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Abstract: The Philippines is exposed to numerous typhoons every year, each of which poses a
potential threat to livelihoods, shelter, and in some cases life. Flooding caused by such events
leads to extensive damage to land and buildings, and the impact on rural communities can be
severe. The global community is calling for action to address and achieve disaster risk reduction
for communities and people exposed to such events. Achieving this requires an understanding
of the nature of the risks that flooding and typhoons pose to these communities and their homes.
This paper presents the findings from a field based case study assessment of three rural settlements
in the Philippines, where typhoons and associated flooding in recent years has caused significant
damage to houses and livelihoods, leading to the reconstruction of homes that more often than not
reproduce similar structural vulnerabilities as were there before these hazards occurred. This work
presents a methodology for risk assessment of such structures profiling the flood and wind hazards
and measuring physical vulnerability and the experience of communities affected. The aim of the
work is to demonstrate a method for identifying risks in these communities, and seeks to address the
challenge faced by practitioners of assisting communities in rebuilding their homes in more resilient
ways. The work set out here contributes to the discussion about how best to enable practitioners
and communities to achieve the sought for risk reduction and especially highlights the role that
geoscience and engineering can have in achieving this ambition.
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1. Introduction

1.1. Background

On average, 20 typhoons affect the Philippines every year, ranging in severity from annually
recurring moderate events, up to extreme events such as the super-typhoon Haiyan (local name
Yolanda), which affected the country in November 2013 [1]. Typhoons bring high winds, heavy rainfall,
and flooding to the Philippines, causing damage to both land and property. In the case of severe events
such as Haiyan, the extent of damage and destruction is significant enough to instigate an international
aid response, as part of which International Non-Governmental Organisations (INGOs) seek to assist
in helping communities recover from the impacts of the event.

The Sendai Framework for Disaster Risk Reduction [2] sets the current agenda of the global
community for reducing the risks from disasters and calls in its first priority area for greater
“understanding of disaster risk in all its dimensions of vulnerability, capacity, exposure of persons
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and assets, hazard characteristics and the environment”. Calculation of risk requires measurement
of the vulnerability, hazard, and exposure components of the system [3], and where losses to assets
are being considered the physical interaction of the natural and man-made environments typically
lead to the computation of this risk. Disasters caused by natural hazards often lead to far greater
human and economic losses in low- and middle-income countries such as the Philippines [4], where
impactful disaster risk reduction measures are not yet embedded or widely available to communities
and people [5].

Rapid urbanisation in developing countries is generating a growing focus on understanding risk
and risk reduction within this context [6], with the effects of future urban expansion on disaster
risks to poor urban populations a particular concern [7,8]. Work focused on reducing risk in
developing urban environments calls for greater synthesis in the collection and use of hazard
and vulnerability data for calculating physical risk [9], with the role of geoscience in particular
growing [10]. Risk assessments incorporating measures of physical vulnerability to natural hazards
for rural and indigenous settlements in low and middle income countries are less frequent. Despite
this community and culture are acknowledged as important components of understanding disaster
risk manifestation [11], and the role of indigenous knowledge in mitigating disaster risks is further
appreciated [12].

In the case of typhoon events, which manifest as wind and flood hazards, the influence of
geomorphology on the characteristics of those hazards is significant. Alcantra-Ayala and Goudie
present a thorough review of the role of geomorphology in disasters caused by natural hazards,
including earthquakes, volcanoes, and floods [13]. Fluvial geomorphology is a direct driver of flood
hazard. Slater et al. [14] demonstrate that river channel capacity and surface roughness is significant
in contributing to flood hazard extent, whilst Yumul et al. [15] report that in the Philippines in 2008,
artificial damming of rivers by breaching of saturated ground caused flooding from Typhoon Frank.
A typhoon and its associated excessive rainfall can trigger secondary hazards such as landslides,
if the geomorphological conditions promote this [16], whilst storm surges brought on by wind
hazards such as in Typhoon Haiyan are being used to measure the geomorphological impact of
typhoons and subsequently gauge hazard severities [17], providing an important reference for future
risk assessments.

Flood hazard mapping in rural areas can be challenging due to lack of available high quality data.
For example, Sanyal and Lu [18] carried out an assessment of rural communities in West Bengal and
highlighted that tree cover in the settlement hindered the process of extracting robust flood inundation
information. Osti et al. [19] further explore the problem of quantifying and predicting flood hazards
from the perspective of flood hazard mapping in developing countries, and importantly highlight the
value of community based mapping in understanding and mitigating flood risks in these contexts.
Abon et al. [20] extend this to the development of community-based flood monitoring leading to an
early warning system for flooding in the Philippines. More recently, the focus has been on highlighting
the value of technological advancements in assisting hazard mapping capabilities [21], and within the
Philippines, satellite imagery has been used to map both storm surge extent and associated building
damage in the Tacloban region, as a result of Typhoon Haiyan [22]. Ongoing work is using new
high-resolution topographic information in landslide susceptibility assessments [23] and in flood
simulation models that are used to inform flood hazard maps [24] and use predictive rainfall scenarios
to predict flood hazard [25].

Definitions of vulnerability differ widely depending on the entity being considered (human,
physical, system, etc.) and the nature of the hazard to which it is exposed [26]. Physical vulnerability
assessment in the context of flood and wind hazards can be carried out via a number of different
means including employing anecdotal loss data, indicator methods, or more theoretical predictive
strategies, as reviewed by Nasiri et al. [27] for flooding and Pita et al. [28] for hurricanes. Typically, the
assessor will choose the most appropriate and feasible method for the given situation. In the context of
a super-typhoon, where human loss is a significant factor, the collection of loss or damage data is not a
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priority in the post-disaster response. Likewise, the extent of destruction hinders the development of
statistical damage curves for physical loss in the built environment as so much of the damage is total.

Work assessing typhoon vulnerability that applies damage assessment methods has focused on
engineered structures in the Philippines, although assessments have considered the multi-hazard
context of wind and flood. In the aftermath of Typhoon Haiyan, Chen et al. [29] applied a structural
damage rating system to concrete framed structures in Tacloban to profile the extent of damage across
the site, concluding that wind was a more significant cause of damage than flood. Hernandez et al. [30]
carried out a damage survey in Leyte and Samar following Haiyan on a range of buildings including
timber, concrete, and steel. Here, it is reported that the majority of non-engineered buildings
surveyed suffered total collapse, whilst in engineered buildings, much of the damage was to
non-structural components.

