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Abstract: Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban
gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils,
soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the
region. This study examined total and bioaccessible soil As and Pb concentrations and accumulation
in 10 commonly grown garden plants collected from three urban community gardens in Puerto
Rico. Bioavailability values were predicted using bioaccessibility data to compare site-specific
bioavailability estimates to commonly used default exposure assumptions. Total and bioaccessible
As levels in study soils ranged from 2 to 55 mg/kg and 1 to 18 mg/kg, respectively. Total and
bioaccessible Pb levels ranged from 19 to 172 mg/kg and 17 to 97 mg/kg, respectively. Measured
bioaccessibility values corresponded to 19% to 42% bioaccessible As and 61% to 100% bioaccessible Pb
when expressed as a percent of total As and Pb respectively. Predicted relative percent bioavailability
of soil As and Pb based on measured bioaccessibility values ranged from 18% to 36% and 51% to 85%
for As and Pb respectively. Transfer factors (TFs) measuring uptake of As in plants from soil ranged
from 0 to 0.073 in the edible flesh (fruit or vegetable) of plant tissues analyzed and 0.073 to 0.444 in
edible leaves. Pb TFs ranged from 0.002 to 0.012 in flesh and 0.023 to 0.204 in leaves. Consistent with
TF values, leaves accumulated higher concentrations of As and Pb than the flesh, with the highest
tissue concentrations observed in the culantro leaf (3.2 mg/kg dw of As and 8.9 mg/kg dw of Pb).
Leaves showed a general but not statistically-significant (α = 0.05) trend of increased As and Pb
concentration with increased soil levels, while no trend was observed for flesh tissues. These findings
provide critical data that can improve accuracy and reduce uncertainty when conducting site-specific
risk determination of potential As and Pb exposure while gardening or consuming garden produce
in the understudied region of Puerto Rico.
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1. Introduction

Urban gardening, a growing trend in urban communities, is defined as the process of growing
plants in an urban setting for consumption. However, this type of gardening poses the potential for
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contamination from historical site use and environmental history. The U.S. Environmental Protection
Agency (USEPA) recommends steps to follow when developing urban garden sites, including sampling
and testing the soil for contaminants [1]. Arsenic (As) and lead (Pb) are two potential contaminants of
concern in urban gardens. As can originate from the underlying parent material or from anthropogenic
additions from agriculture or industrial inputs [2]. Pb sources can include agricultural use of Pb
arsenicals to control pests, Pb paint deposition, and air pollution deposition [3].

Direct oral ingestion of contaminated soil and consumption of plants that have accumulated As
or Pb from underlying soil have been identified as exposure pathways of concern in urban garden
soils that contain elevated levels of contaminants, including metals and metalloids (hereafter referred
to collectively as metals) [1]. Human health risk assessments of toxic metals in soils based on total
soil metal concentration can overpredict actual risk because only some percentage of metals in soil
are in a form that will be absorbed in the gastrointestinal tract upon ingestion [4]. This is referred
to as the bioavailable fraction. In vitro bioaccessibility (IVBA) assays that measure dissolution of
metals from soil in a gastric like environment are commonly used as a reliable and cost effective
estimate of soil metal bioavailability [5]. Therefore, metrics important in characterizing the potential
for human exposure to toxic metals from urban gardens include total soil metal concentration, soil
metal bioavailability/bioaccessibility, and edible plant tissue concentrations.

IVBA assays are an important tool for assessing potential human oral exposures from contaminated
soil via the direct ingestion exposure pathway to determine the metal concentration available for
absorption in the gastrointestinal tract [4,5]. These assays measure the solubility of As or Pb in a
solution that simulates the human gastrointestinal tract and are used as a reliable estimate of relative
bioavailability (RBA) tests that measure the fraction of ingested metal absorbed across the gastrointestinal
barrier in vivo [4]. IVBA assays are an attractive alternative to directly measuring RBA in vivo due to their
lower cost, higher throughput, and reduced reliance on animal testing. Understanding the relationship
between As and Pb concentrations in soil and uptake by plants is also critical for characterizing potential
exposure to these metals in urban gardens from consumption of edible plants.

Previous studies characterizing contaminant levels in urban garden produce have been conducted
in regions throughout the world, including the United States [6,7], Great Britain [8–10], and China [11].
However, published research is limited on soil and plant As and Pb levels in the Caribbean region, including
the U.S. territory of Puerto Rico. Because of regional and cultural differences in foods grown and consumed
in urban gardens in different parts of the world, additional data are needed for understudied regions.

