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Abstract: The sequence of decay in fern pinnules was tracked using the species Davallia canariensis.
Taphonomic alterations in the sediment–water interface (control tanks) and in subaqueous conditions
with microbial mats were compared. The decay sequences were similar in control and mat tanks;
in both cases, pinnules preserved the shape throughout the four-month experience. However,
the quality and integrity of tissues were greater in mats. In control tanks, in which we detected
anoxic and neutral acid conditions, the appearance of a fungal–bacterial biofilm promoted mechanical
(cell breakage and tissue distortions) and geochemical changes (infrequent mineralizations) on the
external and internal pinnule tissues. In mats, characterized by stable dissolved oxygen and basic
pH, pinnules became progressively entombed. These settings, together with the products derived
from mat metabolisms (exopolymeric substances, proteins, and rich-Ca nucleation), promoted the
integrity of external and internal tissues, and favored massive and diverse mineralization processes.
The experience validates that the patterns of taphonomic alterations may be applied in fossil plants.

Keywords: experimental taphonomy; plant fossilization; soft-tissue preservation; plant
decay; biomineralization

1. Introduction

Fossilization is a very complex process involving the pull of modifications that occur before and/or
after burial (i.e., biostratinomy and diagenesis, respectively) [1]. Although it is uncommon, certain
microenvironments may enhance preservation, allowing the formation of Konservat–Laggerstätten
(KL) [2]. According to their palaeobiological information, they can be considered actual windows to the
past. KL are frequently interpreted as the result of the combination of very particular palaeoecological
and/or palaeoenvironmental factors [3]. This local concentration of exceptional fossils provides
remarkable information to aid in the understanding of the ancient Earth. In addition, the state
of preservation of fossils from KL is characterized by the conservation of soft tissues, even at the
subcellular level [4–8], providing a more complete view of ancient anatomies and diversity patterns.

The characterization of the fossil records provides essential information about macroevolution
and taphonomic processes [9–14]. Nonetheless, intensive observations and analysis of the fossil
record should be complemented by taphonomic experiments. In fact, experiments in taphonomy have
an increasing importance in palaeontological investigations. This kind of experiment provides the
necessary information to describe the relevant taphopathways that are involved in the exceptional
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preservation of organic tissues such as (1) the consequence of cell autolysis within tissues [15–17];
(2) the discriminatory mineralization of tissues [18–22]; (3) the action of diagenesis (e.g., temperature
and/or pressure) [23–28]; and (4) the impact of microbial communities and the potential interactions
with decaying bodies [14,29–35]. In addition, in the case of plants, other taphonomic pathways, e.g.,
coal–ball formation [36,37] or charcoalification [38–40], have also been proven to be relevant (for more
details on plan taphonomy, see Locatelli [41]). However, there are many aspects of these processes that
remain unknown so far. For example, experiments with microbial communities have mainly focused on
the preservation of animals [31,42–45]. Consequently, the knowledge of the impact of microorganisms
in the decay of plants is scarce, and is commonly based on monitoring the deterioration of leaves from
the natural process of microbial decomposition (e.g., Gupta et al. or Locatelli [24,46,47]).

The present study reports the first experiment to record the sequence of modifications of plant
tissues during their decomposition in a complex microbial community that is known as a microbial
mat. Consequently, this experiment tries to complement previous approaches by using simple
biofilms [35,48]. Contrasting with simple biofilms, which have a low complexity, microbial mats are
stratified organo-sedimentary structures with high diversity [49,50] and a great degree of consistency.
Based on the inherent properties of mats, some authors believe that these communities could play a key
role in fossilization [51–54]. Previous experiments with animal carcasses have shown that the growth
of the upper layers of mats over bodies promotes the generation of a conservative sarcophagus [14,31].
This sarcophagus is linked with fossilization in different ways, namely: (1) promoting the formation
of impressions and replicas at the carcass–mat interface [34,55]; (2) favoring the lithification of
carcasses [33]; and (3) controlling the microenvironment in which fossilization takes place [32]. In the
case of plant fossilization, recent experiments [35] have contributed to the knowledge of the formation
of leaf adpressions (i.e., a style that encompasses a spectrum of plant fossil compressions [56,57])
through the biofilm–clay model in which biotic and abiotic factors influence the fossilization of plants.
The aim of the present paper is to establish whether the potential for the exceptional preservation in
mats also applies to vegetal tissues.

2. Material and Methods

2.1. Preparation of Microbial Mats in the Laboratory

Microbial mat samples were collected at Lake Salada de Chiprana (Zaragoza, Spain) in the
semi-arid region of the Ebro depression (Aragon, NE Spain) (Figure 1A,B). This lake, which has
an endorheic origin, is hypersaline (30–70%), resulting from the influx of ground water from a source
that is rich in magnesium sulphate (up to 700 meq·L−1 of SO4

2− and Mg2+) and sodium chloride
(approximately 300 meq·L−1) [58].
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Figure 1. (A) Map showing the location of the Lake Salada de Chiprana (Zaragoza, Spain) (red spot) 
in the semi-arid region of the Ebro depression (Aragon, NE Spain). (B) Satellite view of the lake 
(Google Earth). (C) Section of the microbial mat from the Salada de Chiprana showing the 
multilayered organization. Although it is impossible to determine the exact composition of fossil 
mats, cyanobacterial photosynthetic mats (as those assumed to be present in past ecosystems) have 
common features [59,60] that allow the assumption that recent mats are a good analog. 

