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Abstract: We present a new method for gravity data inversion for the linear problem (reconstruction
of density distribution by given gravity field). This is an iteration algorithm based on the ideas of
local minimization (also known as local corrections method). Unlike the gradient methods, it does
not require a nonlinear minimization, is easier to implement and has better stability. The algorithm
is based on the finite element method. The finite element approach in our study means that the
medium (part of a lithosphere) is represented as a set of equal rectangular prisms, each with constant
density. We also suggest a time-efficient optimization, which speeds up the inversion process.
This optimization is applied on the gravity field calculation stage, which is a part of every inversion
iteration. Its idea is to replace multiple calculations of the gravity field for all finite elements in
all observation points with a pre-calculated set of uniform fields for all distances between finite
element and observation point, which is possible for the current data set. Method is demonstrated
on synthetic data and real-world cases. The case study area is located on the Timan-Pechora plate.
This region is one of the promising oil- and gas-producing areas in Russia. Note that in this case we
create a 3D density model using joint interpretation of seismic and gravity data.

Keywords: inverse problem; 3D density model; joint interpretation

1. Introduction

Our main goal is to construct a stable method of big gravity data inversion which has to be
three-dimensional. The usual approach to find a volumetric density distribution is forward gravity
modeling. One changes an initial model in interactive way to diminish gravity residuals. However,
such a forward modeling approach cannot solve the non-uniqueness and the instability of gravity
data inversion.

Our method of inversion follows the procedure of Cordell and Henderson [1]. A solution is
calculated from gravity data automatically by successive approximations, without a time-consuming
trial-and-error process. We apply a different approach to form a successive approximation. Moreover,
we take into account instability of the inverse problem by means of a sort of regularization. The method
is based on a fast forward modeling algorithm (to calculate the gravity effect of a volumetric density
distribution); the initial 3D density model is deduced from independent geophysical studies to
converge towards a solution; the representation of the sought density in the form of multiplicative
function; sustainable adaptive algorithm for solving linear inverse problem.

The process for constructing density models based on gravity field anomalies contains two
major blocks: forward modeling by forward gravity problem solving, and gravity data inversion
(inverse gravity problem solving). High-efficiency algorithms for solving the forward gravity problem
are required, not only for forward modeling, but also for successful iterative inverse problem
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solving schemes. Gravity inverse problems are a classic example of ill-posed problems: generally,
their solutions are neither unique nor sustainable [2]. Stable and informative inverse gravity problem
solutions can be obtained by iteratively calculating small deviations to the initial density distribution.

Initial density distribution is a model that we build before the gravity modeling stage. Such models
can be constructed using seismic data, such as deep seismic sounding data (DSS). Two-dimensional
seismic profiles form the 3D carcass of the model. Space between profiles is filled with the interpolated
data using technique, as described by Martyshko et al. [3].

Discretization for the interpolation is done by gridding to regular 3D grid. Each cell is a rectangular
prism with constant density. We adopt a finite elements method (FEM) to work with such volume.
This means that the gravity field of the whole model is calculated as a sum of gravity fields of all
elements. Closed form solution for rectangular prism gravity field is well-known [4,5] Currently,
FEM is one of the most used methods for forward modeling. For recent studies one can refer to, e.g.,
Mostafa [6], who studied a particular case of FEM with cubic elements, and Couder-Castañeda et al. [7],
who performed an optimization of method by parallelization on a cluster. However, they use a small
grid size: models containing around 10,000–15,000 prisms in each study. For detailed regional models,
we need methods that can handle millions of (and sometimes even more than a 1 billion) elements
in a reasonable time. In this case, one cannot rely on parallelization only. Modification of algorithm
itself is required to lower its complexity. Also, there are recent studies that are targeted at elements of
non-equal size: e.g., Dubey and Tiwari [8] approximate surface with a set of vertical laminas; also they
provide closed form for full gravity and gravity gradient tensor components for bodies of different
shapes. Li and Oldenburg state [9] that FEM can also be a stage in iterative potential field inversion.
We adopt the same approach.