Assessments of vulnerability to typhoons have been carried out for rural housing in other
countries such as India. A study by Goyal et al. [31] presented a hurricane vulnerability assessment
of traditional rural houses using pre-defined damage classification and a condition assessment of
the buildings incorporating construction quality and age. Meanwhile, Alam et al. [32] undertook a
detailed assessment using building geometry, construction and materials to determine vulnerability
in local bamboo structures in Bangladesh. Work looking at the vulnerability of rural communities
in the Philippines has taken holistic approaches that include consideration of building condition
and robustness. Campanero and Regaro [33] recorded whether houses were constructed of heavy
or lightweight materials in their study seeking to quantify social vulnerability to Typhoon Haiyan.
Usamah et al. [34] used a measure of the degree of concrete present and building geometry to indicate
vulnerability to wind and flood hazards in their holistic study of housing in informal settlements in the
Philippines. Resilience-based assessments of buildings exposed to flooding in developing countries
are emerging [35], although not in relation to the type of traditional timber and bamboo structures
prevalent in rural Philippines.

As more focus is placed on reducing disaster risk in low- and middle-income countries by
investing time and resources in increasing resilience to hazards such as floods and wind, so these
risk-based approaches will become more developed and available. So far, good progress is being made
in both measuring and communicating flood hazard in these communities, but much work is still
to be done. Two critical factors in this are the consideration of local and indigenous knowledge in
understanding hazards and furthering understanding of the relationship of geoscience with those
communities to achieve this end. From the perspective of physical vulnerability, there is a growing
focus on non-engineered and vernacular structures in relation to typhoon, flood, and wind hazards,
with some key outputs developing in terms of both engineering assessment and the role this plays
in holistic societal resilience to these disasters. Further progress in this is needed to reduce epistemic
uncertainty surrounding the response of these structures to flood and wind loads, which ongoing
research is addressing [36].

As this progress continues, the outputs will be available to those whose role is increasingly to
deliver risk reduction in low- and middle-income countries, not least the shelter practice community
hosted within NGOs and international aid institutions [37]. Within the context of shelter aid,
practitioners focus on helping communities and householders recover through providing physical
assistance in the form of materials and, increasingly, cash [38]. Beyond this, additional assistance on
best practices for rebuilding houses is often provided, delivered in the form of “Build Back Safer”
(BBS) key messages [39] and promoted through various strategies, including poster presentation,
and community-based education and training. Early work from the global engineering community
focused on developing countries [40] sets out much of the foundations for the key messages used
today. The messages are designed to provide basic construction advice that can be understood by
people without an engineering or technical background but also consider contextually appropriate,
affordable, and available local materials [41].
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Messages are often focused on structural vulnerability, and little consideration is given to the
nature of their environmental setting. In many contexts, this renders them inadequate [42] and unable
to support the rapidly changing needs, priorities, and capacities of disaster affected populations.
The role of geosciences in post-disaster recovery is significant in understanding rapid environmental
change caused by disasters, mapping hazards, and predicting future risk. From a humanitarian
perspective, hazard and risk reduction awareness plays a significant role in people’s capacities to
recover over time and reduce risk to future hazards, and the sector is actively seeking to embed risk
approaches into the provision shelter support. For example, disaster-affected communities often
face frequent and varying hazards at the same time that can delay housing recovery and inhibit and
influence the impact of guidance provided by the humanitarian community [43].

The uptake of BBS messages once communicated has been a challenge for the sector [44]. It is
widely accepted that a greater understanding of effective communication and behavior change
mechanisms need to be explored, as well as understanding the multiple external factors that affect
reconstruction decisions of disaster-affected households. Framing responses to this challenge in the
context of understanding and communicating risk is fundamental to achieving progress. Work to
this end is being carried out to improve capacity to develop such messages in an efficient and timely
manner despite the difficulties of post-disaster environments [45]. Nonetheless, research into building
back safer clearly states that developing context-appropriate, effective, applicable and timely safer
reconstruction advice requires significant involvement from multiple disciplines, including expertise
on environmental hazards and engineering [46].

1.2. Research Aims

In light of this state of progress of knowledge and application of geoscience and engineering to
the understanding and delivery of disaster risk reduction, the authors here present an approach to
measuring risk for inland rural communities in the Philippines exposed to wind and flood hazards
from typhoons. The aim of the work is to highlight through case study demonstration how hazard
data and severity indices can be combined with rapid physical vulnerability assessments to produce
a measurable scale of risk within the spatial context of a settlement. The work draws on existing
flood hazard mapping tools for the Philippines and combines this with a site-deployable physical
vulnerability index which has been applied to three villages in the island of Leyte.

In the following sections, a description of the methods applied is given (Section 2), followed by
a presentation of the results of the hazard and vulnerability assessments (Section 3). The discussion
focusses on how the approach could potentially contribute to delivering disaster risk reduction in low
and middle income countries that are exposed to typhoons, such as the Philippines. The steps required
to continue to integrate the role of geoscience and engineering into risk reduction interventions in
these contexts are explored and how best to meet the needs of an evolving shelter practice that aspires
to provide an inter-disciplinary approach to promoting resilience in disaster-affected communities.

2. Methodology

The Case Studies

In March 2017, the authors, a team comprising a geomorphologist, engineer, and shelter researcher,
visited three rural communities on the eastern side of the central volcanic uplands of Leyte: Badiangay,
Plaridel, and Calabnian (Figure 1). The selection of the sites was made through considering rural
community locations where shelter assistance from NGOs had been given over an extended period of
time in the three and a half years following Typhoon Haiyan, in the form of expert advice, training, cash,
and material support. This offered the opportunity to survey buildings that had become permanent
homes in the wake of the disaster and therefore are suitable for consideration in the context of
measuring long-term risk and resilience. The buildings were not assessed against any degree of BBS
message uptake but rather a visual assessment of the structures that recorded their features without
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any bias, as the influence of message uptake on shelter vulnerability is at this stage beyond the scope
of the work.

