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Abstract: Digital particle image velocimetry records high resolution images and allows the
identification of the position of points in different time instants. This paper explores the efficiency of
the digital image-technique for remote monitoring of surface velocity and discharge measurement
in hyper-concentrated flow by the way of laboratory experiment. One of the challenges in the
application of the image-technique is the evaluation of the error in estimating surface velocity.
The error quantification is complex because it depends on many factors characterizing either the
experimental conditions or/and the processing algorithm. In the present work, attention is devoted
to the estimation error due either to the acquisition time or to the size of the sub-images (interrogation
areas) to be correlated. The analysis is conducted with the aid of data collected in a scale laboratory
flume constructed at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospace
and of Materials Engineering (DICAM)—University of Palermo (Italy) and the image processing
is carried out by the help of the PivLab algorithm in Matlab. The obtained results confirm that the
number of frames used in processing procedure strongly affects the values of surface velocity; the
estimation error decreases as the number of frames increases. The size of the interrogation area also
exerts an important role in the flow velocity estimation. For the examined case, a reduction of the size
of the interrogation area of one half compared to its original size has allowed us to obtain low values
of the velocity estimation error. Results also demonstrate the ability of the digital image-technique to
estimate the discharge at given cross-sections. The values of the discharge estimated by applying the
digital image-technique downstream of the inflow sections by using the aforementioned size of the
interrogation area compares well with those measured.

Keywords: digital particle image technique; surface velocity; remote monitoring; experiments

1. Introduction

Accurate knowledge of flow discharge is of crucial importance especially for hydrologist and
fluvial geomorphologists. In a context of a changing climate, significant hazards associated with
both floods and debris or mud flows occur more and more frequently, causing significant changes in
topography and river morphology [1].

Traditional techniques usually are based on current-meter measurements (from bridges or set
across the channel width) and on the linking of water depth with the discharge through the rating
flow velocity curve. Due to the limited accuracy of the current-meter, more modern and accurate
instruments, such as Acoustic Doppler Velocimeters (ADV), are also used to measure distribution [2,3].
But, the use of the aforementioned measurement techniques presents many practical difficulties and
requires long acquisition times. In particular, Acoustic Doppler Velocimeters require water depths
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that limit their use in shallow water flows. For this reason, these techniques are essentially limited
to low flow conditions inducing high uncertainty in rating curve extrapolation for higher stages. In
fact, high flow conditions, characterized by high velocities, large water depths, and high sediment
concentrations do not permit the use of the traditional measurement equipment and are not safe for
operators because flow depth can significantly change and high flow velocities and floating debris
occur [3].

Thus, in recent years, many efforts have been made both to develop techniques capable of
providing reliable velocity measurements under challenging conditions and to identify alternative
methods to estimate water discharge. As an example, some researchers [4–6], based on the application
of the entropic concept, suggested to evaluate the mean flow velocity, and de facto the discharge,
through the information of the surface velocity, with the great benefit of having quick measurement
and high safety for the person involved in measurement. Other researchers have suggested to associate
the information of surface velocity with the water level information, leading the estimation either of
the depth-averaged velocity value by applying the dimensionless logarithm law [7] or of the water
discharge [8].

In such a context, in the last decade, because of improvement of computing capabilities,
image-based techniques have been increasingly used for surface velocity measurements in field [7–10]
and in laboratory channels [11–14].

The advantages of image-based techniques compared to traditional techniques are essentially
related to the fact that they are non-intrusive and allow obtaining simultaneous spatial information
about the instantaneous velocity components also in unsteady flows [7]. Thus, it is possible to yield a
large amount of data in a rather short measuring time and to calculate simultaneously the average
values for identical spatial windows over many images. Consequently, quantitative measurement of
fluid velocity vectors at a very large number of points could be obtained simultaneously and with a
very low cost [15–17].

In field applications, large scale PIV (LSPIV) technique has been used to measure the surface flow
velocities especially in complex situations such as at junctions between channels or around hydraulic
structures [8–18]. In laboratory channels, the conventional PIV technique has been especially used to
estimate surface velocity in very small water depths which make the use of direct measurements with
traditional equipment impractical [19].