Chiprana mats were crushed and prepared as described in previous experiments [31,32] and 
placed in three 30 × 15 × 17 cm glass tanks (T1 to T3) containing a 2–3 cm base of limestone, overlain 
by a 3–4 cm layer of sediment from the lake. Tanks were filled with water from the lake until a 2-cm 
water column was obtained over the surface of the crushed mat or sediment (see Iniesto et al. [33] for 
more details on water composition). After this preparation, microbial mats were grown in the 
laboratory until maturation, i.e., when the mats exhibited the characteristic multilayered organization 
and pinnacles (Figure 1C). Chambers were illuminated with a cold beam (OSRAM Decostar 51 Titan) 
with a photoperiod similar to the natural one (adjusted to 10 h of daylight). One additional tank was 
prepared with the same protocol, but lacked a microbial mat to be used as a control (Cs). The control 
tank was kept in the dark to prevent the development of a mat from the resting stages of 
photosynthetic populations in the sediment. During the course of the experiment, tanks were kept in 
a controlled-temperature room (water temperature was 23 ± 0.5 °C). The water depth (about 2 cm) 
was almost constant in the tanks due to the periodical input of sterilized distilled water to compensate 
for water evaporation. 

2.2. Taphonomic Experiments 

The experiment was conducted using the fern Davallia canariensis (L.) Sm. as the plant model. 
We distributed 12 pinna fragments (~1.5 cm) over the surface of the tanks, with gaps of 2.5 cm. All of 
the pinna were placed with the lower surface (abaxial) in contact with the microbial mat. Fragments 
were analyzed at random (one per tank) on days 0, 7, 15, 30, 60, and 120. Several physico-chemical 
variables were measured to document their possible variations over the course of the experiment: 
dissolved oxygen (DO), conductivity, and pH were measured with specific probes (WTW Oxi 
315i/Set 2C10-0011, WTW Cond 315i 2C10-0011 and Crison pH-meter Basic 20 respectively). The ionic 
composition of the water was determined at each experimental time by ionic chromatography (SiDI, 
Universidad Autónoma de Madrid, Spain).  
  

Figure 1. (A) Map showing the location of the Lake Salada de Chiprana (Zaragoza, Spain) (red spot)
in the semi-arid region of the Ebro depression (Aragon, NE Spain). (B) Satellite view of the lake
(Google Earth). (C) Section of the microbial mat from the Salada de Chiprana showing the multilayered
organization. Although it is impossible to determine the exact composition of fossil mats, cyanobacterial
photosynthetic mats (as those assumed to be present in past ecosystems) have common features [59,60]
that allow the assumption that recent mats are a good analog.

Chiprana mats were crushed and prepared as described in previous experiments [31,32] and
placed in three 30 × 15 × 17 cm glass tanks (T1 to T3) containing a 2–3 cm base of limestone, overlain
by a 3–4 cm layer of sediment from the lake. Tanks were filled with water from the lake until a 2-cm
water column was obtained over the surface of the crushed mat or sediment (see Iniesto et al. [33]
for more details on water composition). After this preparation, microbial mats were grown in the
laboratory until maturation, i.e., when the mats exhibited the characteristic multilayered organization
and pinnacles (Figure 1C). Chambers were illuminated with a cold beam (OSRAM Decostar 51
Titan) with a photoperiod similar to the natural one (adjusted to 10 h of daylight). One additional
tank was prepared with the same protocol, but lacked a microbial mat to be used as a control (Cs).
The control tank was kept in the dark to prevent the development of a mat from the resting stages of
photosynthetic populations in the sediment. During the course of the experiment, tanks were kept in
a controlled-temperature room (water temperature was 23 ± 0.5 ◦C). The water depth (about 2 cm)
was almost constant in the tanks due to the periodical input of sterilized distilled water to compensate
for water evaporation.

2.2. Taphonomic Experiments

The experiment was conducted using the fern Davallia canariensis (L.) Sm. as the plant model.
We distributed 12 pinna fragments (~1.5 cm) over the surface of the tanks, with gaps of 2.5 cm. All of the
pinna were placed with the lower surface (abaxial) in contact with the microbial mat. Fragments were
analyzed at random (one per tank) on days 0, 7, 15, 30, 60, and 120. Several physico-chemical variables
were measured to document their possible variations over the course of the experiment: dissolved
oxygen (DO), conductivity, and pH were measured with specific probes (WTW Oxi 315i/Set 2C10-0011,
WTW Cond 315i 2C10-0011 and Crison pH-meter Basic 20 respectively). The ionic composition of
the water was determined at each experimental time by ionic chromatography (SiDI, Universidad
Autónoma de Madrid, Spain).
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2.3. Sample Preparation and Analytical Procedure

At earlier sampling times, before the pinnules had been overgrown by the mats, each fragment
was prepared for sampling by carefully removing it from the surface of the mat. At later sampling
time points, after the pinna had been covered by the upper layers, we used a scalpel to remove and
prepare each fragment. Afterwards, the plants’ remains were washed with distilled water in order to
remove sediment particles and fixed in methanol in a vacuum chamber for 20 min. Then, the fragments
were subdivided into three parts and processed in parallel for different microscopic observations.
Thin sections were prepared using a rotary microtome. These sections were later examined under
a Clear-Field Optic Microscope to observe the decay in the plant tissues, and by inverted fluorescence
microscopy to monitor the possible presence of calcium bioprecipitates. Scanning electron microscopy
(SEM) was used to observe the deterioration of the surface of the pinnules. Potential precipitates were
identified using energy dispersive X-ray spectroscopy (EDXS) (samples without resin); the deterioration
of the internal tissues was observed through cross-sections of the pinnule (samples embedded in Spurr
resin) (see below).