The three sites were each visited for one day, in which multiple methods of data collection were
applied. In the field, transect walks with community members were undertaken in each location.
These transect walks provided an opportunity to speak to community members about their knowledge
and awareness of their surrounding environment and hazard context. During the walks, community
members pointed out areas that they perceived to be susceptible to different hazards and spoke about
their experience of typhoon Haiyan in terms of damage caused to land and property. Focus groups
provided opportunity for more detailed discussion regarding the hazards experienced at the sites,
where timelines were constructed for extreme and severe weather events that had been experienced
within the community’s living memory.

A photographic record of each location was built up during the walks, focusing on reconstructed
shelters present in the communities and natural features that informed an understanding of the nature
of the hazards. The geomorphological context for each community was further investigated using
30 m and 90 m resolution Shuttle Radar Topography Mission (STRM) elevation datasets (Global 1-arc
version 3, and global 3-arc version 3, after NASA JPL [47,48]). Satellite imagery, available through
Google Earth, was also collated, with pre- and post-event images providing a useful means to assess
the impact of the hazards on homes and on the landscape (e.g., Figure 2).

Figure 1. Location of the three case studies in the Philippines on the island of Leyte to the South-West
of Tacloban, where typhoon Haiyan made landfall. The background elevation data is from NASA
Shuttle Radar Topography Mission (STRM) [48].
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Figure 2. (A) Digital Globe image (23 February 2012) courtesy of Google Earth showing the 
community of Badiangay prior to Typhoon Haiyan. (B) CNES/Airbus image (13 November 2013) 
courtesy of Google Earth showing the community five days after Typhoon Haiyan passed through. 

Both nationally produced data and local community knowledge were used in order to produce 
a hazard profile for each site. The geographical and hazard context for each community is presented 
in the next section, and these characteristics are schematically illustrated in Figure 3. In addition to 
the external hazard data, community perceptions of flood hazard and experiences of flood events 
offer important context to the design of the risk-based model for supporting recovery. These insights 
offer confirmation of the nature of the hazard that is shown in maps and enrich the context in which 
practitioners are able to assist in the recovery process. Key observations and perceptions of 
community members are also discussed in the following section. 

Figure 2. (A) Digital Globe image (23 February 2012) courtesy of Google Earth showing the community
of Badiangay prior to Typhoon Haiyan. (B) CNES/Airbus image (13 November 2013) courtesy of
Google Earth showing the community five days after Typhoon Haiyan passed through.

Both nationally produced data and local community knowledge were used in order to produce a
hazard profile for each site. The geographical and hazard context for each community is presented
in the next section, and these characteristics are schematically illustrated in Figure 3. In addition to
the external hazard data, community perceptions of flood hazard and experiences of flood events
offer important context to the design of the risk-based model for supporting recovery. These insights
offer confirmation of the nature of the hazard that is shown in maps and enrich the context in which
practitioners are able to assist in the recovery process. Key observations and perceptions of community
members are also discussed in the following section.
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Across the sites, the buildings were typically constructed of a timber frame and clad with either 
bamboo or other timber (Figures 8 and 9). In most cases, the cladding panels were permeable, being 
made of traditional woven palm or bamboo lath. Roofs were either gable-ended or hipped, and it was 
common for the upper portion of the façade to be open to allow roof-level ventilation (Figures 4 and 
5). At ground level, shelters often included a raised floor, providing a storage area beneath the house 
(Figure 4). Foundations were predominantly formed of posts dug into the ground or, in some cases, 
a concrete slab was present (Figure 5). 

 
Figure 4. Example house from Calabnian showing woven palm façade, roof level ventilation, raised 
ground floor, and sunken post foundations. 

 
Figure 5. Example house from Plaridel showing timber façade, hipped roof, and concrete slab base. 

Figure 3. Vertically exaggerated schematic cross section to show the geographical context and simplified
geology of the communities investigated in this study. P: Plaridel, C: Calabnian, B: Badiangay. The
dashed line represents groundwater level.

Across the sites, the buildings were typically constructed of a timber frame and clad with either
bamboo or other timber (Figures 8 and 9). In most cases, the cladding panels were permeable, being
made of traditional woven palm or bamboo lath. Roofs were either gable-ended or hipped, and it was
common for the upper portion of the façade to be open to allow roof-level ventilation (Figures 4 and 5).
At ground level, shelters often included a raised floor, providing a storage area beneath the house
(Figure 4). Foundations were predominantly formed of posts dug into the ground or, in some cases,
a concrete slab was present (Figure 5).
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3. Results

3.1. Profiling the Hazards

The two hazards considered in this study are flooding and high winds associated with the effects of
typhoons in low relief, inland landscapes. Other non-hydrometeorological hazards (e.g., earthquakes)
are not considered in this work. The Mines and Geosciences Bureau 1:10,000 scale flood hazard
maps [49–52] indicate areas of low, moderate, high, and very high flood susceptibility. Each category is
associated with a range of likely flood heights and durations associated with prolonged and heavy rains,
and a general description of the topography and geomorphology in the area (Table 1). These maps were
downloaded from the MGB website and can also be viewed via an online map viewer (http://gdis.
mgb.gov.ph/mgbpublic/). In addition, the Nationwide Operational Assessment of Hazards (Project
NOAH) has produced flood inundation maps based on simulations of a 100 year return rainfall event
for Leyte. The NOAH maps were viewed on a web-GIS viewer (http://noah.dost.gov.ph/#/) and open
data GIS files were downloaded from the NOAH website (http://center.noah.up.edu.ph/resources).
The NOAH maps give a range of inundation heights and identify zones with different modelled
hazard levels [24] (Table 1).

Table 1. Flood hazard levels derived from Mines and Geosciences Bureau (MGB) and Project NOAH
maps. The rating for risk matrix column on the right hand side attempts to merge these hazard levels
into simple high (H), medium (M), and low (L) scores so they can be combined within the risk matrix
(Figure 15).