The correct 3D gravity problem solution depends on the mass continuation outside the model
volume technique. We cannot simply consider that density is zero everywhere outside the study
volume and, thus, ignore it. Since we need to solve the inverse problem, a calculated field should have
a similar structure as the observed one. The observed field is an anomaly field, which is produced
by density increase and decrease relative to a background density value. To make a calculated field
structure similar to this, we need to preselect some background density distribution. Without a priori
information, the mean density value may be a good approximation for the background density. In this
paper, we use background density, which only depends on the depth. We obtain this value by averaging
the density values inside every horizontal layer of interpolated model. The approach is similar to the
one of Cai and Wang [10]. Each horizontal layer is one FEM cell thick.

2. Methods

2.1. Forward Gravity Calculation for a Model with FEM

Using a right Cartesian coordinate system, let D be the rectangular parallelepiped area filled with
masses of density ρ(x, y, z):

D = [ xmin; xmax) × [ymin; ymax) × [ zmin; zmax) . (1)

Let
→
r = (x, y, z) ∈ D denote a position vector of a point in D. Let Q = (ξ, η, ζ) /∈ D be the point

of gravity field calculation with position vector
→
q = (ξ, η, ζ). In this notation the vertical component

of gravity field g calculated at Q is

g(Q) = γ
∂

∂ζ

∫
D

ρ(
→
r )∣∣∣→r −→q ∣∣∣dxdydz, (2)

where γ is the gravitational constant.
A grid-approximation of the parallelepiped density function, ρ(x, y, z), has the 3D grid

{
xi, yj, zk

}
(xi < xi+1, yj < yj+1, zk < zk+1, x0 = xmin, xNx = xmax, y0 = ymin, yNy = ymax, z0 = zmin, zNz = zmax),



Geosciences 2018, 8, 373 3 of 16

which constructs elements Dk
i,j. Element of this three-dimensional grid and its spatial position is

presented on Figure 1.

D = ∪
i,j,k

Dk
i,j; i ∈ 0, Nx − 1; j ∈ 0, Ny − 1 ; k ∈ 0, Nz − 1

Dk
i,j = [ xi; xi+1) ×

[
yj; yj+1

)
× [ zk; zk+1) ,

(3)

so the density is a constant for every element:

ρ(x, y, z) = ρk
i,j, (x, y, z) ∈ Dk

i,j. (4)
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Figure 1. Element of grid approximation Dk
i,j and its projections.

All Dk
i,j parallelepipeds have the same dimensions, so xi = x0 + i∆x, yj = y0 + j∆y, zk = z0 + k∆z,

∆x > 0, and ∆y > 0, ∆z > 0.
Gravity field of a prism with unit density and up to gravitational constant can be calculated with

closed form solution formula [4] as

Gk
i,j(Q) = −υ

(→
r −→q

)∣∣∣∣∣∣∣
xi+1

xi

∣∣∣∣∣∣∣
yj+1

yj

∣∣∣∣∣∣∣
zk+1

zk

. (5)

here Gk
i,j(Q) is the gravity effect of the prism Dk

i,j calculated at a point Q and υ(
→
a ) is an expression

υ(
→
a ) = ax ln(ay + |

→
a |) + ay ln(ax + |

→
a |) − azarctg( axay

az |
→
a |
). In our case,

→
a =

→
r − →q , so ax = x − ξ;

ay = y− η; az = z− ζ, |→a | =
√
(x− ξ)2 + (y− η)2 + (z− ζ)2.

And the full gravity field of area D is a sum of fields of prisms

g(Q) = γ
Nx−1

∑
i=0

Ny−1

∑
j=0

Nz−1

∑
k=0

ρk
i,jG

k
i,j(Q). (6)

here, ρk
i,j is the density value for the element Gk

i,j.
Representing the solution in the form of (5) and (6) allows the field calculation algorithm for the

layer to be optimized between arbitrary depths.
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In practice, it is convenient to calculate gravity field on a flat surface. In this case, all Q points
are located on a single plane. Rectangular grid can be given on this surface. Let this grid be oriented
similarly to D and parallel to the D upper face plane. We also assume that the grid step between nodes
is ∆x and ∆y. Thus, a set, τ, of all field calculation points can be specified as follows: τ = (

→
q m)

M−1
m=0 ,

→
q m =

(
ξi1, ηj1, ζ

)
, ξi1 = ξ0 + i1∆x, ηj1 = η0 + j1∆y, ζ /∈ (zmin; zmax), i1 ∈ 0, Mx − 1, j1 ∈ 0, My − 1,

m = i1 + Mx j1, M = Mx My.