In this study, the total and bioaccessible fractions of As and Pb in garden soils and plant tissue
concentrations sampled from three urban community gardens in Puerto Rico were measured to identify
potential exposure concerns related to human health in local communities. RBA values were predicted
based on measured IVBA values to compare site-specific bioavailability data to default bioavailability
assumptions used in exposure and risk assessment. Differences in uptake by edible plants grown in the
region were also investigated. Specifically, garden plant tissues analyzed were categorized as either leaf
(such as lettuces and herbs) or flesh (fruits or vegetables), and differences in uptake between categories
were explored based on calculated transfer factors (TFs), defined as the ratio of As or Pb concentration
in the plant relative to the soil concentration. Ten garden plants (representing nine unique plant
species) typical of those grown in urban gardens in Puerto Rico were investigated. These results add
to the existing knowledge base for characterizing potential exposure to As and Pb from urban gardens,
and provide important site-specific metal exposure information to local community members.

2. Materials and Methods

2.1. Site Descriptions

The soil and plant samples for this study were collected from three urban community garden
sites in the Martin Peña District of San Juan, Puerto Rico, shown in Figure 1. The three garden sites
are located in the region demarcated by the black border, but the exact locations are not disclosed to
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preserve the anonymity of these communities. The area is urbanized, with a river outlet splitting the
district. Two of the sites originally were empty urban lots that were converted into gardens to improve
the community’s access to healthy food. The third garden site was created in 2012 as part of a school
cooperative program. The Martin Peña District has a population of 26,000, an unemployment rate of
22%, and approximately 53% of its inhabitants live in poverty.
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Figure 1. Satellite image [12] of area surrounding Martin Peña District of Puerto Rico, with the three
urban community gardens located in the region in the black border.

2.2. Plant and Soil Sample Collection

Soil and plant tissue samples were collected from each of the three gardens and analyzed at a
USEPA laboratory in Research Triangle Park, NC. Plants at each site were grown in raised beds with
defined perimeters (such as concrete blocks or wooden boards), car tires filled with soil, or soil spread
into a four-inch mound above grade (Figure 2).

Soil samples were collected from the top one-to-two inches of soil around each plant in
accordance with USEPA guidance on sample collection for soil metal bioaccessibility determination [13].
A minimum of 100 grams (g) of soil was collected per sample. Five discrete soil samples were collected
from each garden. A composite soil sample was also collected from each garden, which, in addition
to the areas around individual garden plants analyzed in this study, included soil samples collected
(randomly) from other areas of the gardens, for a total of 18 soil samples.

Samples of the edible portions of plants were also collected from each garden. Collected plants
generally had shallow root systems (less than two inches deep). Therefore, soil below two inches
in depth was not collected for this study. Plant samples were placed into labeled plastic bags and
shipped to the USEPA laboratory for analysis. The USEPA laboratory analyzed only plant samples
with sufficient mass (greater than 0.45 g on a dry weight (dw) basis), resulting in 10 garden plants
samples being analyzed for this study. Samples consisted of the leaves of basil (from two unique basil
plants), culantro, lettuce, and pumpkin plants and the flesh portions of avocado, tomato, sweet pepper,
eggplant, and yucca fruits. Due to the season in which plant samples were collected, only the leaf of the
pumpkin plant was available for sampling; the fruit had not yet developed. Pumpkin leaves are not
commonly consumed in the United States or Puerto Rico, but inhabitants of some countries, including
Malawi, Kenya, and some South Pacific countries, rely on the leaves as a source of nutrition [14–16].
The pumpkin leaf was therefore included in this study.
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Figure 2. Examples of raised beds from the urban community gardens evaluated in this study.

2.3. Soil Sample Processing and Physicochemical Characterization

At the USEPA laboratory, the 18 soil samples were placed in an oven and dried for about five
days at less than 40 ◦C. A vibrating, 2-mm stainless-steel sieve removed large chunks of aggregate
from the soil samples. Material remaining on the screen was disaggregated using a gloved hand and
rescreened. The soil was sieved to less than 250 µm, the particle size fraction used for bioaccessibility
testing [5]. Sieved soil was passed through a riffler five times, and aliquots were collected in clean
250-mL high-density polyethylene (HDPE) bottles for analysis. Total soil element concentrations were
determined in duplicate samples of each soil by digesting soils in accordance with USEPA Method
3051 using a MARS-5 microwave system (CEM Corporation, Matthews, NC, USA). Soil samples were
analyzed in accordance with USEPA Method 6010 using an iCAP 6000 series inductively coupled
plasma (ICP)-optical emission spectrometry (OES) instrument (ThermoScientific, Waltham, MA, USA).
For pH analysis, 2 g of each soil was placed into 10 mL of water and shaken for 1 h [17].