There are some differences between field and laboratory applications of imaging technique [20].
Large scale PIV (LSPIV) covers larger field of view and uses more inexpensive (even natural)
illumination devices than conventional PIV [18]. Furthermore, if the flow is dense enough, the
objects carried by it could be used as traceable patterns so that artificial seeding is required only when
few natural tracers are visible at the surface of the flow. In this case, the tracers need to be larger
than the resolution of one pixel to be followed, while in laboratory PIV applications, flow is seeded
with microparticles. Thus, recently, image techniques have been also used for hyper-concentrated
flows also in laboratory channels [21,22]. The high density of the natural grains allows an easier
application of the PIV procedure with natural tracers but, since the granular material is non-transparent,
the measurements inside the flow are generally impossible so that the laser sheets are inadequate
to illuminate the particles and alternative lighting systems, such as halogen lamps, have to be
used [22]. Pudasaini et al. [23,24] employed flashes, Sheng et al. [25] used halogen lamps powered by
a flickering-free ballast, Sarno et al. [26–28] employed a high-brightness no-flicker LED lamp.

The application of image-based techniques in hyper-concentrated flows is still matter of debate,
especially in relation to the opportunity to use moving grains as natural tracers and to the identification
of the acquisition time determining adequate number of images to be processed.

From the aforementioned, it is clear that, especially in LSPIV applications, appropriate analyses
and processing procedures have to be used in order to obtain quantitative information by applying
image-based techniques [22,29]. One of the challenges in the application of image-techniques is the
determination of the error in estimating surface velocity. The error quantification is complex and it



Geosciences 2018, 8, 383 3 of 17

depends on many factors characterizing either the experimental conditions and/or the processing
algorithm used. Because of the practical difficulties and the complexity of the required equipment in
field applications, performing investigations in a controlled environment, such as the laboratory, is
often preferred.

Many works have been conducted in order to analyze errors arising from the experimental
conditions and measured flow. Very few works have focused attention on errors caused by the
processing method. Huang et al. [30] highlighted that two major errors could arise in processing
procedure. One error could be related to the quality of images and is due to the background noise
(always present in images). This error is a random function of time and space and causes differences
between the two patterns; this error is generally corrected (or reduced) by an image pre-processing
procedure [31]. Another error could occur from insufficient data (see also in [26]) which could be due
either to a lack of flow tracers or to poor quality images or, since velocity measurements are performed
in a specific range, to the acquisition frequency and/or the acquisition time which determine the
number of images to correlate. Another cause of error could be related to the size of the particle
imaging pattern matching (or of the interrogation area) in a pair of images to correlate. This error
occurs when particles imaged in the first image are not found in the second image (the so-called “out
of-pattern-motions”—see [31,32]).

Thus, the accuracy of the results could be affected either by the number of frames to be processed
or by the dimension of the interrogation area. It is quite difficult to isolate which parameter is more
restrictive for the accuracy of the imaging technique.

In the present paper, the aforementioned parameters (i.e., the number of frames to be processed
and the dimension of the interrogation area) are considered and the efficiency of the digital
image-technique for remote monitoring of surface velocity and discharge in hyper-concentrated
flow is studied. The analysis is conducted in a scale flume with a complete installation to record a high
number of images with a high-precision camera. The novelty of the presented analysis is related to the
fact that the experiments have been conducted under controlled laboratory conditions but with images
acquisition conditions similar to those generally adopted in the field [9,22]. This allows us to analyze
the efficiency of the procedure varying the flow characteristics and the sediment concentrations more
easily than in the field. In previous works, the recorded images were used to analyze the influence
of the geometrical parameters on the hyper-concentrated flow propagation [33], to explore the utility
of the PIV technique and to compare the accuracy of results obtained by using artificial tracers with
those obtained by using natural tracers conveyed by the stream [34,35]. In the present paper, the PIV
technique is applied (by the help of PivLab code 1.32 in Matlab [36–38]) by considering natural floating
tracers and the specific aims are twofold: (1) to investigate the error in free surface velocity estimation
with respect to the number of frames to be processed and to the dimension of the interrogation area;
(2) to verify the applicability of the procedure to evaluate the flow discharge through the comparison
with discharge estimates by using an ultrasonic instrument. The experimental apparatus and the
estimation procedure are described in Section 2; the sensitivity analysis and the discharge estimation
are presented in Section 3. Finally, conclusions are drawn in Section 4.