2.2. Inverse Gravity Problem for Layered Media Model (Density Calculations Using Known Field Values)

The 3D density ρ(x, y, z) calculations in an inhomogeneous area, D, based on field values, g(ξ, η, ζ),
specified for the point set τ, were implemented by inversion of integral operator on the right hand side
of the (Equation (2)); g is a known function as measurements. Mathematically speaking, such a problem
is ill posed and its solution depends heavily on small variations in the initial field data, g. However,
if we select the density class with only lateral density variations, the determination of the density
distribution in the horizontal layer will be stable [11].

We examined the density for an inhomogeneous parallelepiped with vertical thickness H as
a product that only depends on a depth function, ρ0(z) and Φ(x, y):

ρ(x, y, z) = ρ0(z)Φ(x, y) (7)

We assume ρ0(z) is known from the logging data or may be approximated by some kind of the
initial model analysis. Building a grid analogue (4) of the multiplicative density, ρk

i,j, on the partitioning,{
xi, yj, zk

}
, yields ρ0(z) = ρk

0, z ∈ [ zk; zk+1) ; Φ(x, y) = Φi,j, (x, y) ∈ [ xi; xi+1) ×
[

yj; yj+1
)

,
i ∈ 0, Nx − 1, j ∈ 0, Ny − 1, k ∈ 0, Nz − 1. The field of layered parallelepiped was calculated on
a flat surface ζ = 0. We regroup summands with neighbor indices k and k + 1 in sum of (Equation (6))
using the primitive (5):

g
(
ξi1, ηj1, ζ

)
= gi1,j1 = γ

Nx−1

∑
i=0

Ny−1

∑
j=0

Φi,j

Nz−1

∑
k=0

∆ρk
0Gk

i1,j1,i,j, (8)

where ∆ρk
0 is the difference between the background densities for the k and k− 1 horizontal layers:

∆ρk
0 = ρk

0 − ρk−1
0 , k ∈ 1, Nz − 1 and ∆ρ0

0 = ρ0
0, ∆ρNz

0 = −ρNz−1
0 , Gk

i1,j1,i,j = Gk
i,j
(
ξi1ηj1ζ

)
.

To lower the number of the indices in the direct problem operators of (Equation (8)) we introduced
the continuous indexing of the density parallelepiped vertical columns: n = i + jNx, n ∈ 0, (Nx Ny − 1)
and field calculation points: m = i1 + Mx j1, m ∈ 0, (Mx My − 1). If Nx = Mx, Ny = My, only one
field calculation point (m-th) is located above every density column with index n. We suppose these
conditions are further satisfied. For the function Φi,j = Φn of two variables we have a linear system
of equations:

γ
M−1

∑
n=0

Φn

Nz−1

∑
k=0

Gk
m,n∆ρk

0 = gm (9)

where Gk
m,n is the 3D integration tensor; ∆ρk

0 is the density increment in depth; Φn is the unknown
lateral density change; gm = g

(
ξi1ηj1ζ

)
is observed at a height ζ gravity field value at m-th point.

The value γ ∑Nz
k=0 Gk

m,n∆ρk
0 in (Equation (9)) may be regarded as coefficient for the Φn.

From a physical point of view, it represents the gravity field of a vertical column, Dn, which is
constructed from Dk

n elements with densities ρk
0:

Gm,n = γ
Nz

∑
k=0

Gk
m,n∆ρk

0. (10)
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The problem of determination of density distribution reduces to a linear equation system [12]
Gm,nΦn = gm. The Gm,n matrix forms from the convolution (10) of the integration tensor with
an increment vector and was only calculated once. Any vector of unknowns, Φn, reduces the 3D
parallelepiped field calculations to a trivial matrix vector production operation:

gm =
M−1

∑
n=0

Gm,nΦn. (11)

2.3. Inverse Problem Solution Iteration Algorithm

We propose a sustainable adaptive method for solving linear equation systems (11) based on the
local corrections method [13–16]. However, the original method was created for the reconstruction
of boundary surface position. We use it for the density refinement. The method uses the local
one-dimensional density distribution model. In our case this means that gravity field income for m-th
point gm depends only on density distribution in m-th column Dm. Income from all other columns is
ignored for this point.