2.3.1. Fluorescence Microscopy

One fragment was stained with calceine at 1% (this substance is used for the fluorometric
determination of calcium) and DAPI (4′,6-diamidino-2-phenylindole) at 10% (a fluorescent stain that
binds strongly to DNA, which allowed us to locate the cells in the sample) prior to dehydration
as follows: (1) calceine solution was prepared (10-mL Tris buffer, 104-µL DMSO, and 1-mg
calceine SIGMA-ALDRICH CO875-5G), (2) DAPI was prepared (4-mL Tris Buffer, 2-µL DAPI
SIGMA-ALDRICH D9542-SMG), (3) the sample was immersed in the calceine solution (48 h, 4 ◦C,
obscurity) and (4) staining with DAPI occurred (12 h, 4 ◦C, obscurity). Afterwards, the sample
was dehydrated using ethanol at increasing concentrations (30%, 70%, 3 × 100%, 20 min each step,
final step 45 min). Samples were embedded in paraffin as follows: (1) ethanol–xylene 1:1 (45 min),
(2) xylene 100% (2 × 45 min.), (3) xylene–paraffin 1:1 (90 min.), (4) paraffin (PANREAC, Barcelona,
Spain) infiltration (2 × 45 min.), and (5) the polymerization of paraffin (overnight, 60 ◦C). Liquid
paraffin was prepared by heating the solid fragments up to 50.5 ◦C. Later, a resin block was trimmed
in 5–10 µm sections using a microtome (LEICA RM2245, Leica Microsystems AG, Wetzlar, Germany).
Slides with paraffin were placed in a vessel and incubated in a 60 ◦C oven for 45 min (so the wax
just started to melt). The dewaxing slides were then submerged in xylene (3 × 5 min.) and finally
attached to the glass slide with Prolong (Thermo Fisher Scientific P36961, Thermo Fisher Scientific,
Waltham, USA). Observations were performed using an Olympus Reflected Fluorescence System
CKX41 (Olympus, Tokyo, Japan) coupled with two filters: 515 nm (calceine) and 461 nm (DAPI).

2.3.2. SEM-EDX and Resin Inclusion

Two fragments of each pinnule were dehydrated after their fixation in methanol using ethanol
at increasing concentrations (30%, 70%, 3 × 100%, 20 min each step, final step 45 min). Afterwards,
one of the fragments was fixed using glutaraldehyde (2.5%) and dried in a dark and dry chamber at
room temperature until observation with SEM. The second fragment was directly transferred from
the final 100% ethanol to the process of inclusion in Spurr resin as follows: (1) acetone (15 min.),
(2) acetone–Spurr mix (1:1; 30 min.), (3) acetone–Spurr mix (1:2; 12 h.), (4) Spurr 100% (2 h), and (5)
inclusion in Spurr using silicone molds (24 h, 60 ◦C). Once completely polymerized, the resin block
was polished with diamonds down to 0.75 µm in size.

Prior to observation, samples were coated with gold. Images and analyses were collected
in backscattered and secondary electron modes using a Hitachi S3000N (Hitachi, Chiyoda, Japan)
operating at 15 kV, with a 60-µm aperture at a working distance of approximately 15 mm. Elemental
compositions were determined using energy dispersive X-ray spectrometry (EDXS) with an Oxford
Instruments INCAx-sight system (Oxford Instruments, Abingdon, UK).
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3. Results

3.1. Physico-Chemical and Ionic Variations in the Course of the Decay of Pinnae in Mats

Dissolved oxygen (DO) showed important variations during the course of the experiment
(Figure 2A) and differed between tanks with mats and the control tank. While the controls almost
reached anoxic conditions, tanks with mats had an average concentration of 9.8 mg/L during the
experiment. The maximum values in mat tanks were recorded at days 30 and 53, with 16.5 mg/L
and 16.0 mg/L, respectively. We also detected remarkable variations between sampling days up to
10 mg/L in day 44. From day 80, the DO showed very similar values in the three tanks with mats,
and became relatively constant.

Tanks with and without mats also showed differences in pH. Values in the controls were stable,
ranging between 7.8 and 8.4. As in the case of DO, tanks with mats also showed more variation over
time than the controls. The pH was considerably more basic in mats than in the control at time 0.
Nonetheless, during the course of the experiment, they exerted a decrease in pH down to values that
were very similar to those of the control tank (Figure 2B).
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Figure 2. Evolution of dissolved oxygen (DO) (A) and pH (B) in the water column in the tanks with
mats (T1–3, green lines) and in the control (C, black line) in the course of the experiment.

Conductivity and temperature are not as affected by biological activity as pH or DO. However,
in order to get reliable results, it is necessary to control them and keep them constant. The conductivity
of the tanks with mats was similar over time (59.1 ± 1.1 mS·cm−1). However, the control tank (without
a mat) showed a higher conductivity over the entire experimental period (75.8 ± 6.9 mS·cm−1).
It was easier to keep the temperature constant in the controlled room, with very similar values
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shown between the tanks with mats (22.8 ± 0.8 ◦C), although the control tank had a slightly higher
temperature (23.1 ± 0.7 ◦C) because it was covered to prevent the entry of light.

The main water anion in the tanks was sulfate, followed by chlorine, while sodium and
magnesium were the predominant cations, which is consistent with the original water composition.
Calcium, potassium, and ammonium were also present. In contrast, the ionic composition varied less
during the experiment, although the control tank always had a higher ionic concentration than the
tanks with mats (as could be deduced from the conductivity values). The initial concentrations were
always the highest, while at 15 days, the lowest concentrations were measured (Table 1).