2. Materials and Methods

2.1. Experimental Apparatus and Conditions

An experimental program has been recently conducted at the Hydraulic laboratory of the
Department of Civil, Environmental, Aerospace and of Materials Engineering (DICAM)—University
of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a
defense channel. A series of experiments was conducted in a 1:35 scale flume reproducing the defence
channel under construction in a small urban area of Messina’s territory (Italy). Such a defence channel
was designed after a huge rainfall in 2009 that mobilized large amount of sediments causing damages
and death. The experimental apparatus is shown in Figure 1. As Figure 1 shows, the main channel
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includes three inflow channels denominated respectively as I1, I2, and I3. The bed is concrete and
the channel’s walls are Plexiglas strips. The channel’s width is equal to 23 cm in the reach between
section 1 and section 15 (see Figure 1c) and it is equal to 17 cm from section 18 until the last section of
the channel.
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Figure 1. Experimental apparatus: (a) Render; (b) Plane-view of the images covering the examined
channel; (c) Examined transversal sections.

During the experiments, the water–sediment mixture was recycled through a pump located in the
downstream reservoir. The water–sediment mixture was obtained by using field sediments (medium
sediment diameter d50 = 2 mm) and it includes sediment particles with diameter ranging between
1 × 10−1 mm and 2 × 10−3 mm. The sediment concentration varied in the range 10%–50%. During the
experiments, the inflow discharge was measured both upstream of the inflow channels and in peculiar
sections (sections 4, 5, 11, 12 of Figure 1c) along the channel by using the ultrasonic instrument
Mainstream EH7000 (by Endress + Hauser S.p.a.). In the present work, attention is focused on
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experimental runs conducted with sediment concentration of around 50% and values of the discharge
at inflow channels respectively equal to QI1 = 0.004 m3/s, QI2 = 0.00135 m3/s, QI3 = 0.00174 m3/s.

2.2. Acquisition and Processing Methodology

The PIV technique consists of four steps: (1) recording images; (2) pre-processing, which allows
the improvement of the information to be taken from the images; (3) evaluation, which allows the
application of the cross-correlation algorithm; (4) post-processing, which allows the interpretation
of results. The processing procedure was carried out by the help of the PivLab algorithm in Matlab.
A high speed camera (AOS Technology AG) was used to record the flow motion. In order to reproduce
conditions similar to those in field, the images were acquired either by natural lighting or by using
halogen lamps opportunely positioned to obtain a homogenous illumination [35,39]. Preliminary runs
were conducted in order to set illumination conditions and to select the rate of the acquisition frequency
as function of the camera’s characteristics and the number of images to cover the channel. During the
preliminary runs, the streamwise velocity component was also measured at some control points
opportunely selected along the channel by using an acoustic velocity profiler (DOP2000 by signal
processing s.r.l.). Finally, the illumination system consisted of 7 halogen lamps distributed along the
boundaries of the channel’s area and positioned above the channel at an adequate height so as to have
a homogeneous and diffused illumination on the surface without shadows or light reflections [40];
another halogen lamp (type ARRI 2000W with filter lens and electric ballast) centered upon the channel
and collocated on the top of the camera was also used (see Figure 2).
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Figure 2. (a) Scheme of the halogen lamps’ locations; (b) Scheme of images acquisition system.

As described in detail in [38], a rate of 600 frames per second with image resolution of
640 × 240 pixels (px) was chosen and 22 images were considered to cover the examined channel
reach (see Figure 1b). In order to maintain a constant optical cone width, the camera was placed on a
plane parallel to the channel’s bed and centered upon the channel at a constant distance of 1.5 m from
the bed. Furthermore, both target points and reference meters were positioned on the bed and on the
channel’s walls for the geometrical correction of the images. The target points and the reference meters
were used to apply the calibration and rectification toolbox for MATLAB and to calibrate the length
scale of the images. It was estimated that 1 px ∼= 1.2 mm.

