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Abstract: Satellite soil moisture is a critical variable for identifying susceptibility to hydroclimatic
risks such as drought, dryness, and excess moisture. Satellite soil moisture data from the Soil Moisture
Active/Passive (SMAP) mission was used to evaluate the sensitivity to hydroclimatic risk events
in Canada. The SMAP soil moisture data sets in general capture relative moisture trends with the
best estimates from the passive-only derived soil moisture and little difference between the data at
different spatial resolutions. In general, SMAP data sets overestimated the magnitude of moisture at
the wet extremes of wetting events. A soil moisture difference from average (SMDA) was calculated
from SMAP and historical Soil Moisture and Ocean Salinity (SMOS) data showed a relatively good
delineation of hydroclimatic risk events, although caution must be taken due to the large variability
in the data within risk categories. Satellite soil moisture data sets are more sensitive to short term
water shortages than longer term water deficits. This was not improved by adding “memory” to
satellite soil moisture indices to improve the sensitivity of the data to drought, and there is a large
variability in satellite soil moisture values with the same drought severity rating.
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1. Introduction

Soil moisture is a key variable for identifying and characterizing hydroclimatic risk conditions,
as it quantifies water availability for evapotranspiration, plant water uptake, and can indicate where
runoff may occur when soils are saturated. The hydroclimate is defined as the physical mechanisms
that characterize how climate influences surface hydrology. The risks associated with the hydroclimate
include extremes in climate that lead to a high probability of impact on surface water availability and
includes events such as drought, dry spells, excess moisture, and flooding [1]. Quantifying these risks,
therefore, requires developing indicators of the surface water balance and soil moisture is a reflection
of how weather and climate have influenced this balance [2]. Soil moisture is difficult to quantify
over large areas since it is highly variable in space and time and there are limitations to the most
common ways that soil moisture has traditionally been quantified. In situ measurements are sparse
and often not spatially representative of larger regions. Modelled soil moisture is reliant on underlying
soil properties data sets that are often imprecise, and meteorological forcing data can be sparse or
inaccurate in many areas [3]. Satellite soil moisture has shown promise, but accuracy and the limited
sensitivity to surface soil moisture presents a challenge to quantifying risk conditions [4]. The launch
of the Soil Moisture and Ocean Salinity (SMOS) mission in 2009 and the Soil Moisture Active/Passive
(SMAP) mission in 2015, as well as other soil moisture satellite data sets, have helped to bridge part of
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the gap in estimating soil moisture at a regional scale by providing surface soil moisture information
at spatial and temporal resolutions and degrees of accuracy that are useful for studying many key
land and water processes. This is in turn leading to many improvements in quantifying key processes
that are related to hydroclimatic risk conditions, including surface runoff, crop water availability,
and drought [5–10].

Risk monitoring and reporting programs integrate large amounts of data to achieve a confluence
of evidence to determine risk magnitude and extent [11–13]. Traditionally used risk indicators are
based on precipitation and temperature data, and generally relate current conditions to a historical
average or a normal to provide an index of how current hydroclimatic risks compare to what is
normally observed in a given place and at a given time [14]. Satellite soil moisture can potentially
provide a key piece of evidence in this risk reporting by providing information on water storage at or
near the surface that can complement the traditionally used indicators. There are several limitations to
using satellite data for this purpose that have been noted in past literature. Microwave sensors detect
moisture in a thin surface layer and therefore cannot be used to quantify water storage in the root zone.
Satellites often lack long historical data records that can be used to relate current conditions to a robust
long-term average. The accuracy of satellite soil moisture data sets are limited by the assumptions
and data gaps used in the retrieval models. The spatial resolution of passive microwave sensors is
also very coarse, with pixel resolutions in the tens of kilometers, complicating interpretation of the
observed soil moisture. Recent advances have addressed many of these limitations. Statistically robust
data records have been created and evaluated by using spatial aggregation or blending of data from
multiple satellites to create larger sample sizes or longer, consistent time series [15–18]. Limitations in
surface soil moisture can be reconciled by treating satellite soil moisture as a wetness index rather than
an absolute measure of water storage [4]. Soil moisture retrieval accuracy has gradually improved
with the emergence of L-Band microwave sensors designed specifically for monitoring soil moisture
and these improvements in retrieval models have helped to overcome some key gaps in accurately
estimating soil moisture [19,20].