Table 1. Evolution of the ionic water composition (ppm) in controls (C) and microbial mat (T1 and
T2) tanks.

ppm Cl− SO4
2− Na+ NH4

+ K+ Mg2+ Ca2+

T1 T0 27,827 79,684 18,418 261 646 17,613 768
T1 T15 15,750 30,779 9371 138 298 7221 438
T1 T30 20,314 48,657 13,785 231 456 11,516 655
T1 T60 21,042 52,047 13,019 256 454 10,475 691
T2 T0 27,827 79,684 18,418 261 646 17,613 768

T2 T15 20,831 46,376 13,192 219 294 10,500 581
T2 T30 21,098 46,891 13,204 208 300 10,604 597
T2 T60 21,455 48,446 12,894 695 316 10,499 610
C T0 27,827 79,684 18,418 261 646 17,613 768

C T15 24,883 66,360 16,863 358 492 15,317 775
C T30 26,308 72,169 17,441 399 496 16,177 769
C T60 23,847 60,901 15,454 401 506 13,579 669

3.2. Decay of Fern Pinnae

The decay of pinnae was monitored de visu with clear-field optic microscopy, fluorescent
microscopy, and SEM in order to detect the potential influence of the mats. However, the direct
observation of samples in mats was only possible during the first few days, because of the coverage of
pinna by the microbial mat.

3.2.1. Formation of the Sarcophagus

The reorganization of the upper layers of the mats was intense from the very start of the
experiment. Several pinnae were already trapped by the microbial mat after only four days, and after
two weeks, all of the leaflets were completely covered (Figure 3A–E). Moreover, after extracting the
pinna from the mat at day 7, we observed a precise impression of the outline of the pinnules on the
surface of the mat (Figure 3G).

3.2.2. Sequence of Decomposition of Fern Pinnae

We detected a gradual variation in color in all of the samples. Samples with mats and controls
turned darker over the course of the experiment. However, this shift was more intense in the controls,
even when the overall condition of controls seemed to be good.
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surface of the mat after its removal at day 7. The shape of the fern in the mat is highlighted by two 
white arrows. 

The distinct tissue structures of the thin section of Davallia pinna were identified (Figure 4) and 
observed throughout the course of the experiments to test their transformations over time. The sections 
were observed by an optic microscope with bright light (Figure 5) and fluorescence (Figure 6) to 
determine the effect of decay at the tissue level. In contrast to the few observed differences de visu 
between treatments (with and without a mat), the observation of sections performed in the control 
samples revealed an evident decay of tissues. The decay affected the lower epidermis in the control 
material as early as day 7 (Figures 5D and 6D), when broken cell walls could already be observed. 
The fern pinnules in the microbial mats were more compressed, but had intact epidermises at day 7 
(Figures 5I,J and 6I,J). At day 30, the control material showed damage in the endodermis (Figure 5F), 
deformed cells in the mesophyll, and extensive damage in the lower epidermis (Figure 6E,F). At this 
time, the samples in the mats only started to show broken lower epidermis cell walls (Figure 5L). 
Finally, at day 120, the control material had fungal infections at the vascular area (Figure 5H), and 
the cells of the upper and lower epidermis were separated from each other, forming gaps through 
which water entered, dispersing the cells of the mesophyll (Figure 5G,H). In contrast, the pinnules 
that were embedded in the microbial mats only showed some deformed cells in the mesophyll and 
light damage in the endodermis (Figure 5M,N). 

Figure 3. Sequence of coverage of the pinna by the microbial mat over the course of the experiment.
(A–E) Gradual initial phase of coverage from day 0 (T0, A) to day 10 (T10, E). (F) SEM observations of
the microbial veil covering the pinna. (G) Impression of the lower side of the fern pinna left on the
surface of the mat after its removal at day 7. The shape of the fern in the mat is highlighted by two
white arrows.

The distinct tissue structures of the thin section of Davallia pinna were identified (Figure 4) and
observed throughout the course of the experiments to test their transformations over time. The sections
were observed by an optic microscope with bright light (Figure 5) and fluorescence (Figure 6) to
determine the effect of decay at the tissue level. In contrast to the few observed differences de visu
between treatments (with and without a mat), the observation of sections performed in the control
samples revealed an evident decay of tissues. The decay affected the lower epidermis in the control
material as early as day 7 (Figures 5D and 6D), when broken cell walls could already be observed.
The fern pinnules in the microbial mats were more compressed, but had intact epidermises at day
7 (Figure 5I,J and Figure 6I,J). At day 30, the control material showed damage in the endodermis
(Figure 5F), deformed cells in the mesophyll, and extensive damage in the lower epidermis (Figure 6E,F).
At this time, the samples in the mats only started to show broken lower epidermis cell walls (Figure 5L).
Finally, at day 120, the control material had fungal infections at the vascular area (Figure 5H), and the
cells of the upper and lower epidermis were separated from each other, forming gaps through which
water entered, dispersing the cells of the mesophyll (Figure 5G,H). In contrast, the pinnules that were
embedded in the microbial mats only showed some deformed cells in the mesophyll and light damage
in the endodermis (Figure 5M,N).
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mesophyll, (vt) vascular tissues, (e) endodermis, (b) bundle sheath, (l) lower epidermis, (s) stoma and 
(gc) guard cell. Based on Reihman and Schabilion [61]. 