Source Hazard Level Flood Height Flood
Duration Topography Rating for

Risk Matrix

MGB 1:10K flood
hazard maps

Low susceptibility ≤0.5 m ≤1 day Low hills, gentle slopes. L

Moderate
susceptibility 0.5−1 m 1−3 days Fluvial terraces, alluvial

fans, infilled valleys. M

High susceptibility 1−2 m ≥3 days Active river channels,
along river banks. H

Very High
susceptibility ≥2 m ≥3 days Active river channels,

along river banks. H

NOAH 100 year
return flood model

1 ≤0.5 m − - L

2 0.5−1.5 m − - M

3 ≥1.5 m − - H

A quantitative indication of wind hazard is available from the multi-hazard building suitability
map for Leyte, produced by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)
GmbH [53]. These authors used modelled regional (30 km2 raster resolution) maximum wind
speeds (sustained for three seconds) with return intervals of 50, 100, 250, 500, and 1000 years,
which are available as GIS files from the Probabilistic Risk Assessment (CAPRA) Programme
(http://risk.preventionweb.net/capraviewer). The regional CAPRA values were then adjusted to
site-specific wind speeds using a factor based on land cover, surface slope, and aspect [53].

3.1.1. Badiangay

Badiangay is located on flat (slope of <0.2◦), low-lying ground (approximately 10 m above sea
level (a.s.l.)), which forms the flood plain of Bangton River (Figure 6). The eastern edge of Badiangay
is approximately 400 m away from the river. The soil is naturally clayey, and during the field visit
(March 2017), standing water was observed in many of the surrounding rice fields. The main road
through the community, and many of the houses, are built on a narrow strip of artificially elevated
ground consisting of cobbles, gravel, and sand (locals indicated that these materials were brought in
from elsewhere by truck), which helps reduce vulnerability to the local flood hazard (Figure 6a). Many
of the houses are clustered closely together on, and adjacent to, this strip of ground.

http://gdis.mgb.gov.ph/mgbpublic/
http://gdis.mgb.gov.ph/mgbpublic/
http://noah.dost.gov.ph/#/
http://center.noah.up.edu.ph/resources
http://risk.preventionweb.net/capraviewer
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Figure 6. (A) Badiangay occupies flat ground along the flood plain of the Bangon River. The main road
through the community and the adjacent houses are built upon a narrow strip of artificially elevated
ground comprising cobbles, sand, and gravel, which has been brought into the area. (B) Project NOAH
flood hazard levels associated with a 100-year return rainfall event. Base map provided by ESRI
(C) Community developed map showing areas of flooding based on the community’s experience.
(D) Extent of flooding following heavy rainfall associated with Typhoon Hagupit (2014). DigitalGlobe
image captured on 9 December 2014, courtesy of Google Earth.

Badiangay is built upon ground mapped by MGB as having a high to moderate susceptibility to
flooding. The Project NOAH 100 year flood map suggests an increasing hazard level from zero to the
west of the community up to 3 in the eastern side (Figure 6b). The CAPRA regional 50-year return
period maximum wind speed is 209 km h−1. Given the expansive open ground around Badiangay, the
adjustment factor applied by GIZ [53] has limited impact on the modelled local 50 year return wind
speed, which is 195 km h−1. Although Badiangay lies to the west of the Tacloban Hills, the height of
the hills is probably insufficient, and the distance from the foot of the hills it too far, for the community
to be offered shelter from typhoon winds.

The community recounted the severe extent of damage to buildings that was caused by high
winds during Typhoon Haiyan in 2013. 125 out of 128 houses were totally or partially damaged
(Figure 2a,b) during the event. In addition to the wind hazard, the community experienced ‘knee deep’
to ‘waist deep’ flooding. Flooding was also highlighted as a hazard that impacts the community on
a regular basis: “we experience flooding every year . . . water can stay high for several days”. The
community’s own experience of the flood hazard is expressed in their community-developed map,
which highlights a high level of hazard in the eastern side of the community (Figure 6c). The map,
and the spoken accounts from individuals in the community, support the assigned hazard levels and
descriptions in both the MGB and Project NOAH Maps. The spatial pattern of flooding shown in
the Project NOAH map also correlates well with the flood extent observed from satellite imagery
following heavy rainfall associated with Typhoon Hagupit in 2014 (Figure 6b,d). As a result of the high
level of flood hazard in the community (particularly in the eastern end) many individuals expressed
a desire to add a second floor to their homes: “When it floods, people put belongings on the second
floor or build temporary stores up high”, “Last December flooding reached head height, so I want a
two-storey house”.
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3.1.2. Plaridel

The community of Plaridel (130 m a.s.l.) is developed upon an alluvial fan that extends out from
the volcanic hills to the west. The surface of the fan slopes very gently toward the north-east at an
average angle of approximately 1.5◦. The center of the community is located approximately 400 m
from the Binahaan river to the north and approximately 100 m from the smaller Panda river to the
south. Both these rivers are incising into the alluvial fan, with Plaridel sitting on an elevated terrace in
between (Figures 3 and 7). The soil is a sandy loam. During the field visit, locals said that their pump
well reaches a depth of 25 m and that the subsurface material to that depth mostly consists of sand.

Plaridel is built upon ground mapped by MGB as having zero to low flood susceptibility. The
Project NOAH 100-year flood map suggests that most of the community has no flood hazard, with a
small area in the east exposed to a level 1 hazard (Figure 7). The CAPRA regional 50 year return period
maximum wind speed is 207 km h−1, and the adjusted local wind speed that is shown in the maps
produced by GIZ [53] is somewhat lower (165 km h−1), reflecting the influence of forest cover.

In Plaridel, damage to housing during Typhoon Haiyan was almost entirely caused by wind,
with the majority of the shelters requiring extensive or complete rebuilds after the event. During the
focus group discussions, community members indicated that water levels locally reached knee depth
but lowered quickly after. The well-drained sand and gravel below the community (Figure 3) means
that prolonged flooding is unlikely to occur: “the water only stays high for one hour—we are not
flood prone”. The community is aware of its position in relation to the surrounding environment
and how this reduces the flood hazard that they are exposed to: “the ground is higher here than in
other areas . . . no one lives in areas that get washed out”. These observations describing a relatively
low flood hazard are consistent with patterns shown in the flood hazard maps produced by Project
NOAH (Figure 7) and MGB [52]. However, it is worth noting that, while the community escapes direct
flooding, it is still impacted by flood waters cutting off access and isolating it: “Even though when the
rivers are high we are safe, we still get trapped”.