Consider Equations (8) and (11) for forward gravity calculation as formulas for model field
calculation at the points of set τ = (

→
q m)

M−1
m=0 on the level of Earth surface: U

(
ξi1, ηj1, 0

)
= Um.

The difference between observed gravity field and the calculated gravity field is the error for inverse
problem calculation:

δgm = gm −Um = gm −
M−1

∑
n=0

Gm,nΦn, (12)

where Φn is the constant density of the n-th model column. Then we build an iteration algorithm δgm

calculation. Let δg(θ)m be the difference between fields (12) after θ iterations:

δg(θ)m = δg(θ−1)
m − δU(θ)

m = δg(θ−1)
m −

M−1

∑
n=0

Gm,nδΦ(θ)
n . (13)

This algorithm is based on consequential independent reduction of the remaining δg(θ) fields at
every field calculation point. This reduction was performed by changing δΦ(θ)

n for the vertical density
column Dn. If we assume that the field in point Qm was produced by the nearest Dm column mass
only and is independent of other columns, then we have only one summand (n = m) in a sum in (13):

δg(θ)m = δg(θ−1)
m − Gm,mδΦ(θ)

m . (14)

Therefore, the value δΦ(θ)
m = δg(θ−1)

m /Gm,m can be selected as the Φm correction for the θ-th
iteration to a first approximation.

By δΦ(θ)
m variation the field variation at every point is calculated

δU(θ)
m = U(θ)

m −U(θ−1)
m =

M−1

∑
n=0

Gm,n

Gn,n
δg(θ−1)

n . (15)

Adding Φ(θ−1)
m to δΦ(θ)

m at every field calculation point we obtain density distribution on θ-th
iteration: Φ(θ)

m = Φ(θ−1)
m + δΦ(θ)

m ; model field is calculated as U(θ)
m = U(θ−1)

m + δU(θ)
m . Difference (12)

between observed and model field on θ-th iteration δgθ
m = gm −Uθ

m is the error of the field picking.
The stopping condition is the desired accuracy ε achievement:

‖δg(θ)‖ =
√

∑M−1
m=0

(
δg(θ)m

)2
< ε. (16)
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However, iteration schemes constructed this way generally diverge (‖δg(θ)‖ increases) because
the ceteris paribus for the contribution of Dm to the model field at Qm can be less than the final
accumulation of gravity fields of all of the other columns, D\Dm. Reducing the square ∆x∆y of the
partitioning cell in the 0xy plane increases the divergence because lim

∆x∆y→0
‖U(Dm)‖ = 0, and ‖U(D)‖

does not depend on ∆x∆y. Assuming δΦ(θ)
m = δg(θ−1)

m /Gm,m, we assigned all of the field δg(θ−1)
m

values to column Dm to overestimate the lateral density correction: lim
∆x∆y→0

|δΦ(θ)
m | = ∞. To prevent

this overestimate, we assumed δΦ(θ)
m = α(θ)

δg(θ−1)
m

Gm,m
+ β(θ) for every iteration. α(θ) and β(θ) are common

to all columns {Dm}M−1
m=0 . The field discrepancy at each point is

δg(θ)m = δg(θ−1)
m − α(θ)δU(θ)

m − β(θ)Gm, (17)

where Gm = ∑M−1
n=0 Gm,n is the field for the entire parallelepiped D with Φ(x, y) ≡ 1 calculated at

→
q m.

α(θ) and β(θ) were selected from the minimum condition, ‖δg(θ)‖:

α(θ) = 1
Q(θ)

(
M−1
∑

m=0
(Gm)

2 M−1
∑

m=0
δg(θ−1)

m δU(θ)
m −

M−1
∑

m=0
GmδU(θ)

m
M−1
∑

m=0
Gmδg(θ−1)

m

)
β(θ) = 1

Q(θ)

(
M−1
∑

m=0

(
δU(θ)

m

)2 M−1
∑

m=0
Gmδg(θ−1)

m −
M−1
∑

m=0
GmδU(θ)

m
M−1
∑

m=0
δg(θ−1)

m δU(θ)
m

)
Q(θ) =

M−1
∑

m=0
(Gm)

2 M−1
∑

m=0

(
δU(θ)

m

)2
−
(

M−1
∑

m=0
GmδU(θ)

m

)2

(18)

In summary, we rewrote the main iteration algorithm stages for selecting {Φm}M−1
m=0 values

to minimize the discrepancy between the observed and model fields ‖δg‖. First, the model field,
U(0)

m , and “remaining” field, δg(0)m = gm −U(0)
m , are calculated from the initial approximation model.