During the experimental run, the particles of the water–sediment mixture were considered as
natural tracers for the PIV analysis. For each image, a sequence of frames was recorded by means of
the high-speed camera. The number of recorded frames per image ranged between 4800 and 6000.
Then, artificial tracers consisting of insoluble and floating wooden particles of 10 mm in diameter and
3 mm high were released into the hyper-concentrated flow. The artificial particles were painted with
yellow phosphorescent color in order to ensure their visibility. Once these particles were released in
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the hyper-concentrated flow, sequences of images were again recorded at constant time intervals by
means of the high-speed camera. This allowed us to track the particles trajectories at different times.
The information obtained by using the artificial seeding were used in the pre-processing step in order
to eliminate some errors before correlation process, to remove peculiar anomalies from the considered
dataset [32] and to calibrate the pre-processing camera settings [34,35]. For the calibration, the values
of flow velocity components previously measured by using the acoustic velocity profiler during the
preliminary runs were also used. A high-pass filter was applied to remove the background signal [36]
and the FFT window deformation was considered. For each image, the region of interest (ROI) was
identified by excluding the pixels external to the flow field domain.

To apply the PIV method, each frame was thought as an independent sample of the velocity
field and the statistical sampling theory was applied. According to previous works [7,31], the most
probable displacement of a group of particles travelling on a straight line between two consecutive
images was determined by applying the spatial cross-correlation method [41]. Each pair of frames was
cross-correlated in order to obtain the most probable particles displacement in small sub-images (called
as interrogation areas, IA). The correlation was operated between the interrogation area centered on
a point aij in the first image and the interrogation area centered on a point bij in the second image
recorded with a time δt as [30]:

C(m, n) = ∑
i

∑
j

IA1(i, j)IA2(i−m, j− n)

where IA1 and IA2 are, respectively, the interrogation areas in the first and in second image of a single
exposed image pairs. The maximum peak location in C(m,n) indicates the particle displacement.
The velocity vectors are derived from these displacements by dividing them by δt.

This procedure was iteratively applied for the whole image by the help of the PivLab algorithm
in Matlab. The PivLab algorithm considers pairs of images temporally consecutive by recognizing the
lighting intensity reflected by each particle into the flow over time. The cross-correlation is estimated
by the fast Fourier transform (FFT) in multi-pass correlation mode [35]. In particular four passes have
been used. This means that the estimation of particle’s displacement depends both on the number of
frames considered and on the resolution of the recorded images.

Finally, the velocity vectors were estimated in nodes of a regular rectangular mesh, identified in
the ROI of each image, whose size depends on the spatial resolution (dimension) of the interrogation
area (IA).

2.3. Surface Velocity Estimation by PIV Method

For each pair of frames, and thus for each corresponding instant tf, the flow velocity components
[vx(tf) and vy(tf)] with respect the orthogonal local reference system (x, y), were determined with the
PivLab Tool, as described in the previous Section 2.2. The application of the digital procedure allowed
us to estimate, for each image, the distribution of the surface velocity vectors, the stream lines and the
vorticity patterns at each time tf. As an example, Figure 3 reports the streamlines superimposed over
the images and the velocity vectors superimposed over the vorticity contour maps at time tf = 5 s for
images 10, 13, and 20.
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Figure 3. Streamlines superimposed over the images and velocity vectors superimposed over the
vorticity (1/s) patterns: (a) Image 10; (b) Image 13; (c) Image 20.