3.1.3. Calabnian

The geographical context for Calabnian is somewhat similar to Plaridel. Calabnian (approximately
50 m a.s.l.) is also developed on an alluvial fan, which slopes gently (approximately 1.5◦) towards
the east. The community is bounded by rivers 500 m to the north, and 100 m to the south. However,
unlike Plaridel, Calabnian is not developed on a prominent terrace on the alluvial fan surface; and the
ground surface is closer to the elevation of the river that flows past the southern edge of the community
(Figures 3 and 8). The soil is a sandy loam. During the field visit locals indicated that sands continue
to at least 6 m below the surface (the depth of one of their pump wells).

The 1:10,000 scale MGB maps assign zero to low flood susceptibility for the northern side of
Calabnian; however, the southern half of the community is assigned a moderate flood susceptibility.
Similarly, the NOAH 100-year flood hazard is zero in the north-western side of Calabnian and
level 3 in the southern side he community (Figure 8b). The CAPRA regional 50-year return period
maximum wind speed is 203 km h−1. The adjusted local wind speeds calculated by GIZ [53] vary from
141–189 km h−1. This variation is largely a result of the patchwork of more open and forested areas
around the community.

In Calabnian, the community recounted several episodes of flooding; these have been particularly
focused around the south-eastern side of the community. During Typhoon Haiyan flooding was
considered a cause of damage alongside the high winds—particularly in the south-eastern edge of
the community. One community member observed that “the river moved during Yolanda (Haiyan)”,
perhaps describing where the river rose to flow along new (usually dry) channels—one of which is
occupied by houses in the southern edge of the community (Figure 8b). Although flooding in this area
is relatively frequent, it appears rarely to be prolonged: “flooding doesn’t last more than 1–2 days”.
The general accounts of flooding in the south-eastern side of the community are in agreement with the
moderate to high flood hazard indicated on Project NOAH (Figure 8b) and MGB maps [51].
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3.1.4. Wind and Flood Hazard: Site Comparison

The flood hazard designations demonstrate that even at the scale of a single village flood hazard
can fluctuate, highlighting that within the same community certain villagers will be more or less at
risk from a given flood event. On the MGB maps, the flood hazard in Calabnian and Plaridel ranges
from ‘low’ to ‘moderate’ in the areas where buildings are present. This corresponds to flooding of up
to 1m depth with maximum duration of three days. Meanwhile in Badiangay, a more significant flood
hazard range of ‘moderate’ to ‘high’ exists, which would expose buildings to flood depths of up to 2 m,
for durations in excess of three days. These rapidly identifiable levels of flood hazard give immediate
context to any post-disaster assessment of shelter reconstruction that seeks to reduce future risk. For
example, repositioning of reconstructed buildings in Plaridel and Calabnian in areas where only ‘low’
hazard was present would potentially reduce likely future damage. Meanwhile in Badiangay, the
relatively severe flood hazard would identify a need to prioritise incorporating flood-resilient design
into reconstructed shelters, such a raising floor levels.

The maximum wind speed profiles for each of the sites in this study are shown in Figure 9.
Badiangay and Calabnian are exposed to relatively similar wind speed profiles, whilst that in Plaridel
is lower by approximate 14% across the range of return periods. This is largely a result of the higher
surface roughness in Plaridel caused by increased tree cover, which can act to reduce wind speed [53].
In each location, the maximum recorded wind speed felt in the Philippines during typhoon Haiyan
(315 km h−1) rates as a return period of between 400 (Badiangay) and 1000 (Plaridel) years, a more
typical 100-year return period wind speed for these locations is around 200 km h−1.

3.2. Building Vulnerability Assessment

The aim of the design of the vulnerability assessment is to enable a meaningful measure of
vulnerability to be ascertained within the context of post-disaster assistance strategies. This relies on
visual measures of vulnerability that can feed into simple classification procedures and ultimately
be communicated as advice to communities. Detailed geometric surveying and material analysis for
example would be inappropriate for this approach, although more detailed assessments would benefit
from such data. At this level of assessment, simple physical models of loading and structure response
can be considered in relation to the building to ascertain a relative measure of vulnerability dependent
upon architectural features of the design of the structure.

A simple numerical scale of building vulnerability to flooding was developed by Stephenson
and D’Ayala [54] specifically for historic structures, which has since been applied in the Philippines
for heritage buildings within a multi-hazard context [55]. The work presented here uses a similar
approach to the study of traditional rural housing in the Philippines, understood as non-engineered
vernacular buildings. Across the case studies, rapidly assessable external building features were
identified that were common to the shelters constructed in these rural locations. The internal features
were not considered, neither were detailed structural indicators such as diagonal bracing as this level
of detail goes beyond the scope of this initial assessment approach.

These features form the basis of the vulnerability indicators, with the rating scale derived using
simple mechanical indicators for increased likelihood of damage to the structure by floodwater or
wind pressure. For each hazard case, three indicators were used, with either a numeric scale or binary
option in each case. The options in each indicator are then translated into a numeric vulnerability factor
(VF) on a normalised scale from 0 to 1 following the method previously set out in Stephenson and
D’Ayala [54]. Figure 10 schematically depicts the indicators and how they contribute to vulnerability
in relation to the hazards, whilst Table 2 describes the indicators and the rationale for their contribution
to damage and loss in the building.

In the case of flood hazard, the effect of lateral pressure from floodwater is considered in relation
to the resistance of the structure to being washed away, and the impact of floodwater inundation
on building materials and belongings with raised floors and second storeys is considered to reduce
vulnerability in this respect. Flood inundation of materials is typically the first stage in a damage
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scale derived for flood hazards [56], and its incorporation here offers the opportunity to produce an
assessment that is distributed in nature and covers a broader scale of vulnerability extents. In relation
to wash out, the connection of the structure to the foundation is a significant factor, and in the aftermath
of Typhoon Haiyan surveys reported these to be very poor [42]. Additionally, a lack of connection
between stone foundation and post is employed in the Philippines as a mitigation against earthquake
shaking hazard [57]. In this model, limited or no mechanical connection is assumed between the timber
frame and either slab or post foundation, with only the friction action of the embedment of the post
considered to resist flood loading and provide vulnerability reduction.