The launch of the SMOS mission in 2009 marked the first L-Band passive microwave mission
specifically dedicated to soil moisture retrieval. The launch of the SMAP mission in 2015 provided
a further data source on which to build models and indicators of climatic risk, but to date, these data
sets have not been compared to determine how these data sets can be used to evaluate risk conditions.
Both data sets have been shown to compare well with in situ data sets. Soil moisture from SMOS
has been shown to provide high accuracy estimates of soil moisture in the top 5 cm, particularly in
areas with low biomass vegetation, such as croplands and grasslands [20]. SMOS soil moisture has
a dry bias in many areas, but in general captures wetting and drying cycles at the surface consistently
over time in these low biomass regions [21–24]. SMAP soil moisture has similarly shown a high
accuracy in most regions and in some regions showed a slightly improved retrieval compared to
SMOS [25–27]. These two sensors can potentially provide complementary information on soil moisture
and in turn climate related risk, but an evidence based approach is required to determine how to
optimally incorporate this information into risk assessment.

The objective of this paper is to examine SMAP soil moisture as an indicator of hydroclimatic risk
conditions, including drought and excess moisture. Given the temporal limitations of SMAP data,
SMAP and SMOS data were compared and combined to determine their sensitivity to hydroclimatic
risk based on both quantitative and qualitative risk indicators. Data were evaluated for agricultural
regions in Canada for two growing seasons, where diverse events of wet and dry extremes were
observed over a varied geography. Different SMAP data sets were assessed to determine the value of
having higher spatial resolution data or data processed to reflect soil moisture at root zone depths for
use in developing a hydroclimatic risk indicator. The objective was to evaluate an indicator that can be
used for real time monitoring applications, and as a result the use of data sets such as the European
Space Agency Climate Change Initiative (ESA-CCI) soil moisture data set was not considered since it
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is not currently available for real time monitoring [16]. A table of the acronyms used is provided in
Table 1.

Table 1. Key acronyms used in this manuscript.

Acronym Description

SMAP Soil Moisture Active Passive mission
SMOS Soil Moisture and Ocean Salinity mission
SMDA Soil Moisture Difference Index

SMDA-LT Soil Moisture Difference Index—Long Term
PDSI Palmer Drought Severity Index
WDI Water Deficit Index

CRPRC Climate Related Production Risk Committee
SMAP_P36 SMAP Passive Microwave Derived Soil Moisture at 36 km
SMAP_P09 SMAP Passive Microwave Derived Soil Moisture Spatially Enhanced to 9 km
SMAP_AP SMAP Active-Passive Soil Moisture at 9 km

SMAP_AUP SMAP analysis updates at surface and rootzone

2. Materials and Methods

2.1. Research Area

Satellite soil moisture from SMAP was evaluated for agricultural areas in Canada for the 2015
and 2016 growing seasons (Figure 1). Commercial agriculture in Canada is geographically limited to
areas where climate and soil conditions can support agricultural production, which are primarily in
the southern parts of the country. Over the time period observed, both wet and dry extreme events,
ranging from flooding to excess moisture, to abnormal dryness and drought were observed in different
parts of the study region at different times.

Figure 1. Study area. Thick dotted black line depicts ecological limits of where agriculture is conducted
in Canada. The colored area of the map shows typical spatial extent of SMAP soil moisture retrievals
during the active growing season.
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2.2. Satellite Soil Moisture Data Sets

Soil moisture data from SMAP was acquired from the standard retrieval algorithms applied to the
data by the mission teams. Several SMAP data sets using the Level 3 product, version 3 (subset 4.010)
of the data were evaluated to determine if differences would impact the sensitivity to risks [28,29].
The 9 km Active-Passive soil moisture product (SMAP_AP) was evaluated for the 2015 period during
which the active sensor was functioning (April 13, 2015 to July 7, 2015). The 36 km passive microwave
derived soil moisture product (SMAP_P36) and the 9 km enhanced passive microwave data set
(SMAP_P09) were also evaluated for the 2015–2016 seasons. Finally, the 9 km Level 4 soil moisture
analysis update data sets (SMAP_AUP_surface, SMAP_AUP_rootzone) were evaluated at the surface
and root zone for the 2015–2016 seasons. More details on the retrieval of soil moisture from the SMAP
sensor can be obtained from the product documentation, but a brief summary is provided here. Soil
moisture is derived from the SMAP passive sensor using L-band brightness temperature measurements
and a single-channel retrieval algorithm at V-polarization. The retrieval model solves the tau-omega
model using a constant incidence angle, solving for soil moisture as a single variable [30]. Ancillary
data is used to account for variables that impact the brightness temperature other than the soil moisture.
Vegetation optical depth is taken from a 13-year climatological database of the Normalized Difference
Vegetation Index (NDVI) and is not specific to each crop type, and surface temperature is estimated
using the NASA Global Land Data Assimilation Model. Results from the descending (morning) pass
only were used since these represent higher quality retrievals due to greater uniformity in surface
soil temperature and reduced impacts of Faraday rotation [31]. The Active-Passive soil moisture
combines soil moisture retrieved using the passive sensor, with soil moisture retrieved using the
active microwave sensor located on the SMAP platform [32]. As these retrievals have higher noise
levels, the soil moisture is retrieved at a 3 km grid spacing and combined with the retrieved soil
moisture from the passive sensor to create a downscaled 9 km soil moisture data set (SMAP_AP).
Level 4 soil moisture data sets (SMAP_AUP_surface and SMAP_AUP_rootzone) were retrieved using
a methodology described here [33]. In brief, the brightness temperature data from SMAP is assimilated
into the NASA Catchment land surface model using an ensemble Kalman filter approach to update the
model analysis with measured data from SMAP. The model assimilates data where retrievals are valid,
but provides data over all grid cells where a valid land surface model value is retrieved, resulting
in a temporally and spatially complete data set where retrieved values represent both soil moisture
estimations impacted by data assimilation as well as modelled soil moisture only where and when
soil moisture retrievals were not valid. Analysis updates were retrieved for this study for both the
surface layer (top 5 cm) and the root zone (top 100 cm). The SMAP soil moisture retrieval algorithms
include a Retrieval Quality Flag (RQF) that flags retrievals over surfaces with permanent ice and
snow, urban areas, wetlands, and vegetated areas with vegetation water content greater than 5 kg/m2,
as well as areas with close proximity to coastal areas and large water bodies. The result is limited to
high quality retrievals over Canada (Figure 1), particularly in coastal regions and in proximity to the
North American Great Lakes. Future improvements to SMAP retrieval correction for water bodies will
greatly expand the area where analyses can be conducted. For the purposes of this study, results were
only conducted over areas where SMAP retrievals were available.