The soil sample As and Pb concentrations were compared to human health soil screening levels
(SSLs) [18,19]. Pb soil concentrations were also compared to risk levels identified by a USEPA Technical
Review Workgroup, which provided recommended guidelines to reduce lead exposure from gardening
related activities based on soil Pb levels [20].
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2.4. Bioaccessibility Assays

Bioaccessibility of As and Pb in soil samples was determined in accordance with USEPA Method
9200.2-86. Synthetic stomach fluid (SSF) was prepared using deionized water amended with 0.4 molar
(M) glycine (certified American Chemical Society grade) acidified to a pH of 1.5 using hydrochloric
acid (HCl) (32% to 35% analytical grade) to mimic the high acidity environment in the stomach.
Bioaccessibility assays were performed in duplicate for each soil and included the addition of 1 g of
test soil to 100 mL SSF in a 125-mL HDPE bottle rotated end over end in a water bath at 37 ◦C for 1 h.
Extracted solutions were refrigerated at 4 ◦C for preservation and subsequent analysis using ICP-mass
spectrometry (MS) (USEPA Method 6020).

As and Pb bioaccessibility was calculated and expressed on a percentage basis using Equation (1).

As/Pb bioaccessibility (%) =

 in vitro As or Pb
(

mg
kg

)
total As or Pb

(
mg
kg

)
 × 100 (1)

where “in vitro As/Pb” was the As or Pb extracted during the in vitro assay and “total As/Pb” was
the total amount of As or Pb in the soil used for bioaccessibility determination.

To compare site-specific metal bioavailability data from garden soils to default bioavailability
assumptions that may be used when developing SSLs or conducting risk assessments at metal
contaminated sites, in vitro bioaccessibility (IVBA) values were converted to relative bioavailability
(RBA) predictions using validated linear models for As and Pb. Specifically, Pb RBA was calculated
based on USEPA Method 1340 [21] using Equation (2), and As RBA was calculated based on the linear
model published by Diamond et al. [22] using Equation (3).

Pb RBA (fraction) = 0.878 × Pb IVBA (fraction) − 0.028 (2)

As RBA (%) = 0.79 × As IVBA (%) + 3 (3)

2.5. Plant Sample Processing and Physicochemical Characterization

At the USEPA laboratory, the plant samples were thoroughly rinsed with deionized water to
remove residual soil, freeze-dried for 24 to 48 h, hand ground to powder, and acid digested using a
MARS-5 microwave system (CEM Corporation) in accordance with USEPA Method 3052. Because
only the edible portion of the plants were of interest, the avocado was peeled before freeze drying.
Plant samples with sufficient mass were analyzed in duplicate, with metal concentrations reported as
the average of the concentrations of the two duplicates. Plant samples without enough mass to allow
duplicate analysis yielded results for a single analysis only. Plant digests were diluted and analyzed
by USEPA Method 6020 using a Thermo Scientific X-Series II ICP-MS. Quality control (QC) samples
included analysis of an acid blank, blank spike, and National Institute of Standards and Technology
Standard Reference Material (NIST SRM) (NIST 2710A) with each microwave digestion batch.

2.6. Relationship of Soil As and Pb to Plant Uptake

Ten soil samples were paired with their associated (co-located) garden plant sample (nine plant
types, including two basil plants collected from two gardens). The other eight soil samples either did
not have a garden plant associated with them or the plant sample did not contain sufficient mass for
analysis. Plant tissues were categorized as either leaf (basil, culantro, lettuce, and pumpkin leaf) or
flesh (avocado, tomato, sweet pepper, eggplant, and yucca). Relationships between soil and plant
tissue As and Pb concentrations were investigated, and transfer factors (TFs), also commonly referred
to as uptake or concentration factor, were calculated to quantify the accumulation of As and Pb in
plant tissues using Equation (4) [23].
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TF =
Concentration (plant)
Concentration (soil)

(4)

3. Results

3.1. Soil As and Pb Levels

Table 1 summarizes the soil total, measured bioaccessible, and predicted bioavailable As and Pb
results for Gardens 1, 2, and 3. In the 18 soil samples analyzed, As total soil concentrations ranged from
2.0 to 55.4 milligrams per kilogram (mg/kg) (mean = 9.0 mg/kg), and Pb concentrations ranged from
19.1 to 172.0 mg/kg (mean = 44.6 mg/kg). For reference, background As and Pb concentrations in soils
sampled across the continental United States range from 0.1 to 97 and 2 to 300 mg/kg, respectively [2].
Table 1 also presents the results for aluminum (Al), iron (Fe), and soil pH because these soil properties
have been identified as influencing soil metal bioaccessibility [5,24,25].