For simplicity of exposition, these images have been selected to explain some of the obtained
results because they are characterized by equal number of recorded frames and they are located in
peculiar positions along the channel. In fact (see Figure 1b), image 10 is located along the straight reach
downstream of the inflow I1, images 13 and 20 are located slightly downstream of inflow I2 and inflow
I3, respectively; both the images 13 and 20 refer to curved channel stretches and the image 20 includes
also the reach characterized by variable width. From Figure 3 it can be observed that the flow field
estimated in sections 13 and 20 reveal the effect of confluence of the inflows I2 and I3 and free surface
perturbations generated by turbulence eddies forming downstream the confluences occur. It should be
noted that the velocity values reported in Figure 3 have been estimated in 1160 nodes/frame.

In the present work, interest is especially devoted to the time-averaged velocity. Thus, by using the
time-series of vx(tf) and vy(tf), the corresponding time-averaged components (vx, vy) were determined
for each node of the regular mesh identified as a function of the selected spatial resolution of the

interrogation area. Then, the resultant time-averaged velocity of intensity v =
√

v2
x + v2

y was estimated.

3. Results and Discussion

3.1. Estimation Error

From the “Introduction” and the results reported in previous works [34,35], it is clear that both
the number of frames (which depends on the acquisition time selected) and the dimension of the
interrogation area (on which the extension of the data sample depends) could influence the accuracy
of the results. The measurement points are nodes of a regular mesh whose dimension depends on the
dimension of the interrogation area and a high dimension of data sample could determine modeling
processes too much time-consuming.
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In order to perform the sensitivity analysis of the estimated surface velocity values to the number
of pairs of frames, for all the recorded images, the velocity components vx(tf) and vy(tf) have been
calculated in each node of the rectangular mesh, corresponding to a fixed dimension of the interrogation
area, by considering six values of the total number of pairs of frames (i.e., of time instants) to be
processed (n1 = 100, n2 = 500, n3 = 1000, n4 = 1500, n5 = 2000, n6 = 2400). The standard deviation
(estimation error) of the velocity components has been determined for each i-th node of the mesh as:

σnji =

√√√√√√ ∑
j=1,nj

(
pi,j − pnj ,i

)2

nj
i = 1, . . . , N nj = 100, 500, 1000, 1500, 2000, 2400 (1)

where pi,j and pnj ,i
are, respectively, the examined component p [p = vx

(
t f

)
, vy

(
t f

)
] and the

corresponding time-averaged value, N is the number of nodes. From the error theory [42], the
measured averaged value of the examined velocity component p falls in the range pnj ,i

± σnj ,i and the
uncertainty in averaging the component p can be estimated as σE = σnj ,i/

√nj [42].
Figure 4 reports, for each component p, the highest value of the estimation error obtained by

Equation (1) for each nj. It can be observed that, especially for the component p = vx

(
t f

)
, σnj ,i tends to

decrease as the number nj increases; for nj > 1200 it assumes the lower values. Thus, the maximum
value of the uncertainty σE in averaging the component p is obtained for nj = 100. In this case, it
has been estimated that the uncertainty σE is less than 2.4% in the x direction and less than 4% in
the y direction. For nj > 1200 the uncertainty σE becomes less than 1% in both the directions x and
y. This means that a large sample size is necessary to obtain the same uncertainty in averaging the
component p.

The deviation of the time-averaged velocity components, estimated for nj = 100, 500, 1000, 1500,
2000, from those evaluated for the highest number values of the total number of pairs of frames (nj =
2400) has been obtained as:

σnj(p) =

√√√√√ ∑
i=1,N

(
pnj ,i
− p2400,i

)2

N
(2)
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Figure 5 reports the estimated values of σnj(p) against nj. From this figure it can be observed that
σnj(p) exponentially decreases as nj increases. Thus, for the examined velocity range, low and almost
constant values of σnj(p) are obtained for nj ≥ 1200, i.e., for a number of processed frames equal to or
greater than half of the available number of pair of frames.
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This behavior can be also observed from Figure 6 where the values of the time-averaged velocity
components (p = vx and p = vy) estimated for nj = 100, 500, 1000, 1500, 2000, have been compared with
those evaluated for nj = 2400. It can be seen that for all the considered images, and for both the velocity
components, the points well fit the bisector line when nj > 1000.
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Then, the sensitivity of surface velocity to the dimension of the interrogation area has been
performed. The values of the component p have been estimated by considering different values of
the interrogation area (IAk). In this case, it has been assumed a constant value nj = 2400. According
to the literature [30], in order to keep the background noise in the correlation matrix low [42,43], the
interrogation area was reduced in such a way as to obtain a minimum size of the interrogation area
equal to one quarter of the initial size. This is in accordance with literature [42–44] which shows that
the size of the interrogation area should be not less than 4 times of the maximum displacement. Thus,
the size of the interrogation area of the first pass in the processing PivLab code was defined taking into
account that the value of the maximum displacement lmax = Umax * dt (where Umax is the maximum
measurable velocity and dt is the time step). The minimum size of the interrogation area was assumed
equal to 8 × 8 pixels that is greater than 4 * lmax = 5.6 pixels. The maximum size of the interrogation
area was determined on the basis of the ROI dimension in the PivLab code.

Thus, the sensitivity analysis has been conducted for five (k = 5) values of the spatial resolution of
the interrogation area: IA1 = 32 px; IA2 = 24 px; IA3 = 16 px; IA4 = 12 px; IA5 = 8 px. It is clear that
as the size of IAk decreases, the number of nodes Nk of the regular mesh increases. But, it should be
considered that a high number of nodes determines modeling processes too much time-consuming.

Figure 7 plots, for all the images, the percent area IAk% against of the number of nodes Nk. Figure 7
indicates that the number of nodes increases with a logarithm law as the percent area decreases. Thus,
a reduction of the interrogation area implies a remarkable increase of the number of nodes.
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For each IAk, the cross-correlation has been determined with the PivLab tool and the velocity
components vx(tf) and vy(tf) have been estimated in each node of the corresponding rectangular mesh.
Then, the estimation error of the velocity values has been determined as:

σi,k(p) =

√√√√√∑
k

(
pi,k − pi,k

)2

Nk
= 1, . . . , Nk k = 1, . . . , 5 (3)

where Nk indicates the number of nodes corresponding to the k-th interrogation area, IAk. Figure 8
reports the highest value, σk(p), of the estimation error obtained varying the interrogation area IAk.
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From Figure 8 it can be seen that σk(p) tends to decrease as the size of the interrogation area
increases until that it assumes the lower values for 16 px < IAk < 20 px; then it increases as the size of
the interrogation area increases. It should be noted that for IA3 = 16 px the size of the interrogation
area is reduced of one half compared to the original size.

Thus, the values of each time-averaged velocity component, p, estimated for the interrogation
areas corresponding to k = 1, 2, 4 and 5 have been compared with those evaluated by assuming k = 3.
This comparison is reported in Figure 9 which shows that for k > 2 the points tend to arrange around
the bisector line, for k ≤ 2 they tend to move away from the bisector line. This behavior suggests that,
for the examined case, a reduction of the size of interrogation area of one half compared with the
initial size represents a good compromise between the extension of the data sample and the accurate
estimation of flow velocity. This result could also be consistent with previous works [45] identifying a
limit of the maximum recoverable spatial displacement in any sampling directions to half the window
size in that direction.

Then, in order to verify the reliability of the estimated velocity measurements along the channel,
the flux of mass in adjoining regions of consecutive images was also verified. As an example, Figure 10
reports the comparison between the profiles of the specific longitudinal, mx/ρ = htrvx (htr = local
water depth), and transversal, my/ρ = htrvy, fluxes of mass estimated along two adjacent sections.
Figure 10 shows that the profiles of the specific flux of mass compare well both in longitudinal and in
transversal directions.
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Figure 10. Comparison of specific flux of mass between sections of adjacent images (sections 5 and 5a,
distant 2 cm apart): (a) longitudinal direction; (b) transversal direction.

3.2. Discharge Estimation

Based on the results presented in the previous section, the discharge has been estimated by
assuming IA3 = 16 px and nj = 1500 and the surface velocity vectors have been determined, as
explained in Section 2.3, at nodes of the corresponding rectangular mesh.