Due to the short time frame for which the SMAP sensor has been operating and the importance
of historical context in assessing risk conditions, SMAP data for this study was combined with soil
moisture retrieved from the SMOS sensor, which uses a similar radiometric frequency to retrieve soil
moisture at a comparable spatial resolution to the SMAP data. This was done to build an index of soil
moisture risk by developing a longer term average. Although other, longer term satellite soil moisture
data sets are available, such as the European Space Agency Climate Change Initiative (ESA-CCI)
data set, this study was restricted to the SMOS-SMAP operational time frame since other data sets
use soil moisture derived at different radiometric frequencies that are not optimal for soil moisture
retrieval. A previous study found that SMOS soil moisture over a six year period was able to provide
in most areas an adequate range of variability to capture soil moisture extremes to characterize risk
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conditions [4]. A gridded SMOS soil moisture data set produced by Agriculture and Agri-Food Canada
was used for the index development and is described in more detail here [21]. In brief, the data set
uses the Level 2 soil moisture data using version 6.30 of the soil moisture processor. These data were
interpolated using a simple averaging approach to a 0.25 degree resolution flat global grid. The SMOS
soil moisture processor uses the tau-omega model to quantify the soil dielectric constant and vegetation
opacity using multi-angular brightness temperature and an iterative optimization method to achieve
a best fit between measured and modelled brightness temperatures [34]. As with SMAP, the vegetation
water content is estimated using global models and is not crop specific.

2.3. Soil Moisture Difference from Average (SMDA) Index

To use soil moisture to quantify risk conditions, an index that evaluates current soil moisture
compared to a long-term average was calculated for each location and time step. The soil moisture
difference from average (SMDA) was calculated as the current soil moisture difference from the
multi-year average for each time step and location for the available data record (2010–2016):

SMDA = SMc − (SMavg), (1)

where SMc is the current soil moisture conditions and the SMavg is the average of the soil moisture for
each year in the baseline. The average is calculated uniquely for each pixel and time step (i.e., monthly),
such that the average conditions are indicative of what is normally observed for a given place and time.
For example, the average for location A for the month of April would be calculated from the average
for the pixel associated with location A for April of each year in the data record. A previous study
evaluated this index using SMOS satellite data and found that this index was more robust than other
indices, such as percentiles, when only a short data record is available [4]. One of the limitations of
satellite based indices that only capture surface soil moisture is that they do not adequately represent
water accumulation, since they do not capture storage in the profile that would reflect long term
moisture deficits or long term saturation beyond a short period [35]. To compensate for this deficiency,
an accumulating or long-term SMDA was computed that weights historical observations in a similar
manner to the calculation of the Palmer Drought Severity Index [36]:

SMDA-LTc = SMDAc (0.25) + SMDA-LTp (0.75), (2)

where SMDAc is the current Soil Moisture Difference from Average and SMDA-LTp is the accumulating
SMDA from the previous time step. The SMDA-LTp is equal to the SMDA at the first time step. In this
way, negative extremes, for example, that have occurred in the past can weigh on the current index
until the conditions move closer to average or above average. Due to the short window in which
soil moisture can be observed from satellites in most parts of Canada due to frozen winter surface
conditions, the SMDA-LT was computed starting with the SMDA value for the month of April, and the
accumulation term applied to subsequent months up to the end of October. The weights on each term
in Equation (2) were determined iteratively by varying the weights in Equation (2) in comparison
to seasonal precipitation anomalies. Fractional weights varying from 0.25 to 0.95 were used, and the
optimal weight was selected based on the correlation between the SMDA-LT and the cumulative
seasonal precipitation. It was found that weighting the soil moisture from the previous time step using
a weight of 0.75 removed high frequency variation that was not representative of longer term trends.
This is consistent with recent findings, that surface soil moisture from satellites globally retains only
14% of precipitation after three days [35].