In the case of wind hazard, the roof design and shape is considered in relation to the local
pressures around the structure; this focus in part being driven by a predominance for roof damage as
a result of typhoons [58]. Wind tunnel tests have shown that hipped roofs can reduce peak suction
pressure by up to 42% when compared to gable roofs in low-rise buildings [59]. They are considered
less vulnerable than gable structures due to their ability to deflect wind load and resist the increase of
wind pressure at the edges, such as occurs in gable roofs. Likewise, larger overhangs have been shown
to lead to increased roof pressures, even in hipped roofs [60], and these are considered to increase
vulnerability. Finally, the presence of a roof level vent, to permit wind to pass through a structure more
easily is considered to reduce the vulnerability, based on the principle that large openings located
opposite to each other on a building façade reduce overall wind pressure coefficients [61].

Figure 7. (A) Plaridel sits on an elevated terrace, which has developed during the Holocene as the
Binahaan river to the north and Panda river to the south have incised to lower levels. Much of the terrace
lies above modelled flood levels. Elevation model derived from NASA SRTM [60]. (B) Satellite image
of Plaridel showing spread out housing and dense tree cover. Base map provided by Environmental
Systems Research Institute (ESRI). The flood hazard levels in both images (A,B) are taken from the
Nationwide Operational Assessment of Hazards (Project NOAH) 100-year return event.
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Figure 8. (A) Calabnian is located close to the edge of a low terrace between rivers located to the north
and south. Elevation model derived from NASA SRTM [60]. (B) Satellite image of Calabnian showing
housing clusters in high and low hazard zones. Base map provided by ESRI. The flood hazard levels in
both images (A,B) are taken from the Project NOAH 100-year return event.

Geosciences 2018, 8, x FOR PEER REVIEW  13 of 24 

 

 
Figure 8. (A) Calabnian is located close to the edge of a low terrace between rivers located to the north 
and south. Elevation model derived from NASA SRTM [60]. (B) Satellite image of Calabnian showing 
housing clusters in high and low hazard zones. Base map provided by ESRI. The flood hazard levels 
in both images (A,B) are taken from the Project NOAH 100-year return event. 

 
Figure 9. Wind speed hazard curve derived from [22]. 

100

150

200

250

300

350

400

10 1000

W
in

d 
Sp

ee
d_

km
 h

-1

Return Period_years

Local Wind Speed Hazard_3 Rural Philippine Communities 

Badiangay

Plaridel

Calabnian

Figure 9. Wind speed hazard curve derived from [22].
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Figure 10. Schematic of vulnerability indicators showing mechanical processes in relation to flood and
wind hazards and traditional rural Philippine building features. Vulnerability factors (VF) are given
for different options relating to each indicator.

Table 2. Description of vulnerability indicators for flood and wind hazard.

Hazard Indicator Indicator No. Options Description

Flood

Presence of
Second Storey F1 Yes, No

Presence of second storey provides a place to
store belongings in event of a flood, reducing

the likelihood of loss.

Raising of
Ground Floor F2 0.0–0.25 m, 0.25–0.5 m,

0.5–0.75 m, 0.75–1.0 m
Raising of ground floor level reduces

likelihood of flooding and loss of belongings.

Presence of
Concrete Slab F3 Yes, No

A slab foundation beneath timber posts
increases likelihood of floodwater washing

building away.

Wind

Roof Shape W1 Gable, Hipped Hipped roof deflects wind pressure more
effectively, reducing likelihood of roof damage.

Overhang W2 0.0, 0.0–0.5 m, >0.5 m
Larger overhang leads to increased wind

pressure at roof level, increasing likelihood of
roof damage.

Roof Vents W3 Yes, No Ventilation at roof level permits winds to travel
through the building, reducing wind pressure.

For each hazard case, the indicators are described here in Table 3 for flood and Table 4 for wind.
Suitable numeric bands were selected for indicators F2 and W2 in order to promote rapid visual
assessment, and without the need for a detailed survey. This was to promote feasible undertaking
of the assessment by international agencies working in disaster recovery contexts seeking to apply
vulnerability-based assessments.

For each of the three communities, photographic records were used to assign exemplar buildings
with a vulnerability factor for each category. Examples are shown in Figures 11 and 12 of relatively
less and more vulnerable buildings. This method of presentation offers an overview of the typology
of building that has been classified as more or less vulnerable according to this methodology. The
annotated photographic records provide pictorial information to convey the potential vulnerabilities to
homeowners. This offers an opportunity to facilitate more successful communication with communities.
The pictorial records can be used to show less and more resilient reconstructed shelters, which can
be promoted or discouraged by practitioners assisting with recovery. As they are linked directly to
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existing buildings and building practice on the site, they promote already existing building practices
that can produce safer housing and risk reduction. Building on this, photographic records accumulated
over time across sites will allow for the verification and aggregation of typologies and their associated
vulnerability ratings, offering the future opportunity to assess the vulnerability at larger geographical
scales with robust statistical techniques.

Table 3. Vulnerability scale for flood hazard.

Indicator Options Vulnerability Factor

F1
Yes 0.5
No 1.0

F2

0.75–1.0 m 0.25
0.5–0.75 m 0.5
0.25–0.5 m 0.75
0.0–0.25 m 1.0

F3
No 0.5
Yes 1.0

Table 4. Vulnerability scale for wind hazard.