 
Figure 5. Observation of thin sections of pinna at the beginning of the experiment using a Clear-Field 
Optic Microscope (A,B) and the evolution of controls at days 7, 30, and 120 (C–H) and samples from 
tanks with microbial mats (I–N). The white arrows point to the upper side of the pinna. Scale bar: 200 
µm. 

Figure 4. (A) Scheme of the histology of fern and thin sections of a pinna observed using fluorescence
optic microscopy of Davallia canariensis (B). Abbreviations: (u) upper epidermis, (hy) hypoderm,
(m) mesophyll, (vt) vascular tissues, (e) endodermis, (b) bundle sheath, (l) lower epidermis, (s) stoma
and (gc) guard cell. Based on Reihman and Schabilion [61].
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Figure 5. Observation of thin sections of pinna at the beginning of the experiment using a Clear-Field
Optic Microscope (A,B) and the evolution of controls at days 7, 30, and 120 (C–H) and samples from
tanks with microbial mats (I–N). The white arrows point to the upper side of the pinna. Scale bar:
200 µm.
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day 0. (B) Control at day 30, with the top (upper surface) partially covered by fungi filaments. (C) At 
day 60, controls showed abundant extracellular polymeric substances (EPS) covering the surface. This 
EPS trapped some sediment particles (arrow). (D) The transverse section of the control at day 60 
exposed fungi filaments inside the fern tissues (arrow). (E) Some cyanobacterial filaments (arrow) and 
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Figure 6. Observation of thin sections of pinna using a fluorescence microscope. Samples were stained
with DAPI (blue) and calceine (green). (A,B): Plant tissues at the beginning of the experiment. (C–H):
Evolution of decay of ferns from day 7 until day 120. (I–N): Observations of pinna in mats at days
7 (I,J), 30 (K,L), and 120 (M,N). The arrows in (E,F,K,L) point to the cuticle that was more damaged in
the controls than in the mats.

The upper side of the pinna samples, which was observed using SEM (Figure 7), showed that,
in contrast to the tissue thin sections, the controls did not show much external decay. Starting at day
30, we detected the presence of several filaments, which were likely fungi, on the surface (Figure 7B).
After day 60, a mucous veil trapping of sediment particles was detected in several areas of the surface
(Figure 7C). A cross-section of the pinna showed the presence of fungal filaments inside the tissue
(Figure 7D). In the case of samples over the mats, the upper cover of the sarcophagus was mainly
formed by diatoms and filamentous cyanobacteria (Figure 7E). This cover became denser and increased
its mucus composition over time (Figure 7F). The presence of microorganisms invading the internal
tissues was not detected (Figure 7G), which was in contrast with controls.
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Figure 7. Observations of fern pinna using SEM. (A) External view of the upper side of the sample at
day 0. (B) Control at day 30, with the top (upper surface) partially covered by fungi filaments. (C) At
day 60, controls showed abundant extracellular polymeric substances (EPS) covering the surface. This
EPS trapped some sediment particles (arrow). (D) The transverse section of the control at day 60
exposed fungi filaments inside the fern tissues (arrow). (E) Some cyanobacterial filaments (arrow) and
diatoms (dotted round) at day 7 on the upper side of the fern frond in mats. (F) Fern in mat at day 60,
with cyanobacteria and diatoms trapped by EPS (arrow). (G) Tissue section of the pinna at day 60,
free of microorganisms within cells.
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3.2.3. Plant Tissue Mineralization and the Occurrence of Mineral Precipitates

In controls, the occurrence of precipitates was infrequent but noticeable from the beginning
(Figure 8A). At days 7 and 15, the presence of an organic veil rich in minerals (e.g., Ca, Mg, P, Na;
Figure 8B) was detected. This mineral composition was consistent with the water from the Salada
de Chiprana that was used in the experiment (Table 1 and Iniesto et al. [33]). In contrast, the surface
of the fern was enriched in S, but P was absent (Figure 8C). At day 30, spherical precipitates with
a diameter of ~10 µm (Figure 8D) that were rich in Cl, Mg, S, and Na (Figure 8E) were produced.
In particular, the biofilm formed by the fungal mass had a similar composition, but was enriched in P
and S (Figure 8F). After day 60, the precipitation of gypsum was identified (Figure 8H,I), occurring
even in the internal tissues of the pinna (Figure 8J,K).

Geosciences 2018, 8, x FOR PEER REVIEW  10 of 21 

 

3.2.3. Plant Tissue Mineralization and the Occurrence of Mineral Precipitates 

In controls, the occurrence of precipitates was infrequent but noticeable from the beginning 
(Figure 8A). At days 7 and 15, the presence of an organic veil rich in minerals (e.g., Ca, Mg, P, Na; 
Figure 8B) was detected. This mineral composition was consistent with the water from the Salada de 
Chiprana that was used in the experiment (Table 1 and Iniesto et al. [33]). In contrast, the surface of 
the fern was enriched in S, but P was absent (Figure 8C). At day 30, spherical precipitates with a 
diameter of ~10 µm (Figure 8D) that were rich in Cl, Mg, S, and Na (Figure 8E) were produced. In 
particular, the biofilm formed by the fungal mass had a similar composition, but was enriched in P 
and S (Figure 8F). After day 60, the precipitation of gypsum was identified (Figure 8H,I), occurring 
even in the internal tissues of the pinna (Figure 8J,K).  