Assuming Φ(0)
m = 0, cyclically repeat the following steps for θ ≥ 1 iterations:

1. Calculate δU(θ)
m by Formula (15).

2. Calculate α(θ) and β(θ) using Formula (18).

3. Calculate δg(θ)m from (17).

4. Calculate δΦ(θ)
m = δΦ(θ−1)

m + βθ + αθ δg(θ−1)
m

Gm,m
.

5. Check the stopping conditions: when ‖δg(θ)‖ =
√

∑M−1
m=0

(
δg(θ)m

)2
< ε (i.e., the desired accuracy

of ε achieved) or δg(θ) is constant (because the selection has stabilized); if no condition is met,
continue with the next iteration, by incrementation θ + 1.

ρ0(z) = ρk
0, z ∈ [ zk; zk+1) ; Φ(x, y) = Φi,j, (x, y) ∈ [ xi; xi+1) ×

[
yj; yj+1

)
, i ∈ 0, Nx − 1,

j ∈ 0, Ny − 1, k ∈ 0, Nz − 1

After executing the density distribution cycle, ρ(x, y, z) = ρk
0Φ(θ)

i,j , z ∈ [ zk; zk+1) ; Φ(x, y) = Φi,j,

(x, y, z) ∈ [ xi; xi+1) ×
[

yj; yj+1
)
× [ zk; zk+1) , i ∈ 0, Nx − 1, j ∈ 0, Ny − 1, k ∈ 0, Nz − 1, approximates

(up to a constant) the difference, δg(θ), between the observed and initial modeled field. Therefore,
adding this distribution to the initial model yields a density model with a field that is closer to the
observation with an error of ‖δg(θ)‖.

2.4. Speed Optimization of Calculations with Forward Problem Formula

Idea of optimization is to replace absolute coordinate values in formulas with relative shifts. To do
this we transform Equation (6) into a vector form. The difference

→
r −→q represents a vector between
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observation and calculation points. It does not contain information about absolute coordinate values

anymore. Denote
→
r

k
i,j =

(
xi, yj, zk

)
and reveal in (6) Gk

i,j using Formula (5):

g(Q) = −γ
Nx−1

∑
i=0

Ny−1

∑
j=0

Nz−1
∑

k=0
ρk

i,j

(
υ(
→
r

k+1
i+1,j+1 −

→
q )− υ(

→
r

k+1
i,j+1 −

→
q )− υ(

→
r

k+1
i+1,j −

→
q ) + υ(

→
r

k+1
i,j −

→
q )

− υ(
→
r

k
i+1,j+1 −

→
q ) + υ(

→
r

k
i,j+1 −

→
q ) + υ(

→
r

k
i+1,j −

→
q )− υ(

→
r

k
i,j −

→
q )
) (19)

Combining the summands with indices i, i + 1; j, j + 1 and k, k + 1 at
→
r

k
i,j yields (by the analogy

with the derivation of Equation (8))

g(Q) = −γ
Nx
∑

i=0

Ny

∑
j=0

Nz
∑

k=0
υ(
→
r

k
i,j −

→
q )(ρk−1

i−1,j−1 − ρk−1
i−1,j − ρk−1

i,j−1 + ρk−1
i,j − ρk

i−1,j−1 + ρk
i−1,j

+ρk
i,j−1 − ρk

i,j) = γ
Nx
∑

i=0

Ny

∑
j=0

Nz
∑

k=0
ρk

i,jυ(
→
r

k
i,j −

→
q ),

(20)

assuming ρk
i,j = 0 when i = −1∨ i = Nx ∨ j = −1∨ j = Ny ∨ k = −1∨ k = Nz.

