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Abstract: The main objective of this study is to better understand and quantify the consequences for
landslide susceptibility assessment caused by (i) the discrimination (or not) of landslide typology and
(ii) the use of different predisposing factor combinations. The study area for this research was Lajedo
parish (Flores Island, Azores—Portugal). For the landslide susceptibility modeling, 12 predisposing
factors and a historical landslide inventory with a total of 474 individual landslide rupture areas
were used as inputs, and the Information Value method was then applied. It was concluded that
susceptibility models developed specifically for each landslide typology achieve better results when
compared to the model developed for the total inventory, which suffers from a bias caused by the
strong spatial abundance of one landslide typology. A total of 4095 susceptibility models were tested
for each typology, and the best models were selected according to their goodness of fit. The best
model for both falls and slides has seven predisposing factors, some of which do not correspond to
the factors that have the best individual discriminatory capabilities. The number of expected and
observed unique terrain conditions for each model allowed us to conclude that with the successive
addition of predisposing factors, there is an inability of the territory to generate new observed unique
terrain conditions. This consequence was directly related to the inability to increase the goodness of fit
of the computed models. For each landslide typology, the predictive capacity of the best susceptibility
model was assessed by computing the Prediction Rate Curves and the Area Under the Curve.

Keywords: falls; slides; susceptibility analysis; success and prediction rate curves; Information
Value; Azores

1. Introduction

Landslides are responsible for significant economic and social impacts in many areas of the world.
They cause the death of people and animals, and destruction or damage of residential and industrial
infrastructures and agricultural areas [1]. The identification of areas that are susceptible to landslides is
important for land-use and emergency planning [2]. Risk assessment of the multi-hazards in an area can
focus on selection of appropriate sites for urban development and can prevent the migration of people
and urban sprawl to dangerous places [3,4]. Thus, regardless of some uncertainties, the production
and validation of susceptibility, vulnerability, and risk maps make an important contribution to public
safety [2].
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Soeters and van Westen (1996) [5] defined landslide susceptibility as the likelihood of a landslide
occurring in an area based on the local terrain conditions, not considering their return period
or magnitude.

A landslide susceptibility analysis corresponds to the basis of hazard mapping, which is one of
the essential key steps of quantitative risk mapping [2]. Evaluation of landslide susceptibility is based
on the principle that future landslides have a greater likelihood of occurrence under conditions that
are similar to those that caused landslides in the past [2,5,6]. There are different methods that can be
used for landslide susceptibility assessment [2,7]. Therefore, landslide susceptibility analysis, based on
statistical and probabilistic methods, takes into account the relationships between predisposing factors
and the landslides’ spatial distribution.

The development of landslide susceptibility models has been improved due to the development
of Geographic Information Systems (GIS) and the increase in computational capability [8]. Nowadays,
it is possible to integrate different types and formats of input data into high-definition terrain models,
even with a large number of predisposing factors, enabling the analysis of larger areas.

For the same study area, different susceptibility maps can be generated, and the computed
results are dependent on several factors. Some studies regarding landslide susceptibility analysis
have explored this variability and the corresponding uncertainties, examples of which can be found in
the papers by Thiery et al. [9], Felicísimo et al. [10], Steger et al. [11], Zêzere et al. [12], and Steger &
Glade [13]. This research is based on (i) errors in landslide inventories derived from the cartographic
process; (ii) the feature type representing the landslides (polygon versus point); (iii) landslide typology
discrimination; (iv) the combination of different predisposing factors; (v) the type and dimension of the
terrain mapping unit; (vi) the influence of the statistical method that is applied; and (vii) the influence
of restricting the landslide susceptibility models to specific sectors (with a higher density of landslides)
of the study area, instead of using the entire study area.

This study’s main objectives are to better understand and quantify the consequences pertaining
to the goodness of fit of landslide susceptibility models caused by: (i) the discrimination (or not) of
landslide typology and (ii) the use of different predisposing factor combinations. Furthermore, the
influence of the number of observed unique terrain conditions, generated by different predisposing
factor combinations, was calculated along with how they improve the goodness of fit of the computed
susceptibility models.

2. Study Area General Setting

The Azores archipelago is located in the North Atlantic Ocean and is composed of nine volcanic
islands (Figure 1). From a geodynamic point of view, the archipelago is located in the triple junction
between the Eurasian, African, and North American tectonic plates. Due to its tectonic setting,
both seismic and volcanic events occur frequently. However, landslides are the most frequent type of
geological hazard, due mainly to the volcanic constitution and morphology of the islands.

The study region covers an area of 7.73 km2 and roughly corresponds to the Lajedo parish of
the Lajes das Flores municipality, located at the southwest sector of Flores Island (Figure 1), which
has a population of 93 inhabitants [14]. Since its settlement in the 16th century, the study area has
been recurrently affected by landslides, including a large event of geomorphological instability that
occurred in July 1799 [15,16], affecting an area of 116,160 m2 [17]. This event caused an 18 m decrease
in mountain height in the area and destroyed cultivated land used for growing wheat and yams.

Silveira (1848–1849) [16] and Macedo (1871) [17] described another landslide occurrence on the
29th of December 1800, at Campanário, that destroyed agricultural and pasture lands and caused the
appearance of a “black spring” of cold water that flowed continuously for three years. Two other
events of geomorphological instability were reported by Silveira (1848–1849) [16] on the night of the
16–17th of October 1845, and on the 8th of March 1846, both triggered by earthquakes. The author
correlates these landslides with the presence of the hydrothermal spring “Água Quente” at the Costa
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locality. This has not been proven, however, perhaps the author wanted to emphasize the hydrological
context of the area or its influence on the occurrence of the landslides.Geosciences 2018, 8, x FOR PEER REVIEW  3 of 19 
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with a run-up of 5 m [18]. Landslides are most commonly triggered by rainfall episodes and cause 
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December, 2010, and on the 30th of October 2012, when several landslides were triggered in Lajedo. 

The volcanic products in the study area have very different ages. The oldest rocks are between 
2.2 Ma and 0.80 Ma, and result from submarine and aerial volcanic activity. They include basalts and 
havaites, volcaniclastic deposits, breccias and tuffs, and are extremely weathered, at times exhibiting 
clayish levels. The youngest volcanic formations and structures, resulting from subaerial volcanism, 
range from 0.67 Ma to 0.002 Ma and include basaltic, hawaiitic, mugearitic, and benmoreitic lavas, as 
well as scoria cones and phreatomagmatic deposits [19,20]. 

The study area has a variable altitude between 0 and 680 m, with a prominent flat zone above 
400 m. Inside the study area there are seven exoreic watersheds and one endorheic watershed, and 
the main streams have very narrow and embedded valleys. Along almost the whole coastline there 
is a very steep sea cliff, and at the Costa locality there is a fossilized sea cliff with a marine abrasion 
platform at the base. 
  

Figure 1. Location of the study area on Flores Island in the Azores archipelago.

More recently, on the 22nd of May 1980, a massive fall was triggered, forming a deposit along the
coast of the island that was 1000 m wide and 400 m in length. This event triggered a local tsunami
with a run-up of 5 m [18]. Landslides are most commonly triggered by rainfall episodes and cause
damage to houses, roads, infrastructure, and communications, like those that occurred on the 3rd of
December, 2010, and on the 30th of October 2012, when several landslides were triggered in Lajedo.

The volcanic products in the study area have very different ages. The oldest rocks are between
2.2 Ma and 0.80 Ma, and result from submarine and aerial volcanic activity. They include basalts and
havaites, volcaniclastic deposits, breccias and tuffs, and are extremely weathered, at times exhibiting
clayish levels. The youngest volcanic formations and structures, resulting from subaerial volcanism,
range from 0.67 Ma to 0.002 Ma and include basaltic, hawaiitic, mugearitic, and benmoreitic lavas, as
well as scoria cones and phreatomagmatic deposits [19,20].

The study area has a variable altitude between 0 and 680 m, with a prominent flat zone above 400
m. Inside the study area there are seven exoreic watersheds and one endorheic watershed, and the
main streams have very narrow and embedded valleys. Along almost the whole coastline there is
a very steep sea cliff, and at the Costa locality there is a fossilized sea cliff with a marine abrasion
platform at the base.
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3. Data and Methods

3.1. The Landslide Inventory

The construction of the landslide inventory was based on a 1:1000 scale using image interpretation
(aerial photos and satellite images) and fieldwork. The geo-referenced digital orthophotomap of Flores
Island, from 2004 and with 0.6 m resolution, was utilized, along with geo-referenced Google Earth
images from 2013 with a resolution of 0.4 m. The images were combined with contour lines spaced
at 10 m height intervals. Landslides were identified using a 1:1000 scale based on interpretation of
distinctive changes in the morphology, vegetation, and draining conditions of the studied slopes.
Extensive fieldwork was also carried out in November 2016 to map and validate the landslides
that were inventoried using image interpretation. The landslide inventory includes 474 landslides
(LAND-TOT), 171 of which are slides (SLD-TOT) and 303 of which are falls (FALL-TOT) (Figure 2a).
All the landslides were mapped as polygons using the external contour of the scars, totaling an area of
409,259.3 m2 (Table 1). The slides are mostly shallow (rupture depth < 3 m) and occur predominantly
along the steep slopes of stream channels (Figure 2b), while the falls are mainly present along the sea
cliffs (Figure 2c).
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Figure 2. (a) Landslide inventory map; (b) Example of a slide at Lajedo (photo by the authors);
(c) Example of a fall at Costa (photo by the authors).

Table 1. Landslide inventory resume.

Typology Subsets No of
Landslides

Instability
Area (m2)

Density (no
Landslides/km2)

No of Pixels
(5 m × 5 m)

Falls (FALL)
Modeling (FALL-MOD) 43 185,991.4 5.6 7424
Validation (FALL-VAL) 128 62,569.5 16.6 2459

Total (FALL-TOT) 171 248,560.9 22.1 9883

Slides (SLD)
Modeling (SLD-MOD) 152 73,481.4 19.7 3106
Validation (SLD-VAL) 151 87,216.9 19.5 3313

Total (SLD-TOT) 303 160,698.4 39.2 6419

Total (LAND-TOT) 474 409,259.3 61.3 16,302
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3.2. Predisposing Factors

The landslide susceptibility models were developed based on 12 predisposing factors, the classes
of which were used as the independent variables (Figure 3, Table 2). The altitude (7 classes), slope
angle (13 classes), slope aspect (9 classes), slope transversal profile (5 classes), slope longitudinal profile
(5 classes), and insolation (11 classes) were derived from the digital elevation model (DEM) using ESRI
ArcGIS v.10.4.1. The DEM was prepared using both contour lines (10 m equidistance) and spot heights
from the 1:25,000 topographic map as input data [21], and the Triangular Irregular Network (TIN) as
the interpolation method. The stream line distance (7 classes) was assessed using buffer distances to
the center of the stream channel, and the drainage density (7 classes) was calculated using 100 × 100 m
windows. The contributing area (10 classes) and the inverse of the wetness index (10 classes) were
calculated using TauDEM 5.3 with D-Infinity algorithms [22]. The geology (10 classes) was based on
the simplification of the Geological Map of Flores Island [19], and the land use (6 classes) corresponds
to the Land Use Map of Flores Island [23]. All predisposing factors were presented as raster datasets
with a pixel size of 5 m × 5 m, resulting in a total of 308,979 pixels for each factor.
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Figure 3. Landslide predisposing factors considered for the susceptibility analysis: (a) altitude; (b) slope
angle; (c) slope aspect; (d) slope transversal profile; (e) slope longitudinal profile; (f) contribution area;
(g) inverse of the wetness index; (h) geology; (i) insolation; (j) stream lines distance; (k) drainage
density; and (l) land use.

Table 2. Predisposing factor classes and their Information Values (Ii), computed using
FALL-TOT (Ii F-TOT), FALL-MOD (Ii F-MOD), SLD-TOT (Ii S-TOT) and SLD-MOD (Ii S-MOD) as
dependent variables.

Predisposing
Factors Classes

Fall Slide

Ii F-TOT Ii F-MOD Ii S-TOT Ii S-MOD

Altitude (m)

[0–100] 0.883 0.335 0.681 0.640
]100–200] −0.424 −0.307 0.628 0.730
]200–300] −0.383 −0.097 −0.390 −0.691
]300–400] 0.304 0.590 −0.404 −0.611
]400–500] −0.220 0.066 −2.288 * −2.331 *
]500–600] −1.455 * −1.169 * −1.073 * −0.550
]600–680] −1.455 * −1.169 * −2.774 * −2.331 *
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Table 2. Cont.

Predisposing
Factors Classes

Fall Slide

Ii F-TOT Ii F-MOD Ii S-TOT Ii S-MOD

Slope angle
(◦)

[0–5] −5.230 * −5.232 * −2.042 * −1.904 *
]5–10] −5.232 * −4.946 * −2.315 * −1.906 *

]10–15] −1.713 * −1.538 * −1.456 * −0.901
]15–20] −2.247 * −2.105 * −0.462 −0.091
]20–25] −1.924 * −2.090 * −0.071 0.128
]25–30] −1.096 * −1.391 * 0.174 0.254
]30–35] −0.574 −0.904 0.369 0.303
]35–40] 0.115 −0.333 0.564 0.350
]40–45] 0.625 0.258 0.696 0.509
]45–50] 1.063 ** 0.883 0.853 0.636
]50–55] 1.536 ** 1.580 ** 0.527 −0.007
]55–60] 1.640 ** 1.703 ** 0.371 −0.195
]60–90] 2.548 ** 2.786 ** −0.542 −0.605

Aspect

Flat −3.270 * −4.243 * −2.301 * −1.671 *
North −2.515 * −3.695 * 0.435 0.831

Northeast −1.393 * −4.243 * −0.730 −0.481
East −3.270 * −2.984 * −0.880 −0.704

Southeast −0.606 −0.425 −0.072 0.524
South 0.558 0.660 0.233 0.207

Southwest 0.629 0.634 0.209 −0.360
West −0.164 −0.349 −0.093 −0.067

Northwest −2.046 * −2.774 * −0.422 −0.461

Slope
transversal

profile

Very concave 0.756 0.749 0.663 0.698
Concave −0.044 −0.086 0.187 0.196

Rectilinear −1.753 * −1.687 * −1.065 * −0.898 *
Convex −0.121 −0.107 −0.127 −0.167

Very convex 0.862 0.920 −0.164 −0.177

Slope
longitudinal

profile

Very concave 1.075 ** 1.175 ** 0.201 0.109
Concave −0.551 −0.674 −0.024 0.000

Rectilinear −2.479 * −2.462 * −1.270 * −1.121 *
Convex −0.450 −0.585 0.021 0.031

Very convex 1.082 ** 1.158 ** 0.442 0.396

Contribution
Area (m2)

]25–50] −1.578 * −1.351 * −1.534 * −1.060 *
]50–100] −0.838 −0.795 −1.719 * −1.330 *
]100–200] −0.634 −0.677 −0.812 −0.651
]200–400] −0.416 −0.529 −0.182 −0.256
]400–800] −0.031 −0.049 0.157 0.043

]800–1600] 0.427 0.495 0.054 −0.055
]1600–3200] 0.461 0.541 0.168 0.300
]3200–6400] 0.031 −0.497 0.298 0.478

]6400–12800] −0.762 −1.038 0.779 1.156 **
>12800 −0.626 −0.647 0.351 0.415

Inverse of
wetness index

[0–0.001] −4.661 * −5.474 * −0.959 −0.560
]0.001–0.0025] −1.466 * −1.689 * 0.095 0.298
]0.0025–0.0050] −0.600 −0.968 −0.105 0.155
]0.0050–0.0075] −0.502 −0.601 −0.067 0.041
]0.0075–0.0100] −0.206 −0.306 0.026 −0.152
]0.0100–0.0250] 0.073 0.033 0.212 −0.065
]0.0250–0.0500] 0.273 0.327 0.148 0.044
]0.0500–0.0750] 0.543 0.613 −0.072 −0.127
]0.0750–0.1000] 0.691 0.754 −0.301 −0.475

>0.1 1.185 ** 1.300 ** −0.664 −0.672

Geology

Landslide deposits (Age < 3000 BP) 0.422 0.354 −0.636 −0.814
Phreatomagmatic deposits (Age < 3000 BP) −1.617 * −3.216 * −2.706 * −2.507 *

Scoria deposits (Age < 3000 BP) −1.617 * −3.216 * −0.536 −1.908 *
Basaltic lava flows (s.l.) (Age = [0.22 Ma, 0.40 Ma BP]) −1.558 * −1.273 * −0.998 −0.617

Basaltic (s.l.) and trachytic flows (Age = ]0.40 Ma, 0.67 Ma BP]) 1.229 ** 1.514 ** −2.706 * −2.507 *
Breccias and tuffs (Age = ]0.67 Ma, 0.80 Ma BP]) −1.617 * −3.216 * −0.761 −0.877

Basaltic lava flows (s.l.) (Age = [0.80 Ma, 1.5 Ma BP]) −1.617 * −3.216 * 0.459 0.787
Basaltic lava flows (s.l.) (Age = [1.5 Ma, 1.8 Ma BP]) −1.028 * −1.949 * 1.114 ** 1.131 **

Basaltic lava flows (s.l.) (Age > 2.0 Ma BP) 1.199 ** 0.185 0.908 0.443
Volcaniclastic deposits (Age> 2.0 Ma BP) 1.084 ** 0.760 −0.745 −2.507 *
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Table 2. Cont.

Predisposing
Factors Classes

Fall Slide

Ii F-TOT Ii F-MOD Ii S-TOT Ii S-MOD

Insolation
(kW/m2/year)

≤500 0.356 −1.448 * −0.743 −0.982
]500–600] −0.470 −0.829 0.492 −0.229
]600–700] −0.634 −0.939 0.336 −0.068
]700–800] 0.279 0.326 0.553 0.484
]800–900] 0.342 0.405 −0.055 0.010

]900–1000] 0.686 0.823 0.249 0.518
]1000–1100] 0.743 0.809 0.225 0.263
]1100–1200] 0.052 −0.011 −0.239 −0.353
]1200–1300] −0.418 −0.547 0.062 0.147
]1300–1400] −0.866 −0.898 −0.154 −0.417

>1400 −1.816 * −1.530 * −2.676 * −0.982

Drainage
density

(km/km2)

{0} 0.410 0.395 −0.043 −0.221
]0–5] −1.417 * −1.718 * −0.238 0.132
]5–10] −0.969 −0.786 0.238 0.242

]10–15] 0.600 0.835 0.008 −0.101
]15–20] −1.452 * −1.390 * 0.661 0.734
]20–25] −3.303 * −3.711 * 0.877 0.758

>25 −1.188 * −1.509 * −0.159 0.210

Stream line
distance (m)

[0–25] −1.030 * −0.953 0.206 0.405
]25–50] −0.796 −0.739 −0.165 −0.071
]50–75] −0.416 −0.307 −0.216 −0.362

]75–100] 0.053 0.073 0.071 0.022
]100–125] 0.425 0.389 −0.266 0.123
]125–150] 0.782 0.761 −0.629 −0.624

>150 0.987 0.926 0.292 −0.436

Land use

Urban −1.735 * −1.460 * −3.435 * −0.093
Cultivated areas −1.735 * −1.460 * −0.072 0.466

Pasture −1.735 * −1.460 * −0.308 −0.093
Forest −1.136 * −1.222 * 0.486 0.246

Shrubby vegetation −1.735 * −1.460 * −3.435 * −0.093
Denuded areas 1.696 ** 1.674 ** 0.261 0.189

* Ii < 1, the presence of the class distinctly inhibits landsliding activity. ** Ii > 1, the presence of the class distinctly
promotes landsliding activity.

3.3. Information Value

The landslide susceptibility models were developed using a bivariate probabilistic approach—the
Information Value method [24]. When compared with more complex bivariate and multivariate
methods, the Information Value method also achieves very good results [25–27]. This method is based
on the Bayesian Theory and has two complementary steps.

In the first step, the importance of the presence of each class i (independent variable), of all the
predisposing factors, in the spatial occurrence of landslides (dependent variable) is weighted (i.e.,
the Information Value, Ii, is calculated), based on Equation (1):

Ii = ln

 Si
Ni
S
N

 (1)

where: Si = the number of pixels with landslides within the factor class i; Ni = the number of pixels
present in the factor class i; S = the total number of pixels within landslides; and N = the total number
of pixels in the study area.

Finally, the Information Value of each pixel j, Ij, is given by Equation (2):

Ij =
n

∑
i=1

Xij.Ii (2)

where n = the number of independent variables; and Xij = 0 or 1 if the variable is not present or is
present in the pixel j, respectively.
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When Ii > 0⇒ (Si/Ni) > (S/N) the presence of class i promotes landsliding activity, and when Ii <
0⇒ (Si/Ni) < (S/N) the presence of class i inhibits landsliding activity. These relationships between
the presence of class i and the inhibition or promotion of landsliding activity increase with the distance
of the Ii value to zero.

If Ii = 0⇒ (Si/Ni) = (S/N), or is near zero, there is no relationship between the presence of class
i and the occurrence of landslides. When Si = 0, it is caused by a mathematical impossibility and,
for those cases, Ii was considered to be equal to the lowest value of Ii calculated for the remaining
classes of predisposing factors to which class i belongs.

3.4. Evaluation of the Importance of Landslide Typology Discrimination

For the analysis of the predisposing factors’ influence on the landslides’ spatial distribution,
the predisposing factors were hierarchically ordered according to their ability to discriminate the
terrain units with or without landslides. Each predisposing factor was crossed individually with the
each landslide’s typology (falls: FALL-TOT; slides: SLD-TOT). The predisposing factor hierarchy was
determined based on the Area Under the Curve (AUC) of the Success Rate Curve (SRC) [28]. The AUC
is a common metric used to compare different curves and is calculated through the trapezoidal
rule [29,30]. The AUC ranges from 0–1 and the higher the AUC, the better the goodness of fit of the
susceptibility model.

In order to assess the importance of landslide typology discrimination in the susceptibility analysis,
all the landslide predisposing factors proposed for the modeling were considered. This analysis was
based on the following steps: (i) creation of a model that takes into consideration LAND-TOT, later
validated with the same landslide group, and with the FALL-TOT and SLD-TOT groups, individually;
(ii) development of a specific model using FALL-TOT, subsequently validated with the same group;
and (iii) development of a specific model using SLD-TOT, validated with the same group.

3.5. Selection of the Best Combination of Predisposing Factors

The contribution of the different predisposing factors to the occurrence of landslides varies from
region to region [31] due to the geological, geomorphological, climatological, and environmental
differences between regions. For this reason, there is no general agreement about the best combination
of predisposing factors to use for landslide susceptibility assessment.

In order to find the best predisposing factor combination for the study area, all the possible
combinations that could be obtained using the 12 relevant landslide predisposing factors were studied:
N
∑
n

CN
n ; n = {1, 2, 3 . . . , N} N = 12. A total of 4095 different susceptibility models were computed for

each landslide typology (Table 3).

Table 3. Number of landslide susceptibility models obtained with different numbers of
predisposing factors.

No of Predisposing
Factors 1 2 3 4 5 6 7 8 9 10 11 12 Total

No of Models 12 66 220 495 792 924 792 495 220 66 12 1 4095

For all the studied combinations, the goodness of fit of the generated susceptibility models was
assessed using the SRC and by calculating their AUC. The combination with the highest AUC value
for each landslide typology was selected as being the best combination of predisposing factors for the
study area.
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3.6. Predictive Capacity Assessment of the Landslide Susceptibility Maps

The prediction capacity of the models was assessed using the Prediction Rate Curve (PRC) [28]
and by calculating their AUC. For the definition of the PRC, it is necessary that the group used to
validate the susceptibility map be independent from the group of landslides used to compute the
susceptibility model. For this purpose, a random partition for the definition of modeling (MOD) and
validation (VAL) of the landslide groups was used.

4. Results and Discussion

The fall (FALL-TOT) and slide (SLD-TOT) inventories and their respective modeling groups
(FALL-MOD and SLD-MOD) were cross-tabulated with each predisposing factor class to compute the
Ii values (Equation (1)). The obtained results (Table 2) support the following: (i) the inventories, for
both typologies, can be considered statistically robust because the obtained Ii values for FALL-TOT
and FALL-MOD, as well as for SLD-TOT and SLD-MOD, are very similar (i.e., there is not much
variability in the statistical relationships between the landslides and the independent variables with
the suppression of 50% of the inventory elements); and (ii) there are significant differences in the
computed Ii values for different landslide typologies, which reinforces the importance of considering
the landslide typologies independently for modeling landslide susceptibility, as shown by other authors
(e.g., the research by Zêzere [32]). Landslide typologies have specific mechanical and hydrological
behaviors and, as such, are influenced differently by particular predisposing factors [33,34].

Table 4 shows the AUC values of the SRC obtained for each predisposing factor that allows their
hierarchisation. The results allow us to conclude that the slope and geology have importance in the
spatial discrimination of the areas where both types of landslide typology occur. The slope occupies
the first hierarchical position for the falls, and the third position for the slides. Geology occupies
the third hierarchical position for the falls and the first for the slides. Land use and altitude factors
occupy the second hierarchical position for both falls and slides. Drainage density occupies the lower
hierarchical position for both typologies, as well as the contribution area and the slope transversal
profile for the falls, and the stream line distance and the inverse of the wetness index for the slides,
revealing their low capacity to discriminate the areas where these landslide typologies occur.

Table 4. Areas Under the Curve (AUC) for the Success Rate Curves (SRCs) and the hierarchy of each
predisposing factor.

Predisposing Factors Falls Slides

Hierarchy AUC Hierarchy AUC

Altitude 7 0.672 2 0.703
Slope angle 1 0.875 3 0.678
Slope aspect 6 0.700 7 0.581

Slope transversal profile 12 0.612 6 0.587
Slope longitudinal profile 5 0.702 8 0.568

Insolation 9 0.661 9 0.566
Stream lines distance 4 0.704 10 0.565

Drainage density 10 0.658 11 0.552
Contribution area 11 0.618 5 0.588

Inverse of the wetness index 8 0.669 12 0.548
Geology 3 0.823 1 0.772
Land use 2 0.855 4 0.631

To reinforce the importance of differentiating the landslide typologies for susceptibility analysis,
the methodology described in Section 3.4 was applied. In Figure 4 it can be seen that the model
obtained for the LAND-TOT group and validated with itself has an AUC of the SRC = 0.853. When
this model is validated, considering the FALL-TOT and SLD-TOT groups independently, it can be seen
that falls have a better goodness of fit to the LAND-TOT model (AUC of the SRC = 0.938) than slides
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(AUC of the SRC = 0.721). This difference is justified by the greater spatial abundance of falls in the
study area, which promotes the computation of a model that is highly constrained by the statistical
relationships between the independent variables and the falls and, consequently, the bias of the model.
Due to this fact, during the validation process of the obtained model for LAND-TOT, when this model
is used, the AUC of the SRC increases only in the FALL-TOT group, and the AUC of the SRC decreases
only in the SLD-TOT group.
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Figure 4. Success Rate Curves (SRCs) and their Areas Under the Curve (AUCs) for the different models.

The models developed specifically for FALL-TOT and SLD-TOT, and validated with these same
groups, show a less significant improvement in the goodness of fit for the falls model (AUC = 0.945)
and a very significant improvement for the slides model (AUC = 0.832). The goodness of fit of the
model specifically developed for the falls shows a lesser degree of improvement, which is directly
associated with the exclusion of the “statistical noise” produced by the slides in the model developed
with LAND-TOT, which itself is dominated by the statistical relationships between the predisposing
factors and the falls. On the other hand, the model developed specifically for the slides shows a
very significant improvement in its goodness of fit to the input data, since it is the only way that the
statistical relationships between the predisposing factors and the slides could overlap in the model
due to the lesser spatial abundance of slides compared to falls.

Figure 5 shows the susceptibility maps obtained with all predisposing factors, considering
the LAND-TOT (Figure 5a), the FALL-TOT (Figure 5b), and the SLD-TOT (Figure 5c). To enable
comparisons, the classification of the maps was based on the same criteria; the study area was classified
using the cumulative percentage of the area in decreasing order of susceptibility. The susceptibility
map produced for the LAND-TOT shows clear similarities with the map obtained for FALL-TOT;
however, the map developed for SLD-TOT shows considerable differences when compared with the
other two for the reasons stated above. It is important to note that the terrain conditions that are
propitious for the occurrence of falls are much more restricted in terms of space than those that provide
conditions associated with slides. Therefore, if the landslide typologies were not separated, the areas
of higher susceptibility to slides would never be expressed on the map.
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Figure 5. Landslide susceptibility maps for: (a) LAND-TOT group; (b) FALL-TOT group; (c) SLD-TOT group.

All the SRCs resulting from the susceptibility models generated for both landslide typologies are
presented in Figure 6. The SRC is represented by red lines and corresponds to the model obtained
from the best combination of predisposing factors for falls (Figure 6a) and slides (Figure 6b), with an
AUC of 0.95 and 0.84, respectively. For both landslide typologies, the best susceptibility models were
developed with seven predisposing factors: slope angle, slope aspect, insolation, drainage density,
contributing area, geology, and land use. It is important to note that the best models achieved are not
exclusively obtained from the combination of predisposing factors with higher discrimination capacity
(Table 4). This shows that, contrary to what some authors have attempted (e.g., Zêzere et al. [35], Blahut
et al. [36] and Piedade et al. [37]), adding predisposing factors successively to the model, in decreasing
order of their discrimination ability, does not guarantee that the best combination of factors to produce
the best landslide susceptibility model is found.
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The results presented in Figure 6 show an important variation in the goodness of fit of the
models resulting from the number of predisposing factors used to compute the models. In general,
the goodness of fit of the models developed for falls (AUC of the SRC = [0.61, 0.95]) is better than that
of the models developed for slides (AUC of the SRC = [0.54, 0.84]) as a consequence of falls being
associated with a more restricted range of terrain conditions when compared with the wider variability
of conditions under which slides occur in the study area.

In plotting the AUC of the SRC versus the number of predisposing factors used for modelling,
it becomes clear that there is an increase in the goodness of fit average of the models with an increase
in the number of predisposing factors for both typologies (Figure 7). Associated with this increase,
there is a clear decrease in the variability and consequently a stagnation of the best result obtained for
the models.
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modeling for: (a) falls and (b) slides.

In order to understand the reason for the decrease of the variability of the models’ goodness of fit
and the stagnation of the best result obtained with an increase in the number of factors, the number
of expected and observed unique terrain conditions for each model was calculated (Figure 8).
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The analysis of the results shows that the number of expected unique terrain conditions exhibits
a regular exponential growth with the increase of predisposing factors. However, the increasing trend
of the observed unique terrain conditions behaves very differently. The growth rate of the observed
unique conditions decreases with the successive inclusion of predisposing factors, moving away from
the expected growth trend of the unique terrain conditions. This disparity in the growth rates is even
higher after the addition of the seventh predisposing factor. This can be explained by the natural
conditional dependence between some of the predisposing factors which prevents the development of
observed unique conditions even when they are expected theoretically. Due to the fact that a statistical
method is used in this study, the violation of conditional independence between predisposing factors
used in the susceptibility assessment is negligible when it is intended to support the hierarchisation of
susceptibility for a given area [36].

Geosciences 2018, 8, x FOR PEER REVIEW  14 of 19 

 

observed unique terrain conditions behaves very differently. The growth rate of the observed unique 
conditions decreases with the successive inclusion of predisposing factors, moving away from the 
expected growth trend of the unique terrain conditions. This disparity in the growth rates is even 
higher after the addition of the seventh predisposing factor. This can be explained by the natural 
conditional dependence between some of the predisposing factors which prevents the development 
of observed unique conditions even when they are expected theoretically. Due to the fact that a 
statistical method is used in this study, the violation of conditional independence between 
predisposing factors used in the susceptibility assessment is negligible when it is intended to support 
the hierarchisation of susceptibility for a given area [36]. 

 

Figure 8. Expected and observed number of unique terrain conditions for different numbers of 
predisposing factors used in the susceptibility models. 

Figure 9 shows the values of the AUC of the SRC according to the number of predisposing 
factors used in each model and the observed unique terrain conditions. For both landslide typologies, 
the inability of the territory to generate new unique conditions with the addition of predisposing 
factors clearly decreases the variability of the results and increases the goodness of fit of the 
susceptibility models. 

 

Figure 8. Expected and observed number of unique terrain conditions for different numbers of
predisposing factors used in the susceptibility models.

Figure 9 shows the values of the AUC of the SRC according to the number of predisposing
factors used in each model and the observed unique terrain conditions. For both landslide typologies,
the inability of the territory to generate new unique conditions with the addition of predisposing
factors clearly decreases the variability of the results and increases the goodness of fit of the
susceptibility models.
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used in the susceptibility models and the observed unique terrain conditions for: (a) falls and (b) slides.

In Figure 10, the SRC and the PRC of the best landslide susceptibility models developed for falls
(Figure 10a) and slides (Figure 10b) are presented.
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Figure 10. Success and Prediction Rate Curves for the best landslide susceptibility models, developed
for: (a) falls and (b) slides.

The results show that the SRC and PRC for both landslide typologies have a similar pattern and
the differences between the curves are small due to the statistical robustness of the landslide inventory.
The AUCs of the SRC are 0.95 and 0.89 for falls and slides, respectively; values that, according to
Guzzetti (2005) [38], are typical of excellent susceptibility models. The AUCs of the PRC are 0.84 and
0.79 for falls and slides, respectively. For falls and slides, the 25% of the study area that is recognized
as more susceptible includes 97% and 79% of the unstable area, respectively.

The final landslide susceptibility maps for falls and slides (Figure 11) show that the areas of
higher susceptibility to falls are located along very steep sea cliffs that are composed of fractured rocks,
under conditions that are very restricted in the study area (Figure 11a). On the other hand, the highest
susceptibility areas to slides occupy wider areas along incised stream valleys and other steep slopes
composed of older and very weathered materials (Figure 11b).
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5. Conclusions

The results obtained in this paper demonstrate that the influence and the weight of the
predisposing factors for landslide susceptibility analysis are very different depending on the landslide
typology, and support the importance of discriminating landslides by typology.

It was also verified that, if one of the landslide typologies has greater spatial abundance in the
study area, and if the susceptibility models are computed based on a total inventory, the statistical
relationships between the predisposing factors and landslides will be controlled by the dominant
landslide typology. In these cases, the model will suffer a bias as strong as the difference in spatial
abundance between the different landslide typologies. Thus, discrimination of landslides by typology
is the only way to ensure that the computed statistical relationships between the predisposing factors
and the landslides are preserved.

By applying the Information Value method to all of the 4095 possible predisposing factor
combinations for each typology, it was concluded that the best combination for both typologies
included seven predisposing factors: slope angle, slope aspect, insolation, drainage density,
contributing area, geology, and land use. For falls and slides, the best fitted models have an Area Under
the Curve of the Success Rate Curve of 0.95 and 0.84, respectively. It is important to note that these
models are not exclusively the result of a combination of predisposing factors with the best spatial
discrimination capacity, but rather are formed by a combination of factors with heterogeneous degrees
of discriminative capacity. Thus, systematically adding predisposing factors to the susceptibility
models, in reverse order to their spatial discriminant capacity, does not mean that the best possible
combination of factors will be obtained in order to compute the best fitted susceptibility model.

Another conclusion of this work is that, with an increasing number of predisposing factors used
to compute the susceptibility models, the number of unique terrain conditions observed and the
goodness of fit of the susceptibility models tend to increase in a non-linear way. Nevertheless, there
is a clear attenuation of the average goodness of fit of the models with the increase in the number
of predisposing factors. Related to this increase, there is a clear decrease in the variability and a
stagnation of the best result obtained for the models. It was concluded that this trend is related to the
inability of the territory to generate the observed unique terrain conditions with the ongoing addition
of predisposing factors. Therefore, at a certain point, the increase in predisposing factors will only
increase the computational weight, and therefore the time required to generate the resulting landslide
susceptibility model.

Authorities and decision makers need landslide susceptibility maps for land-use and emergency
planning, and therefore the implications of landslide typology and predisposing factor combinations
on probabilistic landslide susceptibility models should be quantified. Landslide susceptibility maps
can also support the implementation of site-specific risk mitigation measures and prioritize detailed
geotechnical investigations.
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