 
Figure 8. SEM-energy dispersive X-ray spectroscopy (EDXS) images and analyses of mineral 
precipitates in controls. (A) Organic veil covering the surface of the fern at day 7. (B,C) Elemental 
composition of the veil (enriched in Mg, P, Ca, and Cl) and the upper side of the pinna, respectively. 
(D) At day 30, the upper side of the pinna was still covered by the organic mucilaginous veil. 
Moreover, spherical precipitates with diameters of ~10 µm were detected. Three different points were 
analyzed (highlighted with dotted rounds): (E), spherical precipitates; (F), organic veil, and (G), fern 
surface. (E) Elemental composition of the spherical precipitates that were rich in Cl, Mg, S, and Na. 
(F) The biofilm formed by the fungi had a similar composition, but presented more P and a depletion 
of S. (G) The surface composition was consistent with the analysis at day 7, but Ca seemed to be 
absent. (H) Observations at day 60. Star-shaped precipitates that were rich in S and Ca. (I) appeared 
on the upper side of the sample. (J) At day 60, the occurrence of precipitates enriched in S and Ca (K) 
within the leaf was detected. 

In mat tanks, the precipitates also appeared quickly. However, in contrast to the controls, 
precipitates had a widespread distribution with a high variety of elemental compositions. Ca-rich 

Figure 8. SEM-energy dispersive X-ray spectroscopy (EDXS) images and analyses of mineral
precipitates in controls. (A) Organic veil covering the surface of the fern at day 7. (B,C) Elemental
composition of the veil (enriched in Mg, P, Ca, and Cl) and the upper side of the pinna, respectively.
(D) At day 30, the upper side of the pinna was still covered by the organic mucilaginous veil. Moreover,
spherical precipitates with diameters of ~10 µm were detected. Three different points were analyzed
(highlighted with dotted rounds): (E), spherical precipitates; (F), organic veil, and (G), fern surface.
(E) Elemental composition of the spherical precipitates that were rich in Cl, Mg, S, and Na. (F) The
biofilm formed by the fungi had a similar composition, but presented more P and a depletion of S.
(G) The surface composition was consistent with the analysis at day 7, but Ca seemed to be absent.
(H) Observations at day 60. Star-shaped precipitates that were rich in S and Ca. (I) appeared on the
upper side of the sample. (J) At day 60, the occurrence of precipitates enriched in S and Ca (K) within
the leaf was detected.
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In mat tanks, the precipitates also appeared quickly. However, in contrast to the controls,
precipitates had a widespread distribution with a high variety of elemental compositions. Ca-rich
precipitates were observed on the upper side starting at day 7 (Figure 9A,B). The organic veil excreted
by the microorganisms of the mat contained large amounts of S, Mg, Na, P, and Cl, and lower
concentrations of Si, K, and Ca (Figure 9A,C). In addition to these Ca-rich precipitates, gypsum-like
minerals were also detected on the surface of the mat (Figure 9D,E). The impression of the lower side
of the pinna that was detected on the surface of the mat (Figure 3G) contained numerous precipitates
with different morphologies (i.e., starred, spherical, conglomerates, and rod-shaped precipitates,
Figure 9D,F). Despite their morphological differences, some of them (e.g., starred and spherical
particles) had similar compositions (Figure 9F,H). According to their elemental compositions and
morphologies, they were consistent with gypsum and carbonate precipitates, and they were stable and
evident at day 60 (Figure 9I–M). Additionally, at day 30, several spots covered by a mucilaginous layer
filling the space between the cells of the microbial P-enriched biofilm (Figure 10A,B) were detected in
one of the tanks. However, this veil vanished at day 60 (Figure 1C).
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Figure 9. SEM-EDXS images of the precipitates on the upper side of the ferns in mats. (A) At day 7,
the cyanobacterial filaments and diatoms as well as mineral precipitates were present. (B,C) EDXS
spectra recorded at the areas highlighted in (A). (D,F) Precipitates that occurred over the mat in the
impression left by the fern and their corresponding EDXS spectra of the spot highlighted in the image
(E, G, and H respectively). (I,L) Precipitates over ferns in mats at day 60 and the corresponding EDXS
spectra (J, K, and M respectively).
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Figure 10. SEM-EDXS images of the microbial sarcophagus growing over ferns at day 30 (A,C) and at
day 60 (E). (B,D,F) correspond to the EDXS spectra of the sites highlighted in (A,C,E) respectively.

4. Discussion

The delayed decay sequence in the presence of mats is consistent with previous experiments
with plants [35], as well as with the results of experiments on the role of microbial mats in animal
decay [14,31], but the effect size was much smaller. This is likely due to the plant composition.
For instance, the cuticle of the adaxial side of the pinna is rich in cutin polymers and other waxes [62],
which are known to be very recalcitrant components. In fact, Mösle et al. [63] proposed that differences
in preservation between different plant taxa can be explained by the presence of these kinds of
recalcitrant compounds in the tissue. In addition, fern pinna are rich in tannins, i.e., vegetable
polyphenols with antimicrobial properties [64]. The presence of these compounds can also explain
the slow decay of the controls during the experiment. Furthermore, an important aspect of soft tissue
preservation is mineralization [65], and in this experiment, the presence of precipitates on both sides
of fronds occurred either in mats or in controls. Control precipitates that were produced at low pH
levels were related to the formation of fungal biofilm, whereas those that were influenced by mats
occurred at high pH values. However, although the decay sequence in the controls and mats was
equivalent, and their patterns of decay were much alike, the presence of microbial mats contributed to
the integrity of the ferns’ inner tissues.