Formula (19) requires υ to be calculated 8Nx NyNz times, while Formula (20) only requires
(Nx + 1)

(
Ny + 1

)
(Nz + 1) calculations, which provides an almost eightfold calculation time reduction

for a sufficiently large dimension N = Nx × Ny × Nz.
For the next optimization, we can write a formula for T set of g values calculated using τ set

points located in the nodes of the uniform rectangular 2D grid of M = Mx ×My size.

T =
(

g
(→

q m

))M−1

m=0
= γ

(
Nx−1

∑
i=0

Ny−1

∑
j=0

Nz−1

∑
k=0

ρk
i,jG

k
i,j(
→
q m)

)M−1

m=0

(21)

Calculating T using Formula (21) requires υ be calculated 8MN times. Applying optimization
(20) yields:

T = γ

(
Nx

∑
i=0

Ny

∑
j=0

Nz

∑
k=0

ρk
i,jυ

(
→
r

k
i,j −

→
q m

))M−1

m=0

. (22)

Using this formula, the υ values only need to be calculated M(Nx + 1)
(

Ny + 1
)
(Nz + 1) times.

However, the specified τ in the vector set
→
r

k
i,j −

→
q m exhibits significant overlap and only a single

υ calculation is needed:
→
r

k
i,j −

→
q m = (x0 + i∆x− (ξ0 + i1∆x), y0 + j∆y− (η0 + j1∆y), zk − ζ) =

(x0 − ξ0 + (i− i1)∆x, y0 − η0 + (j− j1)∆y, zk − ζ). Introducing new indices i2 = i − i1,i2 ∈
1−Mx, Nx, j2 = j− j1, j2 ∈ 1−My, Ny and denoting υk

i2,j2 = υ(x0 − ξ0 + i2∆x, y0 − η0 + j2∆y, zk − ζ)

allows (22) to be rewritten as

T = γ
Nz

∑
k=0

(
Nx−i1

∑
i2=−i1

Ny−j1

∑
j2=−j1

ρk
i1+i2,j1+j2υk

i2,j2

)M−1

m=0

. (23)

So υ only needs be calculated for (Nx + Mx)
(

Ny + My
)
(Nz + 1) points, which is two orders of

magnitude less than using (21) and (22). Notably, there is a possible program implementation for
(23) that does not require storing the set

{
υk

i2,j2|i2 ∈ 1−Mx, Nx, j2 ∈ 1−My, Ny, k ∈ 0, Nz

}
in memory.

On-the-fly calculations of these elements reduce the memory usage without affecting the performance.
The offered direct problem solution method has two advantages compared to the

parallelepiped-based one (Equation (6)): (1) the symmetry of the τ set with respect to partition D is
not required (i.e., the conditions x0 − ξ0 = ∆x

2 lx, y0 − η0 = ∆y
2 ly, lx ∈ Z, ly ∈ Z, Nx = Mx, Ny = My

are not needed); (2) Equation (23) is two times faster than using Equation (6) even theoretically
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(and practice indicates larger N values yield larger speed advantages) because the “1st step” of
Equation (6) calculates the set

{
Gk

0,0
(
ξi1, ηj1, ζ

)
|i1 ∈ 0, Nx − 1, j1 ∈ 0, Ny − 1, k ∈ 0, Nz − 1

}
(described

in 1) conditions, which requires 8Nx NyNz calculations of v, while (23) under the same conditions
requires only 4Nx Ny(Nz + 1) calculations.

3. Results

3.1. Forward Gravity Problem

To evaluate the speed improvement when using the optimized method (23) in comparison
with the unoptimized calculation using formula for the gravity field of prism (6), a series of field
calculations were performed for 3D density grid models with different element counts, grid sizes and
field point calculation counts. The partitioning parameters and calculation times are presented in
Table 1. The extra RAM column shows the amount of memory, which is needed to store 64-bit floating
point υ values for all possible shifts. The same memory area may be reused when precalculating
values for the next layer, therefore its total amount is relatively small. Calculation time is presented for
a single core of Intel Xeon E5-2620 CPU (2.5 GHz). The corresponding graphs are shown in Figure 2.
As can be seen, even for small discretization 50× 50× 50, the difference between the non-optimized
and optimized methods is two orders of magnitude. This difference tends to become larger with
discretization elements increase.