Indicator Options Vulnerability Factor

W1
Hipped 0.5
Gable 1.0

W2
0.0 0.33

0.0–0.5 m 0.66
>0.5 m 1.0

W3
Yes 0.5
No 1.0
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In addition to individual building assessment, the vulnerability of the community of shelters in a
given location was measured by looking at the surveyed buildings collectively and identifying the
proportion of low to high vulnerability characteristics across all buildings. This is depicted, for the
three locations in this study, in Figures 13 and 14 for flood and wind hazard, respectively, while in
the charts, a darker shade indicates higher vulnerability. The charts show the proportion of buildings
surveyed in each location that fall into increasing vulnerability categories, increasing from 1 (lowest
vulnerability) to 2 or 4 (highest vulnerability), depending on the number of increments for the indicator.
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Figure 14. Vulnerability indicator distribution for wind hazard across three locations: Badiangay,
Plaridel, and Calabnian.

The method pictorially describes the vulnerability at settlement scale for the individual indicators,
and comparison of the charts shows which locations have a higher proportion of vulnerable buildings.
For example, Badiangay has the highest proportion of vulnerable stock when considering the presence
of a concrete slab in response to the flood hazard. The charts also show which indicators are more
prevalent at high vulnerability states across all sites. For example, undercroft heights are dominant
at the highest vulnerability level across all three sites, unlike the other two indicators. This method
of display offers the opportunity to take an overview of the state of vulnerability of a given site or
collection of sites, an important factor in the understanding the relative risk to different locations.

This is a first step toward a robust multi-hazard physical vulnerability assessment of vernacular
timber structures prevalent in rural Philippines. Further iterations of the method will look to expand the
number of externally visible indicators to incorporate more aggregated measure of vulnerability. Such
indicators could include the plan shape of the building which affects local wind pressure distributions,
roof pitch which has been shown to affect peak pressure and height to volume ratio of the building.
Providing the surveying effort allows for feasible collection of robust data (in terms of sample size
and completeness), further more detailed structural measures could also be incorporated, such as the
presence of bracing which contributes to wind resistance.

An additional step would be to collate the individual vulnerability factors (VF’s) into a single
rating for all indicators, by summing and then normalising the result, bringing the method in line
with other multi-hazard assessments that make use of this methodology [55]. This would incorporate
the positive and negative effects of individual features in respect to both hazards and sum to give
a measure of the cumulative effect of each. From this a single numerical value for an individual
building can be obtained, such as would be used for the computation of risk, as described further in
the next section.
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3.3. A Risk-Based Approach for Disaster Shelter Practitioners

The final stage of the assessment is to consider the vulnerability and hazard together in order
to begin to describe the risks. A pictorial and matrix approach is proposed and discussed here,
which is intended to be both simple to produce and easily explained to local communities. First, the
vulnerability ratings (VR) for each of the buildings on a given site are grouped into low, medium, and
high classes. A VR of between 0 and 0.33 is classed as low (1), between 0.34 and 0.66 as medium (2),
and between 0.67 and 1 as high (3).

Second, the hazard severity for each building is additionally grouped into low (L), moderate (M),
and high (H). For the Mines and Geoscience Bureau (MGB) maps used here [49–52], the high and
very high flood hazard levels were combined into a single ‘high’ band of hazard severity. In general,
the hazard rating from the MGB and Project NOAH maps were similar (e.g., Figure 8). However,
where there was a discrepancy, the highest rating out of the two maps was chosen. The hazard and
vulnerability levels for each building are then combined to provide a measure of the risk using a
3 × 3 matrix, offering nine different risk classifications for any given building on the site from L1
through to H3 (Figure 15A,B).
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Figure 15. (A) Illustration of shelter risk matrix for flooding hazard. Shelters that score in the lower left
corner are considered lower risk, whereas shelters that score in the upper right corner are considered
high risk, priority buildings. (B) Using the risk matrix for flood hazard in for selected buildings in
Calabnian. Base image from DigitalGlobe (11 December 2014) courtesy of Google Earth. Ongoing or
future shelter assistance would be best targeted on houses scoring H3.
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As an example of the model, the flood risk matrix is applied to the site of Calabnian. The above
vulnerability method is applied, and the shelters across the site assigned with a low, medium, or high
flood vulnerability rating. Likewise, the flood hazard is assessed, and the same shelters are identified
as lying within low, moderate or high hazard areas. These two factors are then combined and used to
classify the risk level for each individual shelter at the site, as depicted in Figure 15b. The risk map
shows that the collection of houses to the bottom right is at far greater risk than those to the top left.
This is as a result of the change in flood hazard between these locations, highlighting that, within a
single settlement, significant impact can be had on property risk as a result of changing flood hazard
conditions. In the high risk zone, which has a constant flood hazard level, a differentiation between
property vulnerability is also demonstrated by the range of risk ratings (H1–H3). This demonstrates
that the vulnerability rating of buildings also informs on the overall risk to homes and communities.

This identification gives shelter practitioners an opportunity to highlight to communities how
best to address these risks through adapting their shelters to be more resilient. This could be through
movement of their shelters to a site with a lower flood hazard or through modification of the design
of their shelter to reduce the vulnerability to flood inundation. The application of the risk to wind
hazards is less applicable to the matrix approach at this stage of the work, as the wind hazard has a
single severity rating at the scale of individual communities. Nevertheless, the wind vulnerability
assessment can be used to support and inform practitioner advice for those communities recovering
following a typhoon. In either case, a clear and simple message can be translated to communities,
thus promoting a helpful geoscience and engineering-informed intervention by shelter practitioners
seeking to assist safer, more resilient recovery in flood- and typhoon-affected communities.

4. Discussion

The process presented in this paper provides stakeholders, be they homeowners or aid
organisations, with necessary information in the format needed to approach the process of disaster
recovery from a risk reduction perspective. The use of hazard mapping available from MGB and
Project NOAH provides a measure of flood hazard severity that has institutional approval at national
level, offering reliable datasets that additionally promote the growth of risk reduction strategies from
within the country. The wind hazard data has been ratified by the global community working in risk
reduction, and provides further reliable input to the consideration of risk in relation to typhoon effects.

The site data collection enables the approach to incorporate the experience and knowledge of the
local communities and importantly expands the work to take account of local conditions in relation to
geoscience and geomorphology. This enables the appraisal of the risk to account for local evidence for
geohazards, deepening the understanding of that risk and ultimately providing a more meaningful
measure of risk for the communities. This is a key aspect of the work, and further integration of local
knowledge into the hazard and risk assessment is a significant future aspiration for the project team.