Decay affected pinna in both conditions (controls and microbial mats, Figure 11). Confirming
previous observations [47], we detected a differential decay of tissues in both processes. The mesophyll
and the lower epidermis were more quickly affected by decay, while the upper epidermis remained
undamaged for longer. This latter tissue is covered by the cuticle, which is a protective layer that is
composed of insoluble biopolyester that is resistant to degradation [66]. The higher frailty that was
observed in the lower epidermis could be due to the presence of stomata, where the protection of
the cuticle is lost. The vascular bundle within the mesophyll deteriorated slowly. However, the fern
pinnae in the control group were subjected to mechanical cracking and fungal invasion. The cuticle
can be damaged by mechanical cracking [46], which would facilitate the entry of degradative agents
such as the fungal filaments that were observed in our experiment at day 60 in the controls. Thus,
in general, pinnae in sediment showed a greater extent of decomposition, which was also influenced
by the lower pH during the first few months, and also promoted the damage of cuticles. In addition to
pH, the alteration of the mesophyll was probably due to the entry of microorganisms. The endodermis,
despite being lignified, and the vascular bundles also suffered from degradation. It is interesting to
note that the microorganisms that were detected inside the control pinna were fungi, because they are
implicated in the degradation of the vegetable matter, especially lignin [67]. Filamentous fungi were
absent in the fronds that were placed over mats. We also noticed the presence of precipitates in the inner
structures of the controls. The mechanical cracking of the cuticle not only allowed microorganisms to
penetrate, it also allowed the penetration of water, which generated precipitate deposits in the inner
spaces of the tissue controls. In general, these precipitates were composed of calcium and sulfate.
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This was likely the result of the water column’s composition, which had high concentrations of these
two ions (Table 1).
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protection against light, among other dangers.  

The precipitates on the fronds that were placed over microbial mats were abundant, which is 
consistent with previous hypotheses and experiments with simple biofilms [35,48,75]. Differences in 
abundance between controls and mats might be explained by the influence of microbial mats in 

Figure 11. Schema of the taphonomic alterations observed in the control (sediment–water, S–W) and
microbial mat (MM) tanks. S–W alterations observed at the sediment–water interface (control tanks).
Phase (1): a, breakage of lower epidermis cells with stoma. Phase (2): b, fungal external invasion; c,
mesophyll cell disorganization and deformation; d, mineral precipitation. Phase (3): e, fungal inner
invasion at the endodermis; f, mineral precipitation in the inner tissues. MM, alterations observed in
subaqueous conditions with microbial mats. Phase (1): a, mesophyll compression; b, mat coverage
of the rest and early precipitation of a veil enriched in calcium; c, early mineral precipitation in the
upper epidermis. Phase (2): d, generation of pinnule impressions; e, mineral precipitation at the lower
epidermis; f, breakage of lower epidermis cells with stoma.

The growth of a microbial cover over the fronds in mats prevents the development of fungal
masses. The mat cover also acts as protective device that prevents potential epidermal ruptures.
Under light conditions, chlorophyll suffers photodegradation [68,69], but this was not detected in
fronds over mats, in which the modification of color occurred more slowly than in the controls,
even though they were kept in the dark during the experiment. However, these differences in color and
the darkening of fragments over time can be explained by two parallel processes. First, the degradation
of chlorophyll in controls can be related to the lower pH, which induces the faster decay of pigments
such as chlorophyll [70]. Second, the mat created a dense matrix that is rich in extracellular polymeric
substances (EPS) [71–73]. EPS are made by a large variety of monosaccharides and polysaccharides
as well as proteins [60] that can trap protons and modify the penetration of light [74]. Consequently,
this EPS matrix that covered the samples from the very beginning acted as protection against light,
among other dangers.
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The precipitates on the fronds that were placed over microbial mats were abundant, which is
consistent with previous hypotheses and experiments with simple biofilms [35,48,75]. Differences
in abundance between controls and mats might be explained by the influence of microbial mats in
mineral precipitation [76,77], and the potential action of EPS as a nucleation factor for precipitates
to occur [78]. This association between mats and the mineralization of biological rests has support
from animal experiments [14,33]. These precipitates might also act as a protective cover, and in
such cases, the massive mineralization that is observed beneath the plant (i.e., in the contact zone
between the lower side of the plant and the microbial mat) might be relevant to the generation of
a negative impression after a few days (detected at day 7). This kind of generation of a negative
impression is consistent with previous experiments using animals [34]. Most of the precipitates that
were found in both mat and control tanks were formed by Ca and S. Taking into account the relative
proportions and compositions, these precipitates were compatible with the formation of gypsum.
Gypsum has already been observed in several deposits with plant fossils (i.e., Wing; Chaney and
DiMichele or Sun et al. [79–81]), but it is rare to find vegetable fossils that were formed totally or
partially by this mineral. However, there are several examples of plant preservation in gypsum such
as wood remains from the Upper Cretaceous in Lo Hueco (Cuenca, Spain) [82]. Moreover, sulfur
can form pirite (FeS2) in the presence of iron, which is more commonly found in permineralized
fossil leaves [83]. Apart from gypsum and the possibility of pyrite, precipitates in fronds in mats also
contained Mg, Na, Cl, and occasionally, Si, K, or P, and their morphologies (e.g., starred, spherical,
conglomerates, or rod-shaped precipitates) were much more varied than the precipitates that were
observed in the controls. Some of these morphologies (i.e., starred) are similar to the ones that were
observed in precipitates formed on fossil material from Las Hoyas (Lower Cretaceous of Cuenca,
Spain), for example (Figure 12A), where they can be found together with fungi hyphae. It must be
noted that silica permineralizations and petrifications are very frequent in fossil records, where internal
anatomical characters are extremely well-preserved (e.g., Moreau et al. or Xu et al. [84,85]).
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Figure 12. SEM images of the fossil fern Weichselia reticulata (Stokes et Webb) Fontaine from Las Hoyas
(Lower Cretaceous of Cuenca, Spain). (A) Starred precipitates and fungi-like filaments over the fossil.
(B) Exceptionally well-preserved internal tissue. Sometimes, the material is charcoalified, showing the
exposure to high temperatures during fossilization.