Table 1. Dependence between the calculation time and partitioning parameters.

Nx = Mx Ny = My Nz N = Nx*Ny*Nz
Calculation Time Using

Formula (6), Seconds
Calculation Time Using
Formula (23), Seconds

Extra RAM Used
for (23), Kb

50 50 50 125,000 227 10 80
75 75 75 421,875 1725 36 178
100 100 100 1,000,000 7269 84 316
125 125 125 1,953,125 22,183 165 492
150 150 150 3,375,000 55,197 284 708
175 175 175 5,359,375 119,304 451 963
200 200 200 8,000,000 232,602 673 1256
250 250 250 15,625,000 709,844 1313 1961
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3.2. Linear Inverse Problem Algorithm Test

To evaluate the linear inverse problem solution algorithm iteration efficiency, we considered
an example of an inhomogeneous density distribution model. The D area is the parallelepiped
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D = 50× 50× 10 km3 with two objects: a centered, near-surface piece, D1 = 20× 20 × 2 km3,
with a density of ρ1 = −1.0 g/cm3, and a deeper piece, D2, with the same size and a density of
ρ2 = 2.0 g/cm3. The upper face for D1 is located at a depth of 2 km; the upper face for D2 is
6 km. The model and field calculation point partitioning grid were selected using the conditions
Nx = Ny = Nz = Mx = My = 50; therefore, ∆x = ∆y = 1 km and ∆z = 0.2 km. Points
of field calculations are located above the center points of partition elements: xi − ξi = ∆x/2,
and yj − ηj = ∆y/2. As the “observed” field gm we took as the calculated field of the model.
Direct calculation using Formula (6) was performed. Mean value was subtracted from the field, so
it was centered at zero for convenience (Figure 3). The average density distribution for the model D
is shown in Figure 4. Averaging is performed for all horizontal layers of model area D. We used the
result of this averaging as the known ρ0(z).

Figure 5 shows the solution for the linear inverse problem (density calculation for a given field).
Figure 5a was obtained using a priori density distribution information (Figure 4); Figure 5b was
calculated for ρ0(z) ≡ 1. Both solutions satisfy the field gm with relative errors below 1% and were
stable for the selecting parameter. The calculation time for the 50× 50 grid was below 2 min after
12 iterations.Geosciences 2018, 8, x FOR PEER REVIEW  9 of 15 
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The solution shown in Figure 5a agrees well with the initial 3D model (Figure 3). The recovery
error was 10% for the near-surface piece, D1, and 15% for the lower piece, D2. The solution in Figure 5b
was not acceptable because the obtained density was a different order of magnitude than the initial
model density and contained both positive and negative densities at all depths.

Now we demonstrate how the solution is changed when different ρ0(z) functions are used.
The following two examples show what happens with the structure of the result if average density
value for the layer, which contains one of the objects, is not set.

Figure 6a presents background density change, in which the lower object is absent. The result
of inverse problem solution in this case contains only one object. Despite its geometry is, in general,
close to the geometry of the upper object of the model, the density values differ considerably.
Both positive and negative density values were obtained. These density values belong to an interval
(−1, 0.5) g/cm3.Geosciences 2018, 8, x FOR PEER REVIEW  11 of 15 
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Figure 6. Synthetic example modification #1: (a) Background density distribution ρ0(z) and (b) Linear
problem inverse solution, which is based on it.

In Figure 7a the background density distribution with removed information on the upper object
is shown. The result of the inverse problem solution (Figure 7b) is obtained as mutually compensating
masses with positive and negative density values, which are changed abruptly. This happens because
the algorithm inverts the highly variable model field at relatively large depth. Density values are
contained in an interval (−56.8, 34.1) g/cm3 range, which is physically meaningless.
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The following two background density distributions contain information on both objects, but the
position of these objects is changed. In first example, initial density change ρ0(z) defines objects as being
located without any space between them (Figure 8a). The inversion result is shown in Figure 8b. It is
visible that objects are located closely one to another. However, to compensate an elevation of masses
with positive density value, the additional masses with negative densities appeared. The density
values in resulting model belong to an interval (−2.1, 2.2) g/cm3.
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Figure 8. Synthetic example modification #3: (a) Background density distribution ρ0(z) and (b) Linear
problem inverse solution, which is based on it.