Due to the short data record of SMAP soil moisture, a blended SMOS-SMAP data set was
used to calculate the long-term average. The blended data set was created by spatially resampling
daily gridded SMOS soil moisture to the daily gridded SMAP soil moisture grid at 9 and 36 km,
and calculating the cumulative distribution function (CDF) of each data set of the coincident time
periods in 2015 and 2016. The SMOS data was then corrected to the SMAP data climatology relating the
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mean and standard deviation of each data set to create an unbiased time series using a CDF matching
approach [37]:

SMOSrescaled = P1 + (P2 × SMOS), (3)

where
P1 = SMOSavg − (SMAPavg × P2), (4)

P2 = SMAPstd/SMOSstd, (5)

where SMOSavg is the average soil moisture from SMOS and SMAPavg is the average soil moisture
from SMAP over the comparable time period of 2015–2016. Similarly, SMOSstd and SMAPstd is the
standard deviation of SMOS and SMAP over the comparable time period of 2015–2016. Note that the
calculation of the statistics for CDF matching differs from the statistics used to calculate the SMDA
in Equation (1); for the CDF matching, the mean for each sensor is calculated for each pixel using all
days with valid observations in the satellite record, whereas Equation (1) calculates a mean that is time
specific, such that the number of values in the mean in Equation (1) is equivalent to the number of years
in the satellite record. The use of the mean and standard deviation for CDF matching was selected
for simplicity as an exploration of the impacts of different CDF matching approaches was beyond
the scope of this study. The statistical distribution of each data set before and after CDF matching for
a selected location is given in Figure 2. The use of SMOS and SMAP together resulted in a baseline
of seven years used in the calculation of the SMDA in Equation (1). To evaluate if any advantage is
gained from using a SMAP-SMOS blend over SMOS data along, these indices were also calculated
using SMOS data only as was done in [4].

Figure 2. Cumulative distribution functions for soil moisture from SMOS and SMAP and SMOS
rescaled to SMAP statistical distribution.

2.4. Hydroclimatic Risk Indicators and Analyses

Quantifying hydroclimatic risk is complex, and often many different indicators are used to
capture different aspects, intensities, and durations of risk events. Validating SMAP as an indicator
of risk, therefore, requires evaluation against numerous metrics to better understand what the soil
moisture data is most sensitive to and how it may complement existing indicators. For this study,
risk was assessed using both a ground based set of modelled quantitative indicators (the Palmer
Drought Severity Index and the Crop Water Deficit Index) and an expert qualitative analyses based
on a large number of quantitative indicators and regional expert reports. Climate Related Production
Risk Committee (CRPRC) reports are prepared by the National Agroclimate Information Service of
Agriculture and Agri-Food Canada (the national agricultural agency in Canada).
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The CRPRC reports are produced biweekly during the active growing season from April to
September, and monthly outside of that time period. The reports are based on a convergence of
evidence approach and expert assessments for a suite of climate-related risks, including drought,
excess moisture, and flooding. Information is summarized at the regional level using a dashboard
with both quantitative and qualitative descriptions of risks categorized by type and severity of impact.
Regional designations of risk type (i.e., “drought”, “dry”, “excess moisture”, “flood”) are reported,
as well as severity based on intensity or geographic extent (ranging from “no significant risk” to “one
or more significant risks, large urgent or disaster impacts”). The expert assessment is based on a large
number of data inputs, including drought indices such as the Palmer Drought Severity Index (PDSI),
the Standardized Precipitation Index (SPI), rainfall and temperature anomalies, short- and long-term
weather forecasts as well as crowd sourced reports from farmers. These data sets are analyzed by
regional experts and categorical descriptors of risks are assigned to each geographic region. To evaluate
these against the SMDA, SMDA was calculated at monthly time steps and averaged to each geographic
region and compared to the categorical descriptors from the CRPRC dashboard to evaluate sensitivity
of the data to hydroclimatic risk.

To capture risk conditions at finer spatial scales, two modelled indicators of water related risk
were computed at 346 climate stations located in agricultural or grassland regions of the study area.
Each station had a complete daily record of precipitation and temperature covering at least a 30 year
period. The PDSI is a well-established indicator of drought conditions and calculates drought severity
by computing a simple water balance model using precipitation and temperature measurements [36].
This index is widely used in the drought monitoring community. For this study the PDSI was calculated
using a modified formula, which replaces the water balance in the original model with one computed
using the Versatile Soil Moisture Budget (VSMB) model [38,39]. For the PDI calculation, a 30 year
normal period was used spanning from 1981–2010. This normal period differs from the average period
used for the SMDA, so it should provide a more statistically robust assessment of drought conditions
than the SMDA, which has an averaging period limited by the length of the satellite data record.
PDSI has been found to be correlated with soil moisture in the soil profile at depths of approximately
1 m, and can therefore be used to evaluate if the SMDA can serve as a surrogate wetness indicator
that is sensitive to profile soil moisture. The PDSI quantifies water related risk on a scale of −10 to
+10, with −10 being the most severe drought, and +10 representing an abundance of rainfall (Table 2,
adapted from [40]).

Table 2. Palmer Drought Severity Index scale and categorization.

Palmer Drought Severity Range Categorical Description

<−4 Extreme Drought
−4 to −3 Severe Drought
−3 to −2 Moderate Drought
−2 to −1 Pre-drought
−1 to 2 Near Normal
2 to 3 Unusually Moist
3 to 4 Very Moist

>4 Extremely Moist

In addition to PDSI, a crop Water Deficit Index (WDI) was calculated using the VSMB model [41].
This index calculates water deficits as:

WDI = 1 − (AET/PET), (6)

where AET and PET are the Actual and Potential Evapotranspiration rates, respectively. AET and PET
are calculated within the VSMB model using temperature and precipitation data and a crop-specific
biometeorological time scale model to estimate growth stage [42], with phenological and crop water
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extraction coefficients for spring wheat and canola taken from [43]. The WDI ranges between 0 and 1,
with a value closer to 1 indicating higher stress (Table 3).

Table 3. Crop Water Deficit Index scale and categorization.

Crop Water Deficit Index Range Stress Category

0 to 0.25 No Stress
0.25 to 0.50 Light Stress
0.50 to 0.75 Severe Stress
0.75 to 1.0 Extreme Stress

2.5. Ground-Based Soil Moisture Measurements

To evaluate which SMAP data set was optimal for this application, data sets were compared
on a relative basis to measured soil moisture at in situ monitoring stations in agricultural regions
in Canada. The objective of this work was not to perform a detailed validation of SMAP since this
has been done elsewhere at the SMAP core validation sites in the study area [27,30,33]. Coincident
records of ground-measured soil moisture were obtained from numerous sources as described in [21].
In brief, soil moisture from two sites that are part of the Real Time In-Situ Monitoring for Agriculture
(RISMA) network were used, one in Ontario (east-central Canada) and one in Manitoba (west-central
Canada). In addition, in situ measurements from numerous sites from the Alberta Ground Drought
Monitoring Network (AGDMN) mesonet in western Canada were examined at surface and root
zone. The RISMA sites were established for satellite data validation and consist of numerous stations
selected to represent soil variability over a larger region detected within one satellite pixel [23].
The AGDMN sites were established to capture variability in climate over the province of Alberta,
and consist of sparsely distributed stations that capture broader trends in the region are too sparse
to characterize soil moisture at a pixel level. In situ stations were used for evaluation of relative soil
moisture trends; detailed model validation of SMOS and SMAP using these data sets can be found
elsewhere [21,23,27,44]. In situ soil moisture trends were evaluated over the 2015 and 2016 season for
the four SMAP data sets described above: SMAP_AP, SMAP_P36, SMAP_P09 and the SMAP_AUP
(SMAP_AUP_surface and SMAP_AUP_rootzone) at the validation sites in Ontario, Manitoba and
over 33 sparsely distributed sites in the AGDMN. For this assessment, daily gridded soil moisture
values were extracted for the pixel locations corresponding to in situ station locations and compared
to average in situ soil moisture measured at each in situ station location. Since the objective of this
assessment was to better evaluate data sets in terms of their sensitivity to wetting and drying trends,
volumetric soil moisture was converted to standard normal deviates using the average and standard
deviation of moisture values from each data set to normalize to a mean of zero and a standard deviation
of one [37]. Comparisons between surface soil moisture products were made to in situ sensors at
a 5 cm depth for all SMAP data sets. For the SMAP_AUP root zone modelled data, modelled soil
moisture was compared to an integrated soil moisture value calculated from soil moisture measured
at discrete depths up to 100 cm, such that the profile moisture was a depth-weighted average of in
situ probes at 5, 20, 50, and 100 cm. All in situ soil moisture data sets were converted from absolute
volumetric soil moisture to normalize values to compare bias free estimates to satellite data sets, using
the same procedure applied to the satellite data. Temporal Pearson’s Pairwise correlation and relative
Root Mean Squared Error (RMSE) are reported.

3. Results and Discussion

3.1. Relative Soil Moisture Trends Compared to In Situ

Overall, the SMAP passive soil moisture data sets (SMAP_P09 and SMAP_P36) showed the
best correspondence, with correlation coefficients (R) averaging 0.5 over all sites and ranging as
high as 0.8 for the Ontario site, and the lowest RMSE values (Table 4). These two data sets showed
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very similar trends at each site and there were no significant benefits in accuracy from using the
spatially enhanced (SMAP_P09) data. The active-passive soil moisture data set (SMAP_AP) showed
a somewhat weaker relationship with in situ soil moisture, with an average correlation of 0.3 over all
sites, but ranging as high as 0.7 for some individual stations in the Alberta network. The SMAP_AUP
soil moisture at the surface showed a similar relationship with in situ measurements as the SMAP_P09
and SMAP P36_data sets, but the relationship was much poorer at the Ontario site, where the estimates
from SMAP_AUP_surface were much less responsive to the trends in late summer and fall (August,
September and October) of both years evaluated (Figure 3). The relationship between all SMAP
surface soil moisture data sets was poorest at the Manitoba site, where moisture trends were poorly
estimated in April to July of 2015, and in particular in July and August of 2016. The difficulty in
parameterizing SMOS and SMAP soil moisture retrieval models over this site has been discussed
elsewhere and may be due to the high soil texture variability in this area [21,23,43]. Overall, there was
a tendency of the satellite soil moisture to underestimate soil moisture during the driest conditions and
overestimate it during wettest conditions, evident by the higher ‘peaks’ in both positive and negative
soil moisture anomalies in Figure 3. For the SMAP_AP and SMAP_P09/P36 data sets, there was
a greater underestimation of the magnitude of dry conditions, particularly for the sites in western
Canada. Given the completeness and consistency of the passive microwave soil moisture, this data set
was used in subsequent analysis. Since there was no significant difference between the soil moisture
at the 36 km or 9 km grid for the passive soil moisture data set, the 9 km data set was used for
further analyses.

Table 4. Pearson pairwise linear correlation coefficients between SMAP soil moisture data sets and in
situ measurements at 5cm depth. The values for Alberta represent the average statistics for all 33 sites
in the Alberta network.

Site SMAP_AP SMAP_P36 SMAP_P09 SMAP_AUP_Surface SMAP_AUP_Rootzone

Ontario 0.55 0.83 0.81 0.56 0.30
Manitoba 0.48 0.40 0.43 0.51 0.63

Alberta (Average of all Sites) 0.31 0.45 0.62 0.63 0.41

Site SMAP_AP SMAP_P36 SMAP_P09 SMAP_AUP_Surface SMAP_AUP_Rootzone

Ontario 1.04 0.61 0.60 0.99 1.08
Manitoba 0.91 0.91 0.85 1.00 0.94

Alberta (Average of all Sites) 1.20 0.97 0.85 0.93 1.08

Figure 3. Cont.
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Figure 3. Time series of normalized surface soil moisture from three SMAP data sets for sites in Ontario
(Top Left), Manitoba (Right), and Alberta (Wrentham site, Bottom Left). Soil moisture was normalized
for each data set to compare data sets as indicators of relative trends. The Alberta Wrentham site was
selected for display as it represented average results for Alberta. The SMAP_P36 trends where not
shown since they were very similar to SMAP_P09.

The root zone (SMAP_AUP_rootzone) showed a somewhat lower overall correlation with the
in situ trends than the surface analysis, with the exception of Manitoba and selected sites in Alberta,
where the root zone analysis had a better correlation with measured soil moisture than the surface
estimates (Table 4). Improved model performance seemed to be associated with reduced accuracy of
the satellite soil moisture data sets. The SMAP_AUP_rootzone showed higher temporal variability
than the measured root zone soil moisture, showing stronger wetting-drying cycles than what was
measured (Figure 4). This could be due to the high influence of the SMAP surface measurements on the
model update [33]. Given this high sensitivity to the surface soil moisture, it is not clear if a root zone
soil moisture data set would provide a more robust estimator of risk than the surface estimates. Due to
the short length of the SMAP_AUP data record and the absence of an analogous data set to perform
longer term analysis (as is done with the surface measurements, combining them with SMOS data),
this is difficult to assess, and so the evaluation of the SMAP_AUProotzone was limited to comparison
against in situ data and this data set was not assessed against risk indicators as in the subsequent
sections. A longer term data set would be needed to examine if assimilated satellite-modelled data
sets provide improved information relevant to hydroclimatic risk.

Figure 4. Cont.
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Figure 4. Time series of normalized root zone soil moisture from SMAP modelled data sets for sites
in Ontario (Top Left), Manitoba (Right) and Alberta (Wrentham site, Bottom Left). Soil moisture was
normalized for each data set to compare data sets as indicators of relative trends. The Alberta Wrentham
site was selected for display as it represented average results for Alberta.

3.2. Assessment Against Expert-Based Risk Analysis

To gain an understanding of how the accuracy of the satellite data sets impact the use of the
data for risk assessment, the soil moisture from the SMAP-SMOS and SMOS-only time series used to
calculate the SMDA were compared to each other at the provincial scale and sorted by risk category
(Figure 5). In general, the SMAP time series was wetter than the SMOS time series, particularly for
areas that were identified as being subject to excess moisture. The range in moisture values between
the SMAP-SMOS time series and the SMOS-only time series for areas where no risk was identified
was high for both data sets, but somewhat higher in the SMOS-only data set (indicated by the larger
horizontal spread in the data in Figure 5 than the vertical spread).

Figure 5. Comparison of monthly soil moisture (volumetric) retrieved from a blended SMAP-SMOS
time series and a SMOS-Only time series under different risk conditions as evaluated from expert
reports. Data are aggregated to monthly time step.

The blended SMAP-SMOS and the SMOS-only time series were used to calculate the SMDA
under different risk categories (Figure 6). There was a large degree of variability in the SMDA for
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each risk category at the regional level. This may be in part due to the way that risks are analyzed,
which assigns a general risk category at the regional level where the spatial extent of the risk conditions
may be more localized. Overall, the risk conditions assessed from the SMAP-SMOS data set showed
a general agreement with the CRPRC risk categories, with areas classified as drought or dry showing
negative SMDA values and excess moisture and flooding showing positive SMDA values (Figure 6,
left). In areas where no risk was assessed, the moisture values were close to zero, indicating they
were exactly average over the long term and the variability was distributed equally in both directions.
The blended SMAP-SMOS soil moisture time series showed a somewhat improved differentiation of
wet and dry extremes compared to the SMOS-only soil moisture data set, with the average values more
distinctly different from normal conditions in each case, the mid-quartile range more clearly above or
below zero appropriate to each risk category, and a smaller overall interquartile range between the 25th
and 75th quartiles. (Figure 6, right). This may be due to the differences between the soil moisture in
each data set shown in Figure 5. Both data sets contained outliers that fell far outside the interquartile
range, which may be related to the imprecise spatial delineation of risk using these qualitative reports,
but could also be due to errors in both data sets in capturing relevant wetting and drying trends.

Figure 6. Soil Moisture difference from the long-term average (SMDA) from a SMAP-SMOS time
series (Left) and a SMOS-only time series (Right) for different risk conditions as evaluated from expert
reports. Data are aggregated to monthly time step.

3.3. Assessment Against Quantitative Risk Indicators

The SMAP-SMOS time series was compared to more spatially specific quantitative indicators
of drought, the Palmer Drought Severity Index (PDSI), and the Crop Water Deficit Index (WDI).
The SMAP-SMOS SMDA indicator showed a small but significant negative trend with WDI (R = −0.38),
indicating that as crop water stress increases, the SMDA index decreased or showed drier than average
conditions (Figure 7, left). There was a large amount of scatter in the observations, but in general
areas where WDI was less than 0.25, indicating “no stress”, the SMDA indicated values above the
long-term average. Conversely, areas with WDI above 0.75, indicating the most extreme stress, showed
soil moisture values below the long-term average. Areas between these two categories showed greater
variability, indicating that light to moderate stress is less clearly identified by the SMAP-SMOS SMDA
index, with some instances being shown well below the long-term average, but other instances showing
conditions above the long-term average. This may be related to the over/underestimation of soil
moisture peaks and valleys seen in the soil moisture trend analysis against the in situ data, which
would result in moisture values being over/under estimated right after wetting events, and drying
more quickly and to a greater degree than the actual soil moisture. This may also be related to errors
in the WDI itself, which relies on soil properties data in its calculation and plant water uptake models
that may contain errors where parameters are estimated and not known precisely. The SMOS only
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data set (Figure 7, right) showed a somewhat weaker negative relationship with WDI (R = −0.23),
with much greater scatter in the data, particularly at WDI values greater than 0.5 (or severe to extreme
stress). The relationship between these two variables suggests that satellite soil moisture could be
a good, but imprecise, surrogate for crop water deficits, and indicative of water related stress, with
SMAP providing a somewhat more precise estimate than SMOS. The WDI has been found to be more
strongly predictive of crop yields in other studies in Canada [41].

Figure 7. Comparison of WDI modelled from station data to SMDA from blended SMAP-SMOS time
series. Trend line represents a linear correlation of −0.38 for the SMAP-SMOS SMDA and −0.23 for the
SMOS-only SMDA, significant at p < 0.001.

The SMAP-SMOS SMDA showed a weak but significant relationship with PDSI, with a positive
correlation of 0.28 (Figure 8, top). The SMDA from the SMOS only data set showed a slightly stronger
relationship with PDSI with R = 0.36 but with a similarly large scatter in the points. This weak
relationship and the large scatter in the data suggests that the SMDA is not strongly indicative of
longer term drought patterns characterized by PDSI. This is not surprising since satellite soil moisture
data sets are observations of surface conditions and not water storage. The distribution of the site by
site correlation coefficients for each climate station are given in Figure 8 (bottom), showing that most
stations have a moderately high correlation with PDSI, but few have a strong correlation of greater
than 0.75. The correlations for both the SMAP-SMOS blended data set and the SMOS only data set
were similar (Figure 8).

Figure 8. Cont.
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Figure 8. Comparison of PDSI modelled from station data to SMDA from blended SMAP-SMOS
time series and SMOS only time series (top). Trend line represents a linear correlation of 0.28 for the
SMAP-SMOS SMDA and 0.36 for the SMOS-only SMDA, significant at p < 0.001. Histograms (bottom)
show distribution of correlation coefficients for data from each of the 346 climate stations.

The PDSI was conceived of as an indicator of long term drought, which is a creeping or cumulative
state, and the formulation of PDSI incorporates this accumulation by integrating past moisture
states into the calculation of the current state, or “adding memory” to the current index. This large
variability in the relationship between PDSI and SMDA suggests that satellite soil moisture is not
strongly indicative of the same process that PDSI quantifies. For this reason, PDSI was compared to
an accumulating SMDA (SMDA-LT) that incorporated a temporal ‘memory’ into the estimation of the
satellite based index. The SMDA-LTshowed a similar linear relationship with PDSI, with a correlation
of 0.27, but with much less scatter in the data (Figure 9). To better understand this relationship, the site
by site correlation coefficients for each climate station site are given in Figure 10, with summary
statistics given in Table 5. The SMDA-LT overall has a weaker relationship with PDSI, with a wider
distribution and a larger interquartile range. This suggests that the use of an accumulating index
such as SMDA-LT adds more uncertainty to the estimation of drought conditions. The relatively
weak relationship for both the SMDA and SMDA-LT values with PDIS, particularly at PDSI values
close to zero (representing normal or “no drought “conditions) show that this estimation of drought
conditions represented by PDSI is imprecise, but that SMDA has a slightly better relationship with
WDI, which may reflect shorter term hydroclimatic anomalies. The PDSI and the WDI are not strongly
related to each other (with a correlation of −0.27), indicating that they are capturing different aspects
of hyroclimatic extremes, with the WDI capturing shorter term stress impacts and PDSI capturing
longer term water availability. These results suggest SMDA from both SMOS and SMAP is more
sensitive to shorter term stress than longer term risks, but improvements in both soil moisture accuracy,
particularly during drying cycles, might improve this. A longer term climatology may also improve
this, but the accuracy of these data sets must be consistent over time to provide precise estimates of
hydroclimatic risk events.
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Figure 9. Comparison of PDSI modelled from station data to Soil moisture difference from average with
an added “memory” term (SMDA-LT) from blended SMAP-SMOS time series. Trend line represents
a linear correlation of 0.27, significant at p < 0.001.

Figure 10. Histograms comparing site by site correlation coefficients for 346 climate stations between
PDSI and SMDA (Left) and SMDA-LT (Right).

Table 5. Summary statistics for site by site correlations.

Variable Min Max Mean Median Inter-Quartile Range

SMDA −0.66 0.98 0.48 0.58 0.47
SMDA-LT −0.72 0.88 0.43 0.47 0.57

4. Conclusions

Satellite soil moisture data sets from SMAP and SMOS were evaluated against measured
moisture trends from in situ stations, as well as against both qualitative and quantitative indicators
of hydroclimatic risk. The SMAP soil moisture data sets in general capture relative moisture trends,
with the best estimates from the passive-only derived soil moisture. In general, SMAP data sets
overestimated the magnitude of moisture at the wet extremes of wetting events. A SMDA data set
calculated from a blended SMAP-SMOS baseline showed a good sensitivity to expert-assessed risk
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events, including drought, dryness, excess moisture, and flooding, with the SMDA being on average
negative during dry extremes and positive during wet extremes. The SMAP-SMOS data sets showed
a somewhat improved separation of these extremes from average conditions than the SMDA calculated
from a SMOS-only data set. The SMDA was more sensitive to a WDI that quantified differences in
modelled actual and potential evapotranspiration rates and was less sensitive to the PDSI, even when
an accumulation term was added to the index (SMDA-LT). This shows that satellite soil moisture can
be used more effectively to track short term moisture related stress than long term moisture stress.
Future improvements in the accuracy of soil moisture retrievals may improve the precision with which
hydroclimatic risk events can be estimated.
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