This study of microbial mats is a complementary contribution to previous models of plant
decomposition mediated by biofilms [35]. This type of experiment is crucial to improve the
understanding of fossilization, and we observed that although plant remains are quite resistant
to decay, microbial mats play a role in enhancing the preservation of fern pinnae. Taking the high
diversity and fern abundance of the Devonian and Cretaceous floras into consideration, as well as
the continuous presence of ferns in the fossil records [86], the experiments that were performed
here are key to shedding light on the fossilization process in floras of different ages, even before
the radiation of angiosperms. Fossil leaves can be preserved as compressions (compressed plant
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material preserved as a thin carbonaceous layer, generally including the cuticle), as coal and charcoal,
as impressions (negative imprints of the plant parts where the biological material has disintegrated),
as permineralizations (where minerals fill the cell lumen and intercellular spaces, but do not replace
the cell walls completely, e.g., silica, iron oxide, or limonite), as petrifications (where all of the original
organic matter in the plant has been replaced by minerals), or as mummifications (where the plant
material is unaltered) [41,86]. These types of preservation provide variable degrees of quality in the
external and internal structures of the fossil leaves [41,47,66]. The relevance of external impressions in
fossil plants is undebated [87], since they give reliable information about the surface of plant parts.
Internal preservation is best observed in permineralizations, petrifications, and mummifications [86],
but exceptionally, it can also be observed in the carbonaceous layer of compressions, generally those
preserving the cuticle, and in charcoalified material that has not been burnt at high temperatures.
One example of this is the exceptionally well-preserved internal structures of charcoalified specimens
(Figure 12A,B) from the Lower Cretaceous of Las Hoyas (Cuenca, Spain), where microbial mats were
present [3].

In our experimental results, the pinnae surface formed a clear impression on the microbial mats,
indicating that this type of plant preservation is not only produced on the sediment or on clays
mediated by biofilms [35], but could also occur in sediments with mats. Further, the inner preservation
seems to depend on the integrity of the cuticle; the formation of the microbial sarcophagus on the
pinnae would be essential to avoid breakage and hydrolysis. However, we detected a differentiated
decay of plant tissues related to tissue composition, which constitutes a bias. This tissue bias has already
been observed in fossil plants from different groups. For instance, a dorsoventral gradient in the decay
through leaf sections occurred in the mummified fossils of the taxodiaceous conifer Metasequoia Hu and
Cheng found at the Buchanan Lake Formation (Eocene, Canada) [88]. This gradient of preservation
was also observed in other plant fossils, such as the exceptionally well-preserved specimens from
Charente-Maritime (Cenomanian, western France); while several tissues, such as the stomatal crypts,
were undamaged, and fossilized, spongy parenchyma was only partially conserved [84,89]. In addition,
based on these results, the present model of preservation in mats unifies the two categories for the
exceptional preservation of plant fossils [41]. Transport processes and decay–diagenesis have been
assumed to produce different fossils, i.e., fossils preserving the entire and original arrangement and
fossils with cellular detail, respectively. However, the formation of the mat sarcophagus can likely
explain both the articulation of fossils and the inner tissue preservation.

5. Conclusions

This taphonomic experiment provided evidence of the substantial factors influencing plant
preservation that have been tested in laboratory conditions. Fern pinnules are formed of more labile
tissues than other plant parts such as woody fragments, cones, or seeds. Pinnule decay was shown to
last much longer than four months, because they were perfectly identifiable and not yet matured as
organic debris at the end of the experiment. The results show that plant preservation might equally
succeed at the sediment–water interface (control tanks) and in subaqueous environments with rapid
entombment by microbial mats, although with differential levels of tissue preservations. In the
control tanks, ferns decayed at the sediment–water interface. The suboxic zone (in the sediment
water interphase) and fluctuating redox conditions promoted fungal and bacterial activity, and those
tissues that were composed of resistant macromolecules (cuticles and vascular bundles) were less or
least damaged. The promotion of fungal–bacterial biofilms that succeeded under anoxia and near
neutral pH conditions prompted external and internal mechanical and geochemical changes of the
fern pinnae. The mineralized—inner and outer—precipitations that were related to the chemical
composition of the water were infrequent in control tanks.

The experiment also characterized a new type of plant part preservation in a subaqueous
continental environment [90] that was concretely produced in the presence of microbial mats.
Plants became trapped and progressively buried by the mat community that prevents fungal invasion,
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mechanical cracking, and inner tissue breakages with drastic alterations. In mat tanks, the setting
conditions were characterized as having stable DO, and with a basic pH. Such settings, together with
the molecular composition of the mats (made up of EPS substances), would have promoted the integrity
of the external and internal tissues, and would have favored a massive and diverse mineralization,
confirming previous outcomes of experiments with plants. These actuotaphonomic experiences enable
the sequence of decay occurring within distinct environmental settings to be modeled and demonstrate
the fossilization patterns in fossil plants.
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