For the last synthetic example modification, we increase the depth of objects in the initial density
change by 5 km (Figure 9a). The result of inversion (Figure 9b) has features that are similar to
modification #2 (Figure 7). The effect of mutual compensation of the masses is visible in both resulting
objects. The density values are changed in an interval (−50.3, 79.5) g/cm3. This differs significantly
from the density change of the initial model.
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Thus, invalid selection of the initial localization of the masses dramatically reduces stability of
the inverse problem solution. The wrong initial model can lead to the unstable solution with abrupt
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density change, which generates mutually compensating gravity anomalies. This is not a feature of
our inversion method only. Such an effect is defined by the ill-posed nature of inversion problem
formulation. This is why the gravity modeling process should be preceded with the selection of
reasonable limitations, which help to stabilize the solution and keep the physical and geological
meaning of the model. Definition of the background density ρ0(z) is one such limitation. Our goal
was to demonstrate that even if the gravity field of the model has a complex morphology produced
by objects superposition, the good selection of the background density still allows one to restore the
density distribution in a form, which is close to the initial model.

3.3. Case Study

In order to test the feasibility and efficiency of our original approach, we apply it to the
Timan-Pechora region’s crust and upper mantle. The interpretation of the results is beyond the
goal of this work and will be held in a future article.

The study area is located at the boundaries 60–67◦ N and 48–62◦ E with a depth down to 80 km
from the Earth surface level. Figure 10 shows the observed gravity field in Bouguer reduction.
Position of deep seismic sounding (DSS) profiles is drawn in red color. These profiles were used to
construct the initial density model approximation. Space between profiles was filled with interpolated
data [3] (Figure 11a).
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Figure 10. DSS profile scheme with a map of a gravity field anomaly in the Bouguer reduction. Profiles:
(1) Agat-2, (2) Quartz, (3) Globus, (4) Syktyvkarskii, (5) Rubin-1, and (6) Krasnoleninskiy.

The model was discretized on a regular 256 × 256 × 80 grid for a field discretization of 256 × 256
(using linear interpolation of 1:1,000,000 scale maps). The field discrepancy of the observed and initial
model fields was 18.5 mGal in terms of standard deviation. The ρ0(z) distribution using this method
obtained from the modeled average density based on depth (Figure 12). The selection process ended
after 76 iterations, which took 304 s on NVidia GTX 980 using the CUDA-optimized implementation of
the algorithm, and the resultant density distribution model was obtained (Figure 11b). The observed
and modeled field discrepancy was 0.1 mGal, as chosen for the stopping condition.
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4. Conclusions

A new method has been suggested to invert the 3D gravity data. The method is based on a rapid
algorithm for calculating the gravity effect of a volumetric density distribution, the initial 3D density
model deduced from additional geophysical information, the selection of the density class at which
the solution is determined stably, and the rapid stable algorithm for solving linear inverse problem.

The following conclusions are drawn. A new rapid algorithm has been suggested to calculate the
gravity effect of a volumetric density distribution. The method of local corrections is developed to
solve a linear gravity inverse problem. We solve an integral equation for the multiplicative function
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determining a volumetric density distribution. We take into account the instability of the inverse
problem by means of a form of regularization.

This method is favorable to analogues because of its lower CPU and memory resource usage.
The performance was increased due to the use of a single antiderivative computation using equal
arguments, which are repetitive because the field and grid have regular structures. Using the idea
of local minimizations with the new iteration algorithm allowed for an adaptive regularization to
be developed for sustainably solving 3D linear inverse gravity problems. Unlike gradient methods,
this technique does not require a nonlinear minimization, is resistant to observed field fluctuations,
is easier to implement and reaches the target discrepancy in less time. The presented methods were
integrated into a computer geophysical data interpretation system and used to solve actual seismic and
density modeling problems. The 3D density model was obtained automatically without interactive
forward modeling, which dramatically diminishes the time expenditure. The linear inversion algorithm
efficiency was demonstrated using test and practical examples, a geophysical model of the Earth’s crust
and upper mantle was constructed for extensive portions of the Timan-Pechora plate. We emphasize
that these models were based on joint interpretation of geophysical data.
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