Table 1. Total bioaccessible and bioavailable As and Pb in study soils and additional soil properties
of interest.

Garden Soil ID
Arsenic Lead

Al (%) Fe (%) pHTotal
(mg/kg) IVBA (%) 1 RBA (%) 2 Total

(mg/kg) IVBA (%) 1 RBA (%) 3

1

Soil 1 55.4 32 28 130.9 74 62 1.26 2.44 7.4
Soil 2 14.8 29 26 87.0 77 65 1.10 2.17 7.8
Soil 3 11.3 19 18 56.6 65 54 1.27 2.60 7.9
Soil 4 9.8 21 20 82.2 63 53 1.23 3.24 8.0
Soil 5 12.0 20 19 54.7 61 51 1.21 2.70 8.0

Composite 14.1 26 24 172.0 78 66 1.52 2.82 8.2

2

Soil 1 8.8 4 24 22 34.5 65 54 2.19 3.24 7.9
Soil 2 6.6 4 24 22 30.7 68 57 1.42 2.42 7.8
Soil 3 7.2 4 24 22 43.6 73 61 1.35 2.32 7.8
Soil 4 9.1 4 25 23 35.9 78 66 1.40 2.50 7.9
Soil 5 5.7 4 20 19 21.6 61 51 1.25 1.90 7.6

Composite 8.8 4 29 26 34.7 76 64 1.49 2.53 7.8

3

Soil 1 5.3 4 24 22 41.7 72 60 0.86 2.06 8.0
Soil 2 2.0 4 32 28 19.1 87 74 1.10 1.82 7.9
Soil 3 6.7 4 42 36 22.9 100 85 1.56 2.36 8.0
Soil 4 8.5 4 31 27 40.0 75 63 0.96 2.15 8.0
Soil 5 9.6 4 22 20 30.1 93 79 1.27 2.38 7.9

Composite 8.1 4 19 18 35.6 68 57 1.47 2.97 7.9
1 Measured directly using EPA Method 9200.2-86; 2 Predicted based on the linear model developed by Diamond et al. [22];
3 Predicted based on the linear model provided in EPA Method 1340 [21]; 4 Values were below the reporting limit
for As of 9.7 mg/kg and therefore considered estimated.

3.2. Soil As and Pb Bioaccessibility and Bioavailability

Across the 18 soil samples, As IVBA ranged from 19% to 42%. Estimated RBA values, predicted
based on measured IVBA values, ranged from 18% to 36%. Pb IVBA and RBA values ranged from
61% to 100% and 51% to 85% respectively (Table 1). Results for all associated quality control samples,
including blanks, blank spikes, and NIST SRM 2710A standard reference material used to measure
IVBA were within acceptable limits as defined by USEPA Method 9200.2-86.

3.3. Plant Uptake of As and Pb

Table 2 summarizes As and Pb concentrations in plant tissues collected from the three gardens, along
with the paired soil concentrations and TFs. Detectable As and Pb levels were observed in every plant
sample analyzed except for the tomato, which had As levels below the method reporting limit of 0.04 mg/kg
dw. Plant tissue As concentrations ranged from less than 0.04 to 3.2 mg/kg dw. Pb concentrations ranged
from 0.1 to 8.9 mg/kg dw. The highest concentrations for both As (3.2 mg/kg dw) and Pb (8.9 mg/kg dw)
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were observed in the culantro leaf. All associated QC samples analyzed were within acceptable limits (i.e.,
±15% recovery of expected value or below method reporting limit for blanks).

Leafy plant tissues accumulated higher concentrations of As and Pb than the flesh of fruits and
vegetables analyzed (Figure 3), with As TFs ranging from 0.073 to 0.444 and 0.000 to 0.073 for leaf and
flesh plant tissues respectively. Pb TFs ranged from 0.058 to 0.204 and 0.002 to 0.012 for leaf and flesh
plant tissues respectively.

Geosciences 2018, 8, x FOR PEER REVIEW  8 of 13 

 

3.2. Soil As and Pb Bioaccessibility and Bioavailability 

Across the 18 soil samples, As IVBA ranged from 19 to 42%. Estimated RBA values, predicted 
based on measured IVBA values, ranged from 18 to 36%. Pb IVBA and RBA values ranged from 61 
to 100% and 51 to 85% respectively (Table 1). Results for all associated quality control samples, 
including blanks, blank spikes, and NIST SRM 2710A standard reference material used to measure 
IVBA were within acceptable limits as defined by USEPA Method 9200.2-86. 

3.3. Plant Uptake of As and Pb 

Table 2 summarizes As and Pb concentrations in plant tissues collected from the three gardens, 
along with the paired soil concentrations and TFs. Detectable As and Pb levels were observed in every 
plant sample analyzed except for the tomato, which had As levels below the method reporting limit 
of 0.04 mg/kg dw. Plant tissue As concentrations ranged from less than 0.04 to 3.2 mg/kg dw. Pb 
concentrations ranged from 0.1 to 8.9 mg/kg dw. The highest concentrations for both As (3.2 mg/kg 
dw) and Pb (8.9 mg/kg dw) were observed in the culantro leaf. All associated QC samples analyzed 
were within acceptable limits (i.e., ±15% recovery of expected value or below method reporting limit 
for blanks). 

Leafy plant tissues accumulated higher concentrations of As and Pb than the flesh of fruits and 
vegetables analyzed (Figure 3), with As TFs ranging from 0.073 to 0.444 and 0.000 to 0.073 for leaf 
and flesh plant tissues respectively. Pb TFs ranged from 0.058 to 0.204 and 0.002 to 0.012 for leaf and 
flesh plant tissues respectively. 

 
(a) Arsenic 

 
(b) Lead 

Figure 3. Relationship between soil As and Pb concentration and uptake in plant tissues categorized 
as leaf or flesh. 
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Table 2. Paired plant and soil As and Pb concentrations with associated TFs. Plant concentrations
reported on a dry weight basis.

Garden Plant Tissue Plant As (mg/kg) 1 Soil As
(mg/kg) As TF Plant Pb

(mg/kg) 1
Soil Pb
(mg/kg) Pb TF

1
Avocado Flesh 0.51 ± 0.03 55.4 0.009 0.22 ± 0.02 130.9 0.002
Tomato Flesh <0.04 11.3 0.000 0.09 ± 0.01 56.6 0.002

Sweet Pepper 2 Flesh 0.11 14.8 0.007 0.28 87.0 0.003

2

Eggplant Flesh 0.48 ± 0.22 6.6 0.073 0.38 ± 0.12 30.7 0.012
Yucca Flesh 0.17 ± 0.01 8.8 0.019 0.20 ± 0.01 33.5 0.006
Basil Leaf 0.66 ± 0.01 9.1 0.073 2.1 ± 0.1 35.9 0.058

Culantro 2 Leaf 3.2 7.2 0.444 8.9 43.6 0.204

3
Lettuce Leaf 0.87 ± 0.01 6.7 0.130 2.9 ± 0.1 22.9 0.127

Pumpkin Leaf 2.1 ± 0.1 9.6 0.219 5.2 ± 0.2 30.1 0.173
Basil2 Leaf 0.31 2.0 0.155 0.44 19.1 0.023

1 Values reported as the average ± standard deviation of two replicate samples unless otherwise noted; 2 Only a
single plant replicate was analyzed due to insufficient tissue mass for duplicate.
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4. Discussion

Human health SSLs for As in the United States based on the direct soil ingestion exposure pathway
vary by state or region and generally range from 0.04 to 40 mg/kg, which corresponds to a 1 in 1 million
to 1 in 10,000 incremental cancer risk [18]. SSLs are not remediation levels but rather guidelines to
help determine if sites or portions of sites require further investigation. One soil sample from Garden
1 contained As at 55.4 mg/kg, exceeding the highest aforementioned SSL of 40 mg/kg. Other soils
had As concentrations above some state-specific SSLs. However, As concentrations in these soils were
closer to typical background levels of As in soil.

The USEPA has established 400 mg/kg as the human health SSL for Pb based on the direct soil
ingestion exposure pathway, assuming a default RBA of 60% [19,26]. Residential areas with soil Pb
concentrations below 400 mg/kg may require no additional action. However, some actions may be
needed in gardens containing soil Pb concentrations below 400 mg/kg to reduce the potential for
increased Pb exposure [20]. According to recommended guidelines regarding gardening, soil Pb levels
under 100 mg/kg are considered low risk, with no additional action needed [20]. Most of the garden
soil samples evaluated for Pb in this study were below this level. However, two soil samples from
Garden 1 contained Pb at concentrations exceeding 100 mg/kg (131 mg and 172 mg/kg).

All garden soils evaluated in this study had As RBA values (predicted based of measured IVBA
values) at or below 36%. Observed site-specific RBA values suggest exposure risk from oral ingestion
of As from these garden soils would be less than that determined under scenarios where bioavailability
data is not considered or a default RBA value of 60% [27] is used. Pb RBA values in study soils ranged
from 51% to 85%, with the two soil samples that contained Pb above 100 mg/kg having predicted
RBA values of 62% and 66%, slightly above the default assumption of 60% used in development of
screening levels of Pb contaminated soils. Because even small changes in bioavailability values used
in risk determination can have significant impacts on calculated risk [4], the use of site-specific data
rather than default assumptions can improve the accuracy of human health risk assessments of metal
contaminated soils. While the in vitro bioaccessibility assay used in this study, which uses a stomach
phase only, has been demonstrated as a reliable predictor of As [28,29] and Pb RBA [21], it should be
noted that alternative in vitro bioaccessibility assays that use a two-phase system (gastric and intestinal
phase) may result in differences in measured bioaccessibility or predicted RBA.

For garden soils that exceed As or Pb levels determined to be low risk for exposure, the USEPA
recommends (1) decreasing the planting of root vegetables; (2) relocating plants to lower risk areas;
(3) increasing soil amendments and barriers to reduce soil deposition onto leafy vegetables; (4) wearing
gloves to reduce contact with and potential ingestion of soil; and (5) planting vegetables that are not in
direct contact with the soil (such as fruit trees) [20].

While SSLs are typically based on the direct soil ingestion exposure pathway, consideration of
the soil–plant–human exposure pathway may also be important to accurately characterize exposure
to toxic metals in urban gardens, especially for As [30]. Consistent with previous research [31,32],
plant TF data indicated that the garden plants in this study tended to concentrate As from soils in
tissues more heavily than Pb across the range of observed soil As and Pb concentrations, with As TFs
averaging 0.105 compared to an average Pb TF of 0.056. The higher concentrations of Pb than As in
plant tissues observed in this study, therefore, were likely a result of the higher total Pb concentrations
in the garden soils as compared to As, averaging 30.3 and 6.9 mg/kg for soil Pb and As respectively.

Also consistent with previous research [31,33,34], leaf tissues concentrated As and Pb more heavily
than the flesh of plants, with As TFs averaging 0.204 and 0.022 for leaf and flesh tissues respectively,
and Pb TFs averaging 0.117 and 0.005 for leaf and flesh tissues. Higher tissue concentrations in leafy
plant tissues may be due to leafy plants and herbs propensity to grow at faster rates and have higher
transpiration rates than non-leaf plants [35]. Foliar metal uptake in leaves may also contribute to
higher leaf tissue metal concentrations [36]. A general, albeit not statistically-significant (α = 0.05),
trend of increased Pb and As concentration in leaf tissues was observed with increasing total soil
metal concentration, while no such trend was observed for flesh plant tissues (Figure 3). Culantro,
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in the Apiaceae family, had the highest TF of the plant samples in our study. Other studies have found
similarly high uptake and concentration of metals, including As and Pb, in cilantro, a plant similar
to culantro also in the Apiaceae family, and other herbs compared to other garden plant types [37–39].
To our knowledge, TFs for culantro have not been previously reported in the literature.

While beyond the scope of this study, additional factors should be considered when determining
exposure risk from consumption of garden plants. For example, while TFs were generally higher for
leaf plant tissues than flesh, the amount of each food typically consumed should also be considered
when determining exposure risk. Additionally, adherence of contaminated soil onto plant tissue can
also contribute to exposure through handling or consumption of unwashed plants [20].

Because site-specific exposure data, including soil metal bioavailability/bioaccessibility and plant
uptake, may differ from default assumptions, consideration of such data can improve accuracy and
reduce uncertainty in risk determination from potential exposure to As, Pb, or other toxic metals from
urban gardening related activities.
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