle wedge and the opening of a backarc basin in the region
of the Axios (Vardar) Ocean in the region of the Veria and Naousa.
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