The measuring of vulnerability in the manner set out here offers an opportunity for meaningful
quantification driven by readily apparent building features that contribute to the overall vulnerability
of the structure. As with any indicative method of vulnerability assessment there is an element
of uncertainty regarding the measures used. The multi-hazard nature of typhoons adds to this in
that structural modifications which reduce vulnerability to one hazard may not provide overall risk
reduction, and this is an important consideration for the future. The method is not intended to be
a substitute for a full mechanical or computational assessment of structural response. Rather, the
intention is that by taking these first steps toward considering vernacular buildings such as those
in rural Philippines as physically vulnerable assets, through the use of an appropriate and feasible
framework, the longer-term goal of understanding the risk posed to them can begin to be met.

The bringing together of the hazard and vulnerability assessments into a single output that aims
to describe the risk is in the first instance an exercise in communicating the science and engineering
knowledge through a method that addresses the call from the global community to understand risk
posed by natural hazards to settlements in low- and middle-income countries. The display of this
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knowledge through a mapping medium that incorporates vulnerability at individual building scale
represents an important step in this process as it empowers the homeowner through identifying risk at
an individual level. Further iterations of the vulnerability measures will provide greater detail to this
process, as will incorporation of more extensive local knowledge regarding the hazards.

This work provides those who are involved in shelter aid and assistance in post-disaster contexts
a demonstration of what a potential route to reducing future risks could look like. The implementation
of such a method would require addressing challenges that are faced by those practitioners in this
context. One such challenge is the changing nature of their work, which at different times in the
aftermath of a disaster takes on a variety of roles. In the immediate aftermath, when buildings are
being reconstructed or have been done so before their arrival, the implementation of risk reduction
measures are more difficult, and it would not necessarily be feasible to incorporate a method such as
that proposed here in the rapid assessments that take place at that time.

Where a method such as this has more significance is in the longer-term assistance programmes
that are initiated, such as was the case in the Philippines where shelter programmes were in place
for months and years after the disaster took place. In this context, the delivery of the BBS messages
and associated education and training that takes place does offer an opportunity for risk reduction
measures and advice to be implemented. The use of hazard scales derived from historic datasets, along
with vulnerability assessments that can be demonstrated as being directly applicable to people’s homes,
provides a robust starting point in understanding the risk for both the practitioner and the community.

There is clear work to do in order to enable a method such as this to achieve its potential: for
example, practical implications such as ensuring hazard maps are accessed by practitioners as they
prepare to enter the disaster zone. Furthermore, the uptake of such an approach would require an
investment by NGOs in the training and preparation of their shelter experts to allow them to embrace
a more interdisciplinary, developed hazard and vulnerability assessment tool and further enhance its
fitness-for-purpose within the shelter assistance community.

More detailed considerations include being able to incorporate the vulnerability assessment into
the process of reconstruction, which will likely have started before practitioners arrive at the disaster.
In this way the process needs to acknowledge that modifications may already have been made to the
rebuilt structure, and understanding vulnerability requires consideration of what has already been
changed, and what may change in the future as a result of BBS message education and promotion. By
undertaking the process of assessing buildings in this way practitioners can better understand the
context and respective vulnerabilities that households face as a result of the local construction practices
and hazard awareness, and based on this understanding, advise for more resilient reconstruction.

In the immediate aftermath of the disaster, rapidly deployed temporary assistance does not allow
for the detailed assessment required by this method. Rather, practitioners are there to provide cash,
materials, information, and training, but essentially those rebuilding and choosing the materials are the
disaster-affected households. Future development of the approach will need to address the fact that
people’s reconstruction practices are not always directly affected by technical knowledge, availability,
and affordability of material or hazard awareness. Some of the vulnerabilities built in to people’s
homes are consequences of aesthetic preferences, culture, and/or proximity to livelihoods. Even the
movement of a home from one area to another piece of land is rarely an option for most families. The
influence that technical and risk-based advice may have on these choices is not always clear or direct.
From the position of a shelter practitioner, the aim is to support informed choice for those who will be
reconstructing anyway, using a framework that promotes long-term risk reduction.

Here, the authors address significant challenges for shelter reconstruction and recovery in
post-flood and typhoon rural Philippines. Firstly, that delivering adequate and effective resilient
construction advice for affected communities is difficult and secondly that the engineering and
geosciences expertise has an important role to play in effectively evaluating the risks to structures
and therefore providing advice on how to reduce vulnerability. In view of this, the study applies
geoscience and engineering appraisal to the problem of promoting more resilient reconstruction in
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post-disaster contexts. By demonstrating how a practitioner might evaluate and assign risk levels to
buildings in communities, derived from consideration of both hazard and vulnerability measures,
this study may add to the work of existing shelter practice and build on the debate about the current
use of engineering and geosciences disciplines in informing the resilient reconstruction of shelters in
post-flood and typhoon contexts such as that of the Philippines.

5. Conclusions

The work described here has achieved the following:

• The setting out of flood and wind hazard scenarios for individual rural community locations,
derived from national datasets and individual community experiences;

• The application of a method to understand hazard-specific physical building vulnerability of
vernacular housing in the Philippines;

• simple, systematic, and objective means of identifying the flood risk posed to rural shelters within
assisted communities in post-disaster contexts;

• Visual outputs that can be readily translated into information useful for local people and as such
offer an opportunity to explore the communication of a risk-based approach to post-disaster
interventions for both practitioners and affected communities alike;

• Presentation of a method that offers shelter practitioners the first steps toward a risk reduction
approach to advising on recovery processes as part of Build Back Safer drives in post
disaster contexts.

These tangible outputs address the globally recognized ambition of reducing disaster risk in
middle- and low-income countries, especially through focused application of technical knowledge
available within the geosciences and engineering communities. It is an invitation for shelter
practitioners to explore how they might bring engineering and geoscience disciplines into their work
and offers the geoscience and engineering communities a demonstration of how they might support
practitioners and communities in this. The overriding ambition is to prepare communities for future
major hazard events and seek greater involvement in reconstruction processes of interdisciplinary risk
reduction measures and approaches.
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