Then, the transversal sections reported in Figure 1c have been considered and the time-averaged
velocity components along the transversal and the stream-wise directions (vtr and vl respectively—see
Figure 11) have been estimated at the nodes included in each transversal section. For the aims of the
present work, only the stream-wise velocity component vl has been considered.
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According to reference [10], it has been assumed that the shape of the vertical profile of the
stream-wise velocity component is the same at each node of the transversal section. Furthermore,
from the literature it is clear that the depth-averaged velocity can be estimated as a function of the
free-surface velocity [46] through a coefficient equal to 0.85, which is the value generally used with
other measurement techniques. Recently, Termini and Moramarco [6] by applying the entropy-based
approach, verified that the maximum velocity is linearly related to the mean flow velocity through a
dimensionless parameter Φ(M) (M is the entropic parameter) which assumed a value of around 0.8
along the curved stretches of the channel. Other authors (see in [47]) found a value of such a coefficient
equal to 0.9.

In the present work, by taking into account that the water depths are very low (order of magnitude
of 1 cm) the difference between the depth-averaged and the surface velocities has been assumed almost
null so that the coefficient has been assumed equal to 1. The discharge has been determined as
the sum of the elementary stream-wise flux per unit time estimated as: ∂q = v̂lhtr ∂tr (∂tr = width
of the elementary area in the transversal direction tr—see Figure 11). In Figure 12 the estimated
values of the discharge (qe) have been compared with those measured (qm) in sections 4, 5, 11, 12.
From the Section 2.1 it is clear that the value of flow discharge measured by the ultrasonic instrument
at sections 4 and 5 is equal to QI1 = 0.004 m3/s and that measured at sections 11 and 12 is equal
to QI1 + QI2 = 0.00537 m3/s. Furthermore, Table 1 reports the values of the normalized error in the
discharge estimation:

σq =
qm − qe

qm
(4)

Figure 11 shows that the points arrange around the line of perfect agreement demonstrating a
good agreement between the estimated and the measured values of the discharge. From Table 1 it can
be seen that the highest value of error is of 22.0 (%).
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5 0.22 0.0033
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4. Conclusions

The present paper concerns the application of fully digital approach for estimating the surface
velocity and the discharge. In particular, the efficiency of the procedure is investigated for two
parameters: the number of frames to be processed and the size of the interrogation area to be correlated.
The analysis has been carried out by the help of the PivLav tool in Matlab. The results obtained from
the presented analysis can be summarized as follows:

- the estimation error of the surface velocity decreases as the number of pairs of frames increases.
In particular, for the examined case, the estimation error assumes a low and an almost constant
value as the number of processed pairs of frames is greater than 1200 (i.e., equal to or greater than
half of the available pairs of frames);

- the size of the interrogation area plays an important role in the surface velocity estimation. It has
been verified that the number of nodes increases with a logarithm law as the interrogation area
decreases. But, the problem is that a high extension of the data sample makes the modeling
process too time-consuming. As result of the sensitivity analysis of the surface velocity to the size
of the interrogation area, it has been found that a reduction of the size of the interrogation area of
about one half compared to the initial size represents a good compromise between the extension
of the data sample and the accurate estimation of flow velocity;

- the application of the PIV method has provided detailed information of the spatial distributions
of instantaneous surface velocity vectors and of free surface perturbations related to the formation
of large eddies downstream of the confluences. Furthermore, by using the spatial distributions
of time-averaged surface velocity obtained by applying the PIV analysis, the values of the
discharge in peculiar sections along the channel have been estimated. The good agreement
between the estimated values of the discharge and the measured ones has demonstrated
the ability of the digital image-technique for remote monitoring of free-surface velocity and
discharge measurement.

It should be noted that the presented results have been obtained in the controlled environment of
a laboratory. This could suggest that the errors in the field might outweigh the errors tested in this
study. Despite this limitation, the study allows us to gain insight into the applicability conditions
of the PIV method for estimating the free surface velocity and flow discharge in hyper-concentrated
flows. The obtained results could also be used for improving the application of the image-technique
for monitoring activities of velocity in natural rivers, especially for velocity ranges similar to that
analyzed in the present work.
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