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Abstract: Arsenic contamination of groundwater in the Southern Gulf Coast Aquifer of Texas is
a critical public health concern as much of the area is rural in nature with decentralized water
supplies. Previous studies have pointed to volcanic deposits as the regional source of arsenic but no
definitive or reliable predictors of arsenic maximum contaminant level (MCL) exceedance have been
identified. In this study, we have studied the effect of various hydrogeochemical parameters as well
as soil and land-use variables on arsenic MCL exceedance using logistic regression (LR) techniques.
The LR models display good accuracy of 75% or higher but suffer from a high rate of false negatives,
highlighting the challenges in capturing the spatial irregularities of arsenic in this region. Despite not
displaying high statistical significance, pH appears to be an important variable in the LR models—its
effect on arsenic exceedance is not clear and warrants further investigation. The results of the study
also show that groundwater vanadium and fluoride are consistently the only significant variables in
the models developed; the positive coefficients for both these elements indicates a common geogenic
source for arsenic, fluoride and vanadium, corroborating the findings of earlier studies.

Keywords: Texas Gulf Coast; logistic regression; arsenic; vanadium; fluoride; geogenic; volcanoclastic;
Evangeline Aquifer

1. Introduction

Exposure to drinking-water supplies contaminated by arsenic has been widely-recognised as one
of the most significant human health threats of the last few decades. The effects of such exposure
range from increased cancer risks to a plethora of cardiovascular, neurological, dermal and respiratory
disorders or diseases [1–4]. Globally, arsenic levels well in excess of the 10 µg/L standard set by the
World Health Organization [5] have been detected in water wells in far-east Asia [6–8], South-east
Asia [9–13], Latin and South America [14–16], Europe [17–19], as well as the United States [20–24].
In many of these areas, the arsenic is geogenic in nature but human activities such as pumping and
irrigation water return have been implicated in its release and migration from the parent source into
groundwater. In fact, several recent studies emphasise that understanding mobilization mechanisms is
just as critical as identifying the potential sources of arsenic [25–27].

In the United States, groundwater is often the only reliable source of potable water in rural
areas due to a variety of socio-economic and hydro-climatic factors. The National Groundwater
Association (NGWA) reported that more than 13 million year-round occupied households in the
country have their own well [28]. In Texas, 62% of the water used in the state in 2014 was supplied
by groundwater [29]. The Ogallala Aquifer and the Gulf Coast Aquifer (henceforth referred to as
the GCA) are the two largest aquifers in the state and are characterized by their significant irrigation
water withdrawals and elevated arsenic levels. The Texas Water Development Board (TWDB), through
its Groundwater Quality Sampling Program sampled more than 10,000 wells over a 20-year period
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leading up to 2004 and discovered that arsenic concentrations in more than 25% of the water samples
exceeded the drinking-water standard of 10 µg/L—most of these samples were from the Ogallala and
GCA [30]. The TWDB also publishes (with regular updates) a groundwater database, a compilation of
groundwater data from nearly 140,000 water wells reported by public agencies as well as private-well
owners across the state. Dissolved arsenic is reported as an ‘infrequent constituent’ or trace element in
this database; in the GCA alone, dissolved arsenic levels as high as 202 µg/L have been reported in the
recent past (in Duval County).

It is critical to note that water supplies in rural areas overlying the Ogallala and GCA are often
decentralized and the resources needed for advanced treatment systems for removal of contaminants
such as arsenic may not be readily available. Recent efforts by the United States Department of
Agriculture (USDA) and the United States Environmental Protection Agency (USEPA) to aid small-scale
public water systems have resulted in installation of arsenic-treatment systems in select cities across
the state. Successful arsenic removal technologies, often involving iron-based media for sorption,
have been demonstrated in the cities of Wellman, Alvin, Bruni and Freer, all of which except the city of
Wellman overlie the Gulf Coast Aquifer [31,32]. However, private well owners are still responsible for
their own water-treatment alternatives; these are often limited to disinfection and filtration mechanisms
which may not meet the drinking-water standard or maximum contaminant level (MCL) of 10 µg/L.
It is must also be noted that the TWDB database is by no means comprehensive—most private well
owners neither record nor report water level or quality data to the TWDB.

In general, wells with elevated levels of arsenic are more abundant in the southern portion of
the GCA (in Texas), as reported by in a comprehensive study of arsenic occurrence in the state [33].
Several studies have attempted to identify potential sources of arsenic in this region as well as its
geochemical controls. Hudak [34] sampled 69 water wells in a six-county study area in the South
Texas region and discovered a preponderance of arsenic in the Catahoula formation of the GCA;
this is the deepest stratigraphic unit and is overlain by other confining beds as well as productive
zones (detailed description of the various distinct stratigraphic units is presented in Section 2.1).
However, some wells screened in shallower formations contained high arsenic levels as well, albeit
with no correlation between arsenic and well depth. The author concluded that while historical use of
arsenical pesticides and defoliants in cotton fields may have contributed to enrichment in the shallower
zones, decreased application of such chemicals since the 1980s as well as increased controls by natural
geologic sources likely explains the spatial distribution of arsenic. Scanlon et al. [33] suggest that
positive, albeit weak (r2 ranging from 0.12 to 0.43), correlations between arsenic and other dissolved
constituents such as vanadium, molybdenum and boron in this region are indicative of a geologic
source rather than an anthropogenic (i.e., agriculture) source. They observed the highest arsenic levels
in the Jasper Aquifer, the stratigraphic unit immediately overlying the Catahoula formation and point
to volcanic ash deposits as the likely (natural) source. Additionally, they postulate that the effects of
land-management practices on cotton fields are limited to a smaller, localized spatial scale.

Similar correlations between arsenic and vanadium, potassium and silica were reported by
Gates et al. [35], who limited their focus to the unconfined portions of the GCA where most of the
pumping occurs. However, they noted that arsenic correlations with these three chemicals were not
strong enough to warrant their use as indicators of contamination and that future drilling activity
avoid the Catahoula formation due to its relative abundance of arsenic. Chowdhury et al. [36] analysed
arsenic in wells from the Chicot, Evangeline and Jasper aquifers and found the highest concentrations to
occur in the Jasper. Within each formation, no spatial or vertical (depth) patterns in arsenic occurrence
were discernable. They suggest that arsenic, along with selenium and vanadium likely originated
from weathering of volcanoclastic sediments. Higher arsenic observed in areas following the outcrop
of the Jasper Aquifer are attributed to local geochemical processes in uranium deposits occurring
here. The geologic origin of arsenic is also corroborated by Glenn and Lester [37] who studied water
quality data across the entire GCA and found statistically significant correlations between arsenic
and vanadium.
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As such, it appears from the aforementioned studies that the source (volcanic ash deposits) of
arsenic and the aquifer unit where it is most-concentrated is well-understood. However, knowledge of
hydro-geochemical variables that influence its spatial and vertical distribution is not conclusive enough
to allow these variables to act as reliable indicators or predictors of arsenic occurrence. Additionally,
earlier works have focused on the correlation between arsenic occurrence and other variables but the
effect of these variables on arsenic occurrence has not been studied using rigorous statistical approaches.
The use of logistic regression (LR) for understanding the statistical relationships between the dependent
and explanatory variables as well as predicting the probability of target analyte occurrence is well
documented in groundwater quality studies [38–40]. The objective of this study is, therefore, to develop
logistic regression models to predict arsenic exceedance (above the drinking-water standard) in the
southern GCA as well as evaluate the relative importance of the explanatory variables chosen to
develop this model. We aim to evaluate the relationship between arsenic exceedance and a diverse
suite of explanatory variables including hydrological, geochemical, soil, climatic and land-use variables
and seek to identify stable predictors, particularly those which are easily-measured or readily available,
as surrogate measures. The motivation for the study is the paucity of knowledge of such predictors,
as pointed out by Gates et al. [35], as well as the demonstration of suitability of logistic regression for
such risk-based regional studies by Venkataraman and Uddameri [27].

2. Materials and Methods

2.1. Study Area Characteristics

Sixteen counties in the southern GCA, as shown in Figure 1, were chosen for the study due to the
presence of elevated levels of arsenic reported in the TWDB groundwater database. It must be noted
that the northern portion of the GCA in Texas, particularly areas south-west of the City of Houston
have recorded high arsenic as well but the number of wells with historically high arsenic levels tend to
be concentrated in the southern GCA in Texas. As shown in Figure 1, rangeland and agriculture are
the predominant land-use categories in the study area. Rain-fed cotton farming is common in Nueces
and San Patricio Counties, while roughly 40% of the counties bordering Mexico (Cameron, Hidalgo
and Willacy Counties) are irrigated for cotton production [41]. Other major crops include corn and
wheat. Rangeland is comprised of native vegetation used for grazing and livestock—cultivation is
generally not practiced here. The rural nature of the area is also evident from this figure.

The GCA in Texas is comprised of five stratigraphic units. From top (youngest) to bottom (oldest),
these are: the Chicot Aquifer, the Evangeline Aquifer, the Burkeville confining unit, the Jasper Aquifer,
and the Catahoula confining unit [42]. Sediments in the GCA were deposited during the Tertiary
and Quaternary periods in ‘steep slopes dipping toward the gulf’, i.e., each of the units generally
thickens from east to west, down-dip towards the Gulf of Mexico [36]. Of particular importance is the
composition of the Catahoula confining unit—approximately 60% of this unit is made up of volcanic
material. Groundwater composition exhibits great spatial variability but, in general, the water is
brackish with total dissolved solids’ concentration ranging from 1000 to 10,000 mg/L in the southern
GCA. Lower annual precipitation (~500 mm in this region vs. 1300 mm in the northern GCA), higher
soil salt accumulations and differences in mineralogy are likely responsible for the saline nature of
water in this portion of the GCA. High potential evapotranspiration (PET), as much as two to five times
the annual precipitation, has also been indicated as a factor in buildup of salts in the groundwater;
these high PET rates also result in recharge rates of <2.5 mm/year [36,43].
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Figure 1. Study area location in Texas and land use/land cover (LULC).

2.2. Data and Selection of Explanatory Variables

The occurrence of arsenic in this region has been largely attributed to natural volcanic deposits
by several authors, as discussed in Section 1; the lower-most formation, the Catahoula confining unit,
has been identified as the most severely affected. The correlation of arsenic with other volcanically
derived materials such as vanadium, selenium, molybdenum, fluoride, potassium and boron, albeit
at varying degrees has been documented. The dissolution of arsenic from sulfides or its desorption
from iron oxides present in uranium mines near the outcrop area of the aquifer have also been
implicated [44]. The potential localized enrichment due to historical application of arsenicals in cotton
fields in this region has been pointed out in [33,45]. As indicated by Venkataraman and Uddameri [27],
the development of robust LR models to relate arsenic exceedance to other parameters must involve
selection of surrogate or explanatory variables that account for various types of sources as well as
fate and transport processes. Therefore, the parameters chosen for this study as explanatory variables
for building the LR model include (a) well depth and the aquifer unit the well taps into to capture
vertical variability; if any (b) groundwater vanadium, potassium, selenium and fluoride to capture
association with geogenic sources; (c) land use and groundwater nitrate to capture or simulate the
effect of above-ground sources; (d) soil hydrologic group (SHG) and soil organic matter (SOM) to
jointly capture the vadose zone fate and transport processes; and (e) relevant major cations and anions
to capture other geochemical interactions.

With regard to soil characteristics, SHG is reflective of the infiltration capacity of the soil,
which would be pertinent if transport from an above-ground source was involved. SOM (expressed as
a percentage) is used to model the adsorptive capacity of soil. The major cations and anions selected
were sodium, magnesium, calcium, chloride and sulphate. Of the chosen explanatory variables,
the aquifer unit, land use and SHG are categorical in nature while the remainder is continuous.
In addition, the pH of the groundwater was included as an explