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Abstract: Pockmarks are seabed depressions developed by fluid flow processes that can be found in
vast numbers in many marine and lacustrine environments. Manual mapping of these features based
on geophysical data is, however, extremely time-consuming and subjective. Here, we present results
from a semi-automated mapping toolbox developed to allow more efficient and objective mapping
of pockmarks. This ArcGIS-based toolbox recognizes, spatially delineates, and morphometrically
describes pockmarks. Since it was first developed, the toolbox has helped to map and characterize
several thousands of pockmarks on the UK continental shelf, especially within the central North Sea.
This paper presents the latest developments in the functionality of the toolbox and its adaptability
for application to other geographic areas (Barents Sea, Norway, and Malin Deep, Ireland) with
varied pockmark and seabed morphologies, and in different geological settings. The morphometric
characterization of vast numbers of pockmarks allows an unprecedented statistical analysis of their
morphology. The outputs from the toolbox provide an objective, quantitative baseline for combining
this information with the geological and oceanographical knowledge of individual areas, which can
provide further insights into the processes responsible for their development and their influence on
local seabed conditions and habitats.

Keywords: pockmarks; automated-mapping; ArcGIS; Glaciated Margin; North Sea; Malin Basin;
Barents Sea

1. Introduction

First reported by offshore Nova Scotia [1], pockmarks are depressions formed in soft sediments at
the seabed by fluid flow processes. Since then, the known occurrences of pockmarks have increased
dramatically. The rise of the documented occurrences of pockmarks is largely thanks to technical
improvements in marine geophysical survey equipment, particularly of multibeam echo-sounders
(MBES), along with a more widespread use of such data for seabed mapping. Pockmarks have
been found worldwide, from water depths of less than 10 m in estuaries (e.g., [2]) to over 3000 m
in offshore canyons (e.g., [3]). However, the distribution of known pockmarks is currently still
geographically biased, with more occurrences reported in economically developed areas of the world
where high-resolution geophysical surveys have been undertaken.

Although the first accounts described these features as concave crater-like depressions [1,4],
the complexity and diversity of morphologies possible have gradually become evident. Pockmarks
have sizes recorded across four magnitudes, although most are between 10 and 200 m diameter and
1–25 m deep [5]. They can occur in both random and non-random distributions controlled by the
underlying geology due to, for example, the presence of faults (e.g., [6]) or buried channels (e.g., [7]).
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The variability of size, spatial distribution, and geometry results from their development depending on
a variety of parameters such as fluid type, flow fluxes, thickness and nature of near bottom sediments,
underlying structure, and lithology.

Most of the initial descriptions of these features were based on low penetration seismic profiles
(mainly Boomer system) and/or from sidescan sonar data (e.g., [1,4,8]). Presently, pockmarks are
predominantly mapped manually using seabed digital terrain models (DTM) created from MBES
data (e.g., [6]), generally a time-consuming task. In addition, delineating their individual boundaries
is subjective and consistency of criterion is hard to achieve. To address this, the British Geological
Survey (BGS) developed a semi-automated mapping toolbox. This ArcGIS-based BGS Seabed Mapping
Toolbox recognizes, spatially delineates, and morphometrically describes seabed features including
pockmarks [9], coral mounds [10], and other confined features. The toolbox is embedded in ESRI®

ArcGIS, a geographic information system (GIS) widely used in the field of marine geology, allowing
users to work in a familiar and integrated mapping environment. Furthermore, the scripts developed
use standard ESRI® algorithms that increase the clarity of the steps taken during delineation and
characterization processes. With this approach, human interaction and expert knowledge is still part
of the mapping process but is limited to restricting criteria for feature mapping. This allows multiple
mapping exercises to be performed with the same criterion, improving comparisons across different
areas or quantification of seabed changes over time. The tools also allow an extensive morphological
characterization of the mapped features with a fraction of the effort that would be required using
manual techniques.

The consistent characterization of vast numbers of pockmarks with multiple morphological
characteristics allows an unprecedented statistical analysis of their morphology. Combining this
statistical analysis with the geological and oceanographic knowledge of individual areas provides
insights into the processes responsible for their development and the influence of local seabed
conditions. The application of this method to different datasets, over a wider range of water depths,
seabed sediments types, and geological settings, as reported in this study, significantly increases
the understanding of the formation, evolution, and preservation of these common, but still poorly
understood, seabed features.

This work is the result of a semi-formal collaboration, established in 2015, between national
seabed mapping programmes in Norway (MAREANO, www.mareano.no), Ireland (INFOMAR, www.
infomar.ie), and the UK (MAREMAP, www.maremap.ac.uk). This collaboration has facilitated the
exchange of data and methods for the development of various aspects of geological mapping of the
seafloor. Mapping of pockmarks was quickly identified as an objective of common interest to the
geological surveys within the three mapping programmes, and one for which quantitative, objective
methods were not yet readily available. Testing this mapping approach originally developed for
UK seabed data in other geological settings data from the Barents Sea (Norway) and Malin Basin
(Ireland) will lead to further developments of the toolbox. In this paper, we explore the applicability of
this practical and effective mapping approach, fully integrated within the most used GIS software,
and illustrate the potential of the use of morphometric parameters to characterize pockmarks.

2. Materials and Methods

2.1. Study Areas and Datasets

A total of 20 MBES datasets were used in this study. These comprise: (1) 18 site survey datasets
from the North Sea (UK) held by the British Geological Survey (BGS) and forming part of the
MAREMAP data repository; (2) a dataset from the Malin Basin (Ireland) acquired by INFOMAR;
and (3) a dataset from the Barents Sea (Norway) acquired by the MAREANO programme (Figure 1).

The selected datasets represent not just a diversity of geological settings, but also a range of data
resolutions and quality, and present different mapping challenges. A resolution range from 1 to 10 m
and pockmarks from 20 m to almost 800 m wide provided an opportunity to assess the impact of

www.mareano.no
www.infomar.ie
www.infomar.ie
www.maremap.ac.uk


Geosciences 2018, 8, 154 3 of 29

cell size and feature size in the mapping results. The dataset from Malin Deep provided a chance
to test the impact of both regional topography and the presence of MBES acquisition artefacts on
the delineation and characterization of pockmarks. The Barents Sea example, where pockmarks are
particularly prolific, allowed us to explore the efficiency of the tools where vast numbers of seabed
features are present.
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Figure 1. Location map of the three study areas used in this work. Base layer: EMODnet
Bathymetry map.

2.1.1. Witch Ground Basin–North Sea (UK)

In the northern part of the North Sea, especially across the Witch Ground Basin, pockmarks
can be found in high numbers (Figure 2). The Witch Ground Basin is an extensive area of muds
reaching water depths greater than 150 m. It was a depocentre for fine-grained sedimentation at
the end of the Weichselian glaciation, when sediments were deposited very rapidly, creating a thick
sequence of very soft muds [11]. Seismic profiles often show acoustic blanking within the shallow
section of the Quaternary sequence underlying the Witch Ground Formation, which suggests that
shallow gas is trapped at selected horizons [12]; such accumulations support the hypothesis that the
pockmarks found in this basin were formed by gas escape at irregular intervals since deglaciation [13].
In addition, since the seabed in the Witch Ground Basin has remained essentially unchanged by erosion
or sedimentation once the sea level stabilized after the last glaciation, the pockmarks represent the
cumulative effects of gas-escape activity over a period of at least 8000 years [14].

The vast majority of the pockmarks mapped within the Witch Ground Basin are less than 3 m
deep [9], with an area of approximately 2000 to 4000 m2. In cross-section, these pockmarks are mainly
V-shaped (Figure 2d), with a few of them being U-shaped and very rarely W-shaped with a degree of
asymmetry, whereas in plan-view, they are generally circular to elongate. Besides the vast number
of unit pockmarks, several unusually large pockmarks were found in the Witch Ground Basin area.
The largest of them, and among the largest pockmarks known globally, is the western pockmark of the
Scanner Pockmark Complex (Figure 2a,b) [15].

The BGS has gathered numerous MBES datasets over the last decades in UK territorial waters,
especially from the North Sea. These include the 18 multibeam datasets used by [9] in their first study
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using the semi-automatic mapping approach (Figure 2). These datasets were collected for the Strategic
Environment Assessment programme (SEA programme) and data were collected as part of site surveys
for exploration wells commissioned by different operators. Due to the purpose for which the data
were acquired, these datasets tend to be of high resolution (of 2 m for most) but cover small areas,
ranging from less than 5 km2 up to 36 km2. In total, the 18 datasets cover an area of 306 km2.
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Figure 2. Location map of the 18 multibeam datasets (MAREMAP) in the North Sea and the bathymetric
map of the SEA2 Box 4 dataset. See Table S1 for more information on individual survey areas.
(a) Detailed view of the SEA2 Box 4 showing the Scanner Pockmark Complex (SPC) and surrounding
pockmarks; (b) NW-SE profile across Western Scanner Pockmark; (d) WNW-ESE profile across a
pockmark southwest of SPC, showing a symmetric transverse profile; (c) NNE-SSW profile along the
same pockmark, showing a markedly asymmetric longitudinal profile.

2.1.2. Malin Basin (Ireland)

The Malin Shelf lies immediately north of Ireland and west of Scotland, with typical depths
between 100 and 150 m. Seabed morphology is rocky and irregular in the east, while to the west,
it is relatively sandy and smooth. The Malin shelf shallow geology is characterized by glacial
diamictons, muds, and sands [16]. The Malin Deep pockmark field lies in the outer Malin shelf,
approximately 70 km offshore northwest of the Malin Head. The area covers approximately 1000 km2,
extending from 7◦45’ W to 8◦20’ W and from 55◦45’ N to 56◦ N (Figure 3). Water depths range
from 140 m to 182 m, in the Malin Deep (c. 55◦55’ N; 8◦14’ W). The pockmark field lies in a basin
characterized by a smooth and soft seabed composed of fine-grained marine sediments, ranging
from fine sands to silts. The thickness of the Quaternary deposits varies N-S from 175 to 125 m [17].
Both acoustic and electromagnetic evidence indicates the presence of fluids within these deposits [18].
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Geochemical analysis of sulphate profiles indicates that gas from the shallow reservoir has been
migrating upwards [18].

The Malin Deep dataset covers an area of c. 865 km2 (Figure 3). The Geological Survey of Ireland
and the Marine Institute acquired this dataset in 2003, as part of the Irish National Seabed Survey
(INSS), the precursor to the INFOMAR mapping programme. Data were acquired on-board the R.V.
Celtic Explorer using a Kongsberg-Simrad EM1002 multibeam echosounder, with an operational
frequency of 93–98 kHz. Bathymetric data cleaning was performed on-board and statistical analysis
of the data indicates a vertical accuracy of <40 cm across the region. Resulting bathymetric terrain
models were gridded at 5 m× 5 m.
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2.1.3. Barents Sea (Norway)

Pockmarks are a frequent occurrence in the Barents Sea, occurring far beyond the area investigated
in this study. The distribution and likely origins of the pockmarks in the SW Barents Sea and Finnmark
fjords, northern Norway, have been recently documented as part of a broad-scale study by [19], where
the study area investigated here falls under their description for the “Easternmost Norwegian sector”.
The study area considered here was classified by [19] as having a high density (300–800 per km2) of
pockmarks; however, the individual pockmarks were not delineated in that study. The authors showed
that in the Barents Sea, pockmarks occur in areas where soft glaciomarine and marine sediments
were deposited after the ice margin retreated [19]. The distribution of pockmarks thereby reflects the
distribution of soft, fine-grained postglacial deposits in the SW Barents Sea. They also conclude that
the pockmarks formed due to the melting of gas hydrates. It is suggested that this process probably
started c. 14,500 cal. years ago, after the ice cap had melted and the bottom water temperature and
thus the seabed temperature had increased due to the inflow of warm Atlantic water.

The Barents Sea dataset provided by MAREANO covers an area of 100 km2 near the
Norway-Russian border (Figure 4). The data were collected by MMT under contract to the Norwegian
Hydrographic Service as part of the MAREANO seabed mapping programme in 2011 using a
Kongsberg EM710 MBES on the survey vessel M/V Franklin. Data are gridded at a 5 m resolution,
a standard output for MAREANO bathymetric mapping. The data are of good quality and do not
exhibit any significant artefacts from data acquisition or processing.
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2.2. Manual Mapping

Marine geological mapping methods have evolved substantially over recent decades, alongside
diversification in the uses for this mapping. However, manual mapping of seabed features still
represents a huge component of the effort to map and understand the seabed. Almost invariably,
manual mapping of seabed features will involve the use of a GIS. It allows the creation, visualization,
and analysis of DTMs, hillshade (from one or more directions), and several other rasters derived from
the bathymetry data (e.g., slope, aspect, and curvature). GIS also provides a convenient platform
for manual, expert-driven digitization of seabed features, based on the analysis of multiple layers of
information. The definition of the limits of the geomorphic features is based on expert judgement
complemented with classification schemes, but is often subjective.

The example of manual mapping of pockmarks included in this study is based on the 5 m DTM
and slope maps derived from the Malin Basin dataset. Seabed depressions shallower than 0.5 m were
dismissed, as this approaches the vertical accuracy of the data (c. 40 cm). This area is particularly
challenging due to the artefacts present in the dataset.

2.3. Pixel-Based Calculation of Terrain Attributes as a Basis for Semi-Automated Mapping

Pixel-based analyses of bathymetric DTMs are often used to produce derived terrain attributes
that serve as an aid to the manual digitization of features (as in the Malin Deep region). However, these
derived terrain attributes can also be used for automatic pixel-based mapping, based on expert-defined
threshold values before manual fine-tuning.

Here, we explore some terrain attributes, derived from pixel-based analyses, related to slope,
curvature, and relative position in order to examine their potential for delineating pockmarks.
Other terrain attributes relating to orientation and terrain variability may be useful for describing the
nature of the pockmarks but are not so directly relevant to their delineation.

The pixel-based terrain analysis methods presented as part of this study were conducted on SEA2
Box4 of the Witch Ground Basin datasets. This area is particularly challenging due to the different
shapes and sizes of the pockmarks. Therefore, it is a good example for examining how well various
methods are able to delineate the pockmarks. The methods and analysis scales used (Table 1) were
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selected to provide examples of the various approaches rather than conducting an exhaustive analysis
of the area. A selection of the results is presented in Section 3.1, where results from the BGS Seabed
Mapping Toolbox are shown for comparison.

Table 1. Summary of pixel-based approaches to pockmark mapping in SEA2 Box 4, Witch Ground Basin.

Terrain Attribute
Analysis Scale Used (Pixel

n × n Neighbourhood,
Except BPI (BTM Toolbox)

Method

Single scale slope n = 3 Standard 3 × 3 curvature from ArcGIS 10.4.1
Spatial Analyst [20]

Multiple scale slope n = 5, 9, 15 GRASS module r.param.scale via QGIS 2.18.11
based on the methods of [21].

Multiple scale Bathymetric
Position Index (BPI)

Inner radius 1, 3
Outer radius 5, 15

Fine_scale BPI using the BTM toolbox [22].
Annulus neighbourhood with selected inner
and outer radius. Produces integer output.

Multiple scale BPI (modified) n = 5, 9, 15

This modified version of BPI implemented in
ArcGIS Spatial Analyst raster calculator
produces a floating-point grid. The
computation is similar to that presented by [23]
but uses a rectangular neighbourhood to
facilitate using the same neighbourhood as
other analyses.

Curvature n = 3 Standard, 3 × 3 curvature from ArcGIS 10.4.1
Spatial Analyst [24].

Multiple scale minimum curvature
Multiple scale profile curvature n = 5, 9, 15 n = 5, 9, 15

Multiple scale curvature calculated using
GRASS module r.param.scale via QGIS 2.18.11
which is based on the methods of [21].

Multiple scale feature
classification n = 9, 15, 27, 51

Multiple scale feature classification calculated
using GRASS module r.param.scale via QGIS
2.18.11 from r.param.scale [21].

2.4. BGS Seabed Mapping Toolbox

The BGS-developed tools in the BGS Seabed Mapping Toolbox run individual Python scripts that
use a sequence of pre-existing ArcGIS geoprocessing tools. The toolbox includes (1) data preparation
tools; (2) feature delineation tools; and (3) characterization tools.

2.4.1. Data Preparation

The basic input to the BGS Seabed Mapping Toolbox is a DTM, either obtained from a multibeam
echosounder dataset or from another dataset that can be used to generate a DTM of the seabed or
buried surface (e.g., 3D seismic—[25]). In datasets strongly affected by artefacts, when using the
semi-automated mapping toolbox, pockmarks may be incorrectly delineated and spurious values
may be captured during their characterization. This was the case for the dataset available for the
Malin Basin, where acquisition artefacts markedly affect this dataset (Figure 5). Artificial vertical
reliefs (corrugations) of up to 50 cm are detected systematically across the dataset due to tidal shifts
in the lines overlap and vessel motion-related artefacts across the swath. These are comparable in
magnitude to the vertical relief of some of the pockmarks. For that reason, it was necessary to smooth
the initial bathymetric surface. The ArcGIS Focal Statistics tool was used to smooth the original surface.
The smoothed surface was then used as the input surface for both the pockmark delineation and
characterization tools. The Focal Statistics tool performs a neighbourhood operation that computes an
output raster where the value for each output cell is a function of the values of all the input cells that
are in a specified neighbourhood around that location.
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Figure 5. Left: Detail of the Malin Basin dataset, illustrating the impact of artefacts on the dataset.
Right: (Top) Bathymetric profile from (A) to (B). (Down) Profile from (C) to (D) across the original
dataset and the smoothed bathymetry.

The overall regional morphology and the presence of overlapping morphological features can
also affect the ability of the delineation tools to correctly map pockmarks. This can be addressed by
using the BGS-developed Filter-based Clip Tool. This tool automatically identifies and clips areas of
special interest where seabed features are likely to be present. The use of this tool is particularly useful
in a setting like the Malin Basin (Figure 6), where the pockmarks occur within a regional basin. During
the first delineation, the entire small basin was erroneously mapped as a pockmark since it is also
a confined depression (Figure 6A). The Filter-based Clip Tool identifies and outlines areas of vertical
relief changes, which are then used to clip the original DTM excluding the data from zones of smooth
bathymetry (Figure 6B–D). Using the clipped DTM as the input to the delineation tool, this tool is now
capable of delineating individual pockmarks within the small basin (Figure 6E).
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Figure 6. (A) Example of a small basin initially mapped by the Delineation Tool as a confined depression
(contour lines every 1 m); (B) Detail of the raster obtained by applying a High Pass filter followed a Low
Pass filter; (C) Black polygons delineate areas of negative values within the filtered dataset (in yellow),
which can correspond to either pockmarks or artefacts; (D) Clipped bathymetric dataset based on the
delineated polygons; (E) The result of running the Delineation Tool with a clipped bathymetry.
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2.4.2. Feature Delineation

As explained in [9], pockmarks are generally represented by confined depressions in a DTM,
therefore it is possible to employ hydrological algorithms such as the Fill function in ArcGIS Spatial
Analyst to define what would be the lowest elevation on the rim of a sink depression (i.e., the overflow
point if the depression was being filled). In fact, “Fill” is one of the key algorithms of a sequence of steps
used by the Feature Delineation [Bathy] tool as described by [9] and is used here to delineate pockmarks.
Experience has shown that in certain regional settings, using the rim of the confined depression
related to the presence of the pockmark may result in an underestimation of its size, especially in
areas with steep slopes. To address this issue, the alternative Feature Delineation [Derived] tool was
created, which can use the derived terrain attribute Bathymetric Position Index (BPI) calculated from
the bathymetry data using Benthic Terrain Modeler toolbox [22] as the input, instead of the bathymetry
data. BPI measures whether a certain location is higher or lower than the surrounding seabed by
comparing the depth of each pixel with the mean depth of neighbouring pixels within a user-defined
neighbourhood (inner and outer radii). The BPI value obtained for any pixel, however, depends on
both the regional setting and the neighbourhood used in the BPI calculation. The values of BPI are
also sensitive to data resolution. This alternative approach using BPI rather than bathymetry therefore
introduces unavoidable sources of inconsistencies on the criterion used to map pockmarks in different
study areas and is only recommended for use in more local studies.

Due to the limitations of the BPI approach mentioned above, in this study involving data from
different regions, the pockmark delineation was done directly from the bathymetric data. Five values
must be defined to run the Feature Delineation [Bathy] tool; these are the Cut-off Vertical Relief, Minimum
Vertical Relief, Minimum Width, Minimum Width/Length Ratio, and Buffer Distance. The Cut-off Vertical
Relief defines the contour line that will be used to delineate the features. The Minimum Vertical Relief,
Minimum Width, and Minimum Size Ratio define which features will be mapped; only the features
that present dimensions above the specified thresholds will be delineated. The Cut-off Vertical Relief
and the Minimum Vertical Relief can be the same value. The defined Buffer Distance compensates for
the fact that the delineation process is based on the feature’s internal contour line corresponding to
the Cut-off Vertical Relief threshold. This parameter should approximate the distance, in plan-view,
from the internal contour line delineated based on the Cut-off Vertical Relief to the actual rim of
the feature. The greater the value of Cut-off Vertical Relief, the greater the Buffer Distance. Figure 7
illustrates the different mapping results obtained by choosing different Cut-off Vertical Relief and Buffer
Distance values.
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Figure 7. Example of the delineated outline depending on the choice of the different values of Cutoff
Vertical Relief (cut-off VR) and Buffer Distance. Note that the green outline better represents the
pockmarks’ limits than the red outline.

The North Sea pockmarks were mapped as part of [9] using the first version of the Feature
Delineation [Bathy] tool, which did not require the Minimum Vertical Relief and used Minimum Area
instead of the Minimum Width as one of the threshold values. The Minimum Width later replaced the
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Minimum Area threshold because it was found to be more user-friendly and easier to relate to the
resolution of the dataset used as input. The thresholds used to map the North Sea pockmarks were
Cut-off Vertical Relief (then referred to as Minimum Depth) of 0.5 m and Minimum Area of 100 square
metres. Table 2 presents the respective values used for Malin Deep and Barents Sea study areas.

Table 2. Table of thresholds used for three study areas: Cut-off Vertical Relief (Cut-off VR), Minimum
Vertical Relief (Min VR), Minimum Width (Min Width), Minimum Size Ratio (Min W/L), and Buffer
Distance. Note that North Sea’s pockmarks were mapped with the first version of the delineation tool
that used a different set of thresholds.

Study Area Cut-off VR Min VR Min Width Min W/L Buffer Distance

North Sea 0.5 m — — 0.2 7.5 m
Malin Basin 0.2 m 0.2 m 40 m 0.2 80 m
Barents Sea 0.75 m 0.75 m 4 m 0.2 10 m

The output of the tool is a polygon shapefile that delineates the mapped features (pockmarks).
The shapefile attribute table contains the following fields (1) Area; (2) Perimeter; (3) VRelief;
(4) MBG_Width; (5) MBG_Length; (6) MBG_Orient; and (7) MBG_W_L. Area and Perimeter describe
the geometry of each delineated feature. The VRelief provides the vertical relief measure for each
delineated feature. The MBG_Width, MBG_Length, and MBG_Orient describe the Minimum Bounding
Geometry (MBG) envelope that contains each delineated feature. MBG_W_L describes the aspect ratio
of these envelope polygons. Jorge et al. [26] assessed the use of different automated methods to measure
longitudinal bedform’s morphometry. Although these authors focus on subglacial positive-relief
bedform (e.g., drumlins), their conclusions are still relevant to the morphometry measurements of
pockmarks. They established that the MBG approach provides the most suitable measurements,
from the tested methods, for both Orientation and Length, only showing a wider range of errors for
the measurement of the Longitudinal Asymmetry, which is not used in this study.

The output shapefiles from the delineation tool require visual assessment as part of a
semi-automatic workflow. Visual assessment of the polygons can be performed by overlaying the
generated shapefile onto both the original bathymetric data and derived surfaces, such as the slope
map. This allows a check on the mapping results and assessment of the need to manually edit sporadic
polygons and/or to add features that were missed by the automated method. Additionally, the visual
assessment can be complemented by an analysis of the values reported in the table of attributes.

2.5. Morphometric Analysis

In addition to the morphological attributes extracted by the characterization tool, extra
morphological size and shape ratios can also be calculated. This includes the Vertical Relief to
Area (VR/A) ratio. To characterize the profile of the pockmarks, we also define a Profile Indicator (PI)
by the following equation:

PI =
MinWD − MeanWD
MinWD − MaxWD

(1)

This morphologic PI ratio can help to distinguish between depressions with a V-shape profile,
more typical of single pockmarks, and the depressions with a U-shape profile, more common on
complex pockmarks. V-shape pockmarks will generate lower values of PI compared to the pockmarks
with a U-shape (Figure 8).
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Figure 8. Schematic representation of two different type of pockmarks profiles and how the position of
the mean will lead to lower or higher PI values.

3. Results

3.1. Witch Ground Basin—North Sea

A total of 4146 pockmarks, deeper than 50 cm, were mapped in the Witch Ground Basin. Here,
we present the general trends and measures for the whole basin, but [9] summarizes the descriptive
measurements for each of the individual site survey areas.

The highest pockmark density occurs within the survey site Roisin in the centre of the basin,
with a pockmark density of almost 30 pockmarks per square kilometre (Figure 9). The density of
pockmarks decreases from the centre of the basin where water depths exceed 150 m, to less than
5 per km2 on the edge of the basin where water depths are around 120 m. However, more than the
changes in water depth, the number of pockmarks seems to be controlled by the thickness of the very
soft late glacial sediments within which the pockmarks are developed. This is greatest in the centre of
the basin but thins towards the edge.
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Figure 9. Pockmark density across the Witch Ground Basin. Survey sites colour coded according to the
pockmark density observed. The regional bathymetry shows deeper areas (−150 m) in a darker blue
and shallower areas (−90 m) in light blue [9].

The mean vertical relief of the pockmarks is 1.82 m, with most pockmarks between 1 and 2.4 m
deep (Q1 and Q3, respectively). However, in SEA2 Box 4, there are five pockmarks deeper than 12 m
and one of them reaches almost 18 m deep (Figure 10A). These unusually large pockmarks, in UK
license block 15/25, have long been known as sites of active seepage [27–29]. None of the datasets
exhibit a significant variation of vertical relief with water depth (Figure 10B).
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Figure 10. (A) Box plot of the pockmarks’ vertical relief over individual study areas mapped in the
Witch Ground Basin; (B) Vertical relief as a function of Minimum Water Depth.

The mean area of the pockmarks is 3222 m2, with half of the pockmarks between 1960 (Q1) and
5385 m2 (Q3). The pockmark area does not follow a trend from the centre to the edge of the basin.
However, it does show a strong correlation between vertical relief and pockmark area (Figure 11).
With the exception of the Rob Roy dataset, all the other datasets studied in the Witch Ground Basin
show a marked trend where pockmarks with higher vertical reliefs have greater areas. The reason why
the Rob Roy dataset does not present the same trend as the rest of the dataset will be discussed later.
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Figure 11. Vertical Relief as a function of Area in pockmarks with vertical relief lower than eight metres
within the Witch Ground Basin. Note that the unusually large pockmarks existent in the Witch Ground
Basin are not displayed in this figure.
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Comparison between the Results from the BGS Semi-Automatic Approach and from the Pixel-Based
Analysis

As shown in Figure 12, the Feature Delineation [Bathy] tool successfully delineates pockmarks
across a range of sizes and with different sizes and shapes. Results from pixel-based analyses are
more varied in their ability to delineate the various morphologies of the pockmarks in this area.
Some examples are shown in Figure 13.
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Figure 12. Examples of the initial results from BGS toolbox for SEA 2 Box 4—the pockmarks delineated
by the tool are shown in red over a colour-shaded relief map from the southern part of Box 4. Resolution
6 m. Note that manual editing was later required to split the Scanner Pockmark Complex (SPC) into
Western Scanner, Eastern Scanner, and adjacent pockmarks.

The first terrain attribute tested was slope, initially tested using standard 3 × 3 pixel analysis and
Horn’s algorithm [20] in ArcGIS’ Spatial Analyst. Using a colour ramp classified by natural breaks
(Figure 13A), we see that all the pockmarks delineated by the BGS tool are highlighted by the slope
map. The difficulty lies in finding a slope cut-off value that would delimit pockmarks of different
morphologies, and in representing the entire pockmark. For instance, some pockmarks in SEA2 Box 4
present an asymmetric profile (Figure 2c), with steep northern slopes facing very elongated southern
slopes, and a delineation based on slope would tend to delineate a crescent shape whilst missing the
areas of very gentle slope. Testing larger analysis windows and using methods for generating multiple
scale slopes (Table 1) has shown that increasing the analysis window is of limited value as the extent
of the pockmarks can become overestimated. As with all raster outputs of pixel-based analyses, it is
important to be conscious of the influence of colour ramp choice on visual interpretation.

Both marine geoscientists and marine biologists have used BPI widely [10,30]. BPI can be
computed using the BTM toolbox [22]. For this study, only fine-scale BPI was calculated, testing
the inner and outer radii indicated in Table 2. Figure 13B shows fine-scale BPI with inner radius 1
(i.e., 2 m) and outer radius 15 (i.e., 30 m). The areas with negative BPI give a good delineation of the
larger pockmarks, including the base. However, using this neighbourhood, we fail to capture the
smaller, shallower, pockmarks, due to the integer rounding inherent in the tool. Decreasing the outer
radius to try to capture the smaller pockmarks is not successful and results in fewer pockmarks being
detected overall. Increasing the inner radius has a negligible effect on the delineation.

The small, shallow pockmarks can be detected with a modified version of BPI without integer
rounding (Figure 13C, Table 2). This result is more successful at highlighting the small pockmarks as
well as most of the larger ones, but it also detects artefacts in the MBES data, which are of a similar
magnitude to the BPI values within parts of the pockmarks.
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Figure 13. Examples of pixel-based terrain attributes from the southern part of SEA2 Box 4. Background
data—greyscale shaded relief image of bathymetry data. Pockmark features delineated by the BGS
Mapping toolbox are shown in red for reference. All terrain attributes except (B) are coloured according
to natural breaks classification and no colour is used for irrelevant classes, where appropriate, to aid
visualisation. (A) Slope calculated in ArcGIS Spatial Analyst using standard 3 × 3 rectangular
neighbourhood; (B) BPI (integer) using the BTM toolbox using annulus neighbourhood with an
inner radius of 1 and an outer radius 5; (C) BPI (floating point) calculated using a 5 × 5 rectangular
window—negative BPI values correspond to negative features (depressions) in the seabed, including
pockmarks, positive features (BPI value > 0) are not shown. Note that values in the range −0.2–0
(cyan) highlight numerous small artefacts in the data in addition to the shallower portions of
pockmarks; (D) Curvature calculated using ArcGIS Spatial Analyst using standard 3 × 3 rectangular
neighbourhood—values from −0.3 to 0.6 (close to flat) are not coloured. (E) Minimum Curvature
calculated using a 9 × 9 rectangular neighbourhood—values greater than −0.001 are not coloured;
(F) Profile curvature calculated using a 15 × 15 rectangular neighbourhood—values greater than
−0.0003 are not coloured (flat and positive features). Note that visual interpretation of the results,
and the extent to which features and artefacts show up is very dependent on the colour ramp used.
These figures are intended as examples only.

Like BPI, measures of curvature also highlight positive and negative features of the terrain.
We first tested standard, 3 × 3 curvature in ArcGIS’ Spatial Analyst [24] with the results shown in
Figure 13D. This, like Figure 13C, shows up artefacts in data in addition to pockmarks, but in this case,
it is even more difficult to separate the artefacts and the pockmarks from the curvature values. It is clear
that larger, alternate analysis scales are required that overlook the artefacts and find the pockmarks.

We have also tested two measures of curvature that can be generated at multiple scales in the
GRASS module r.param.scale (Table 1). Minimum curvature (Figure 13E) should find the inflexion
point in the bathymetry surface corresponding to the pockmark and is reasonably successful in
capturing entire pockmarks spanning a range of sizes, although some artefacts are also highlighted.
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Profile curvature [21] describes the rate of change of slope along a profile of the surface and can be
useful in highlighting convex or concave slopes in the bathymetry surface. This appears to be one of
the most successful pixel-based approaches to delineating the various sizes of pockmarks in the study
area; however, we note that artefacts at the eastern edge of the dataset are also detected.

Various properties of curvature are combined in feature classification. We tested the feature
classification from r.param.scale [21]. Here, we show only the ‘pit’ class output which identifies
depressions in the surface and seems well matched to the detection of pockmarks (Figure 14).
Experimenting with analysis windows at multiple scales, it is clear that the 9 × 9 analysis window fails
to separate out pockmarks from artefacts in the data. A larger analysis window of 15 × 15 successfully
detects the small-medium size pockmarks but fails to capture the larger ones. Consequently, we see
that larger analysis windows of 27 × 27 and 51 × 51 cells find the larger and largest pockmarks,
respectively, but overlook the small ones.
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pockmarks are of a relatively uniform size. Whereas, multiple scale analysis can be employed to 

Figure 14. Examples of feature classification using different analysis window size. Background
data - greyscale shaded relief image of bathymetry data. Pockmark features delineated by the
BGS Mapping toolbox are shown in red for reference. (A) Pit features (yellow) from feature
analysis using 9 × 9 rectangular neighbourhood; (B) Pit features (yellow) from feature analysis
using 15 × 15 rectangular neighbourhood; (C) Pit features (yellow) from feature analysis using
27 × 27 rectangular neighbourhood; (D) Pit features (yellow) from feature analysis using 51 × 51
rectangular neighbourhood.

It appears that some of the pixel-based methods tested here can give good results where
pockmarks are of a relatively uniform size. Whereas, multiple scale analysis can be employed to
detect features of different sizes if required. It is challenging, however, to find a single scale of analysis
and analysis type that detects all pockmarks and delineates the entire feature. Further, with the
exception of the feature classification, the user must determine a suitable cut-off value in the terrain
attribute (BPI, curvature etc.) to use as the limit of the pockmark. If such a value can be used, then these
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raster outputs of pixel-based terrain analysis can be used as a basis for conversion to vector features
(shapefiles), should these be required for the application in question. Following conversion to polygon
features, area attributes can be applied to the pockmarks. However, the areas may not be a consistent
representation of all complete pockmarks due to the dependence on the raster cut-off value, which may
well be a compromise between pockmarks of different morphometry. Manual editing of the polygons
may therefore be a necessary expert-driven step in the mapping process. Pixel-based terrain analysis,
based on the type of methods illustrated here, does not provide any estimate of pockmark depth or
volume. Methods such as Geomorphons [31], which are designed to simultaneously identify landform
elements across a wider range of scales, may be more suitable, although they face similar limitations in
terms of the metrics they provide, unless combined with other methods.

3.2. Malin Basin

Due to the artefacts present in this dataset, it was necessary to smooth the bathymetry before
applying the delineation tool (Section 2.5). As a consequence of this smoothing, the vertical relief of
the pockmarks was most likely underestimated and shallow pockmarks were not detected, or where
detected, their area may well be underestimated (Figure 15).
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Figure 15. Detail of the original Malin Deep dataset and the mapping results based on the
smoothed bathymetry.

Nevertheless, after smoothing and clipping the bathymetry using the Filter-based Clip Tool, the
Delineation Tool identified 150 pockmarks with a vertical relief greater than 20 cm (Figure 16) within the
Malin Basin. Pockmarks were mapped in water depths ranging from 126 to 177 m, but most of the
pockmarks are found in water depths below 167 m (Figure 16B). The largest mapped pockmark is at
least 5.5 m deep, but 75% of the pockmarks are shallower than 60 cm, and the mean vertical relief is
36 cm (Figure 17). We also remark that all the pockmarks with vertical relief higher than one metre
occur at water depths deeper than 168 m (Figure 16A). The pockmark area varies from 2000 m2 to
almost 303,000 m2, with a mean value of 32,073 m2. Whereas, the pockmark length varies from the
smallest pockmark with less than 50 m to the largest with 785 m long. They tend to be quite concentric,
with a mean size ratio of 0.83.
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Figure 16. (A) Location map of the 150 pockmarks mapped with the BGS Seabed Mapping Toolbox
(red dots); (B) Vertical Relief as a function of Area for the pockmarks mapped in the Malin Basin.
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Figure 17. Boxplots for Area, MBG Length, and Vertical Relief for pockmarks mapped in the
Malin Basin.

Comparison between the Results from the BGS Semi-Automatic Approach and from Manual Mapping

Previously, 214 depressions deeper than 0.5 m had been mapped manually [32]. When comparing
the manual mapping with the automated mapping, it is evident that fewer pockmarks were identified
by the Delineation Tool, especially in the steeper areas (Figure 18). Almost 80% of the pockmarks that
were not mapped automatically are located flanks of the Malin Deep, where the smoothing of the data
has a stronger impact on the automatic recognition of shallow pockmarks. However, within the centre
of the basin, the delineation tool detected several pockmarks that were not manually mapped. Some of
the missed pockmarks are deeper than 0.5 m and therefore would fulfil the requirements used for the
manual mapping. This illustrates the ability of the automatic tools to recognise subtle features that can
escape the attention of expert examination.
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Figure 18. Malin Deep’s pockmarks distribution based on both manual and semi-automatic mapping.

Based on the manual mapping, the pockmarks were described as being between 40 and 850 m
wide, and up to 8.5 m deep, with a mean length of 124 m and mean vertical relief of 1.02 m [32].
These measurements present higher vertical relief than the values extracted by the semi-automatic
method. We believe that this difference also results from the need to smooth, in this case, the bathymetry
before applying the Feature Delineation [Bathy] tool.

3.3. Barents Sea

The Barents Sea dataset is characterized by the presence of vast numbers of pockmarks. These are
the main topographic features present, but there are also a few iceberg ploughmarks, which can
be a kilometre long. After applying the Filter-based Clip Tool, to avoid the erroneous delineation of
ploughmarks as pockmarks, the Feature Delineation [Bathy] tool identified and delineated more than
35,000 pockmarks in two hours. These were then characterized by using the Feature Description tool.

The pockmarks are found in water depths ranging from 255 to 305 m, with half of all pockmarks
located between 275 and 291 m. The mean pockmark vertical relief is 2.2 m, but some can be up to
7 m deep. The pockmark area varies from 538 m2 to more than 11,000 m2, but most are less than
1643 m2 (Q3). Their length measure, using the MBG envelope, varies from just 25 m to more than
220 m. They tend to be concentric with a mean MBG_Width/MBG_Length ratio of 0.88. Figure 19
shows the relationship between vertical relief and area for the pockmarks mapped in the Barents
Sea dataset. Almost 80% of the pockmark polygons followed a distinct distribution compared to the
remaining pockmarks, with a higher VR:A ratio (Figure 19). By selecting these, it became evident in
GIS that these polygons corresponded to the single pockmarks (Figure 19), whereas the polygons with
a lower VR:A ratio corresponded to pockmarks with a more complex geometry and with multiple
possible venting points.
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Figure 19. (Left) Vertical Relief as a function of Area in pockmarks mapped in the Barent Sea’s dataset.
Selection of the pockmarks with the higher ratio of VR/A (in cyan); (Right) Detail of the DTM showing
the pockmark delineation obtained, with the polygons with the higher ratio of VR/A highlighted on
the map view.

By separating these two populations, using the following function:

Vertical Relief = (0.0022 × Area)− 1.25 (2)

it was possible to study their morphologic characteristics separately. Table 3 shows some of the metrics
extracted from these two types of pockmarks.

Table 3. Number of depressions mapped (N), mean area (µ Area), mean width (µ Width), mean length
(µ Length), mean of the ratio between width and length (µ W/L), and vertical relief (µ VR) from the
depressions classified as single and complex pockmarks, respectively.

N µ Area µ Width µ Length µ W/L µ VR

Single Pockmarks 28,014 1223 15.5 19.4 0.82 2.12
Complex Pockmarks 7223 2386 24.6 45.4 0.5 2.5

The mean area of the complex pockmarks is almost twice the mean area of the single pockmarks
and the larger of the complex pockmarks can be almost one order of magnitude larger than the single
pockmarks (Figure 20). However, the mean vertical relief of these features shows only a slight increase
from 2.12 to 2.5, from the single to the complex pockmarks group, respectively (Figure 20). The mean
value for the profile indicator for the complex pockmarks is 0.38, whereas the mean PI value for the
single pockmarks is 0.33 (Figure 20). These values indicate that the single pockmarks will have profiles
closer to the V-shape compared to the complex pockmarks.
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3.4. Geomorphometric Comparison between the Different Areas 
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Figure 20. Box plot for the Area, Vertical Relief, MBG Length Vertical Relief/Area ratio, and PI
measured for both the single and complex pockmarks mapped.

The stacked histogram in Figure 21A shows that, contrary to the other two regions, the pockmarks
with the highest vertical relief tend to occur in deeper waters. This is not the result of a preferential
occurrence of complex pockmarks in deeper waters as both types of pockmarks exhibit a trend of
increase in vertical relief with water depth (Figure 21B). However, it should be noticed that changes in
water depth in itself should not be the reason for this trend. Differences in the depositional environment
linked to the water depth (e.g., thickness of soft, fine-grained postglacial deposits) are expected to be
the primary parameter driving the observed increase of vertical relief with water depth. Other factors
linked to the gas release could also be responsible for such a trend.
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Figure 21. (A) Stacked histogram of the Vertical Relief values for all mapped pockmarks in the Barents
Sea by minimum water depths classes; (B) Internal Vertical Relief versus Minimum Water Depth plot
of both single and complex pockmarks.
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3.4. Geomorphometric Comparison between the Different Areas

Due to the systematic and consistent mapping approach adopted, the morphological attributes
used in this study to describe the pockmarks can be employed to compare the morphology and trends
between different areas. For example, we see a clear distinction in the vertical relief of pockmarks from
the three study areas (Figure 22).
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Figure 22. Vertical Relief as a function of Area comparing pockmarks mapped in the three studied
regions (Barents Sea: red dots, North Sea: blue dots; and Malin Basin; green dots). Note that the five
outlier values from the Witch Ground Basin are not presented here to facilitate better display of the
general trends in the remaining data.

The North Sea study area is the one where the pockmarks exhibit the highest vertical relief.
However, these usually large pockmarks are just five outliers to the general trend that exceed 12 m,
whilst the mean value of Vertical Relief is only 1.8 m. The Barents Sea dataset shows the highest
Vertical Relief mean value (µ VR = 2.2 m), which is almost four times higher than the mean value
calculated for the Malin Basin dataset (µ VR = 0.6 m). Nonetheless, the Malin Basin shows the highest
Area mean value (µ A = 32,073 m2); it is one order of magnitude bigger than the mean values for the
other two datasets (North Sea: 4798 m2 and Barents Sea: 1462 m2).

All the study areas show a positive correlation between vertical relief and area, controlled by
the angle of repose. However, the strength of this correlation and the ratio between these two
morphometric variables varies from region to region (Figure 23). The pockmarks from the Barents Sea
present the highest VR/A mean value—µ VR/A = 1.592 × 10−3; where the single pockmarks have
µ VR/A = 1.720 × 10−3 and complex pockmarks µ VR/A = 1.095 × 10−3. Nevertheless, even the
complex pockmarks that tend be less deep than their single pockmark counterparts (i.e., with the
same vertical relief), tend to have higher VR/A values than the pockmarks from the North Sea
(µ VR/A = 0.623 × 10−3). The Malin Basin pockmarks present much lower VR/A values (µ VR/A =
0.044 × 10−3) but, as mentioned earlier, their vertical relief is significantly affected by the smoothing
applied to the dataset, leading to artificially lower VR/A values. The regional correlation coefficients
calculated for the three study areas are, respectively, 0.72, 0.57, and 0.67 for the North Sea, the Barents
Sea, and the Malin Basin (Figure 23). The correlation is even stronger if looking either to individual
study areas within the Witch Ground Basin—R ≈ 0.85 for most survey areas, or individual type of
pockmarks—e.g., R = 0.94 for the single pockmarks within the Barents Sea—the highest observed
correlation coefficient in this study (Figure 24).
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Figure 24. Unsorted correlograms showing the different relationships between key pockmark metrics
for the two types of pockmarks found in the Barents Sea. Note the higher value of correlation between
Area and Vertical Relief for the single pockmarks.

4. Discussion

It has been widely shown that human-cognitive approaches, i.e., manual mapping, have a
number of limitations such as scale bias, azimuth bias, detection bias, and operator bias e.g., [33,34].
These limitations have encouraged new research into automated and semi-automated GIS-based
mapping routines across many sub-disciplines of quantitative geomorphology [35]. In various fields
of terrestrial geomorphology, pixel-based analysis techniques have been used with much success to
discretize landform elements or the separable constituents of landforms, such as ridges or peaks [36,37].
However, integrating landform elements to characterize individual landforms has proven more
problematic and requires subjective operator decision inputs (e.g., [38]). More recently, object-oriented
approaches for automated mapping have become favoured in the terrestrial geomorphological
community, whereby remote sensing imagery is segmented into meaningful objects, whose
characteristics are assessed through spatial, spectral, and temporal scales [36–38].

As highlighted by [39], the availability of high-quality seabed DTMs and quantitative analyses of
these data for delineation of seabed features is much more recent. We are aware of several attempts
among the seabed mapping community to delineate individual pockmarks using pixel-based analysis
of bathymetric data to produce terrain attributes that highlight the negative features (e.g., slope,
curvature). However, there are few published studies, which may be due to the limited success of these
approaches. A promising feature extraction method, based on kernel matching and machine learning,
was developed by [40], but their approach, developed on synthetic data with limited testing on
real-world data, does not seem to have made the crossover from computer science method development
to further use in applied seabed mapping. Although other feature extraction methods such as [21]
or [31] have been applied to other seabed geomorphic features, to our knowledge, they have not
been applied to the delineation of pockmarks. The methods of [21] are among those tested here,
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but the application of the Geomorphon approach of [31] which is starting to gain attention for marine
applications (e.g., [41,42]) has not yet been tested for pockmark delineation. Future applications of
this method may benefit from the developments to the method reported by [42], especially where the
pockmarks also have a characteristic MBES backscatter signature. Object-Based Image Analysis (OBIA)
is currently gaining momentum in the seabed mapping community for seabed classification and
delineation of features (e.g., [43–45]). The approach seems suitable for application to the delineation of
features such as pockmarks, but we are not aware of any published studies.

These methods vary in complexity depending on the data available for the seabed classification
and the approach used but are all much more complex than the approach presented here. The BGS
Seabed Mapping Toolbox provides a simple extension to ArcGIS functionality that gives the user the
possibility to extract morphologic information of a vast number of pockmarks from multiple surveys in
a systematic and consistent way. All that is required from the user is the informed definition a limited
number of thresholds. This is a significant advantage within the context of a national scale mapping
programme, since it would be challenging for multiple interpreters to maintain consistent criteria
throughout the laborious process of manual mapping. Such standardisation may also be difficult
to achieve for pixel- or object-based classification, and none of the alternative methods identified
so far address the need for morphological characterisation in addition to delineation. The BGS
toolbox, although simpler than some potential alternative methods, provides both delineation and
characterisation of the pockmarks. This appears to be well matched to the needs of national mapping
programmes (see also Section 4.4).

Regardless of the mapping approach used for the delineation of the bedforms, it is crucial to
understand how the resolution and data quality will influence morphometric studies of bedforms.
Although this has been stressed in certain fields of terrestrial geomorphology that rely on the use of
DTMs, relatively little attention has been paid to this to date in marine geomorphological studies.
As a result, there is currently a lack of studies assessing how seabed mapping and morphometric
characterisation are influenced by variations in the grid cell size or data quality. These types of studies
could advise on the optimum resolution depending on the dimensions of the features studied, as well
as establishing protocols for dealing with datasets where the fidelity of the DTM is sub-optimal.

4.1. Importance of Pockmarks Geomorphometric Characterization

Although it is widely accepted that pockmarks are a superficial expression of fluid flow,
their formation mechanism is still elusive. Quantitative morphological data can be an important
source of information in addressing this question. As we have demonstrated, quantitative analysis
of pockmark morphology can provide valuable insights into the factors that control their formation
and development. Supported by the wider availability of high resolution bathymetry data and
appropriate DTM-based methodologies for morphometric analysis, we hope that more studies linking
morphological trends to geological processes will be forthcoming in the literature, such as the one in
this Special Issue by [46]. We hope the results of such studies will also be carried forward in validating
numerical models of the development of seabed features.

Further, we note that with better understanding the factors controlling the morphology and spatial
distribution of pockmarks, their morphometric characteristics could be used as proxies to subsurface
conditions, local hydrodynamics, or fluid flow regime. As mentioned in Section 2.1, [9] shows that in
the Witch Ground Basin, the thickness of very soft late glacial sediments seems to control the number
of pockmarks. In this area, pockmark density maps can be used to predict variation in the thickness
of the Witch Ground Formation. However, in areas of the South Western Barents Sea, according
to [17], pockmark distribution seems to be almost independent of the Quaternary sediment thickness,
although the authors do report an inferred correlation between pockmark size and the thickness of
fine-grained deposits. This reflects the complex development of these seabed features and the fact that
morphometric characteristics of pockmarks extracted from bathymetry data as proxies to subsurface
conditions or flow regimes are somewhat restricted to variations within a certain regional setting.
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Even if the actual development of pockmarks is not yet totally understood, there is evidence
that lateral collapse of the pockmarks sidewall is a key process for the widening of the pockmarks
(e.g., [47]). Therefore, it is valid to conclude that the geotechnical characteristics of the sediments
affected will have a crucial role in the ratio between vertical relief developed and area affected by the
seepage. Areas with sediment packages comprised of stiffer material will sustain steeper slopes and
show higher rations between vertical relief and area. Therefore, a gradual and systematic mapping
of the pockmarks, complemented with data on the local geotechnical characteristics would be an
invaluable resource that could facilitate the use of this morphometric ratio as an indicator of the
sediment proprieties.

Multibeam datasets can provide bathymetric data over vast areas of the seabed more economically
than any sub-surface acoustic system. It would seem advantageous for both the scientific community
and any commercial sector that requires seabed infrastructures to utilize the bathymetric data for many
more quantitative analyses of seabed morphometry than are currently in common use.

4.2. Impact of Data Resolution and Quality

Although the BGS semi-automated mapping approach provided robust results for most areas,
it was affected by the resolution and quality of the bathymetric dataset used. This is particularly
evident when comparing the results between the different datasets from the Witch Ground Basin.
The results obtained for the Rob Roy survey are a good example of the impact of using a dataset with
an insufficient resolution for morphological studies. The lower resolution of the data from the Rob Roy
dataset, a 10 m grid, prevented both the correct identification and delineation of the pockmarks at the
seabed. This is evident by comparing the pockmark density of the adjacent survey site, Ivanhoe, which
has a pockmark density of 13.8 pockmarks per km2, with the pockmark density within the Rob Roy
dataset, which is only 4.81 (Figure 9). As noted by [9], this apparent abrupt reduction of pockmark
occurrence between these adjacent study areas does not appear to be controlled by: (1) marked changes
in the underlying geology; (2) distinct fluid flow regime; or (3) variation in the nature of the seabed
sediments. It can best be explained by the lower resolution of the Rob Roy bathymetric dataset.
The lower resolution also affected the morphometric characterization of the pockmarks, in particular
the measurements of vertical relief. The vertical relief mean value defined was merely 0.87 m, whereas
the mean value for the adjacent area, Ivanhoe, is 1.22 m. The Rob Roy pockmarks are described
as having significantly lower vertical relief values than any other study area within the North Sea.
No significant changes in the morphometry of the pockmarks between the datasets with 1, 2, and 5 m
resolution were evident.

This comparison suggests an optimum resolution (i.e., the coarsest resolution, providing efficiency
for measurement, computing time and data storage, at which detail is not sacrificed) of at least 5 m for
the dimensions of the pockmarks found in the North Sea. However, to accurately define the optimum
resolution, multiple resolution datasets from the same area should be used to assess the effect of
resolution on the morphometry measurement of pockmarks. That analysis goes beyond the scope of
this work, but as seabed mapping continues to integrate morphometric analyses of bedforms based
on digital data, it is crucial to understand how bathymetric data resolution influences morphometric
variables related to bedforms.

The dataset from the Malin Deep provides a valuable insight into the potential impact of
bathymetric data quality on the detection of pockmarks. Whilst reasonable results may be obtained
by employing methods such as smoothing to reduce the effect of the artefacts, it is hard to overcome
the inherent limitations of the dataset entirely and it should be acknowledged that there are quality
issues affecting the results besides those related to data resolution. Lecours et al. [48] recently showed
how heave, pitch, roll, and timing artefacts in MBES bathymetry impact habitat maps and species
distribution models which utilise bathymetry data and derived terrain attributes as predictor variables.
Their results show that artefacts can lead to misleading and counterintuitive results. For similar
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reasons to those given for data resolution, the assessment of data quality is equally important for the
delineation and quantitative characterisation of bedforms.

4.3. Impact of Regional Morphology

The Malin Basin dataset has demonstrated that the mapping output of the BGS Feature Delineation
[Bathy] tool under represents small features located on slopes. These features are not distinguished
using bathymetric data alone, and when identified, their vertical relief is frequently underestimated.
For that type of setting, a semi-automated approach based on the BPI, as presented by [49], could be
more effective. These features are not distinguished using bathymetric data alone, and when identified,
their vertical relief is frequently underestimated. However, it should be noted that for statistical
comparison, the mapping based on the BPI would not provide the same consistency of delineation
criterion as it is based on a relative defined value depending on the surrounding neighbourhood.

4.4. Mapping Strategies at Multiple Scales

The output of a quantitative tool like the BGS mapping toolbox is well suited to providing
information on several levels of detail to suit the particular mapping purpose and scale of map product.
The present study has only illustrated the implementation of the toolbox on relatively small datasets,
but the method is suitable for application to larger datasets subject to computing resources and/or
with tiling of the bathymetric data.

Whilst some investigations may require the delineation of individual pockmarks on detailed maps
at a 1:20,000 scale or finer, others rather use this information as a basis for providing a summarized
quantification of properties of the pockmarks. For example, in producing maps at a 1:100,000 scale or
greater, the MAREANO programme is interested in mapping polygons indicating “pockmark areas”
to provide information for management authorities on the location and extent of these terrain features,
which may be linked to particular habitats. This is currently done by expert judgement, but the output
of the BGS toolbox provides a quantitative indication of pockmark density that will be useful for
defining objective criteria for defining the limits of a pockmark field. Further, summary statistics on
the size and shape of the pockmarks can be attributed to such polygons.

Depending on the scale used, it can be impractical, or even pointless, to represent individual
pockmarks in a map. In the context of regional mapping, the use of density contours is often the
best approach to capture the number and spatial distribution of these seabed features. Figure 25
shows the type of pockmark density map that can be generated for the Barents Sea study area based
on the outputs from the BGS Seabed Mapping Toolbox. This figure was generated using the point
shapefile that represents the deepest point in each polygon. The density values range from 60 to
almost 600 pockmarks per square kilometre, and the density shading highlights geographical trends in
the distribution.

Even in a situation where the end-user does not require the pockmark density distribution
displayed on the map and only the outline of pockmark field is needed, there are advantages to
using a density contour line to outline the limits of a pockmark field. This approach increases
the efficiency of pockmarks fields’ delineation, improves the consistency of the mapping, and
prevents any discrepancies between the mapping of adjacent areas. In addition, subjectivity issues
related to manually defining the limits of a pockmark field are greatly reduced by using a more
automatic approach.
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5. Conclusions

This study explored the potential of a practical and effective semi-automatic approach for mapping
pockmarks that is fully integrated within commonly used GIS software. A total of 39,533 pockmarks
were mapped, across three different geological settings within the European Glaciated Margin, each of
which can be considered a test case study for that setting. The results from the semi-automatic mapping
exercise using the BGS Seabed Mapping Toolbox were compared to other mapping approaches,
demonstrating that the semi-automatic mapping approach presented here is a valid and useful
alternative. Our approach overcomes the subjectivity intrinsic to manual delineation of pockmarks,
and is also considerably quicker. The results of this study indicate that this approach is more flexible
than pixel-based delineation methods when dealing with pockmarks of varying sizes. Moreover,
this approach incorporates the automatic extraction of the morphometric attributes of the pockmarks.
This information facilitates an unprecedented statistical analysis of their morphology and the analysis
of spatial trends within the pockmark fields, providing insights into the processes responsible for
their development and the influence of local seabed conditions. Whilst the study has focussed on
the delineation of individual pockmarks, we have also shown how our quantitative methodology,
once applied to larger datasets, can provide a convenient and objective basis for summarizing pockmark
distribution at broader map scales in a consistent way, increasing the relevance of the mapping results
to multiple end users.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3263/8/5/154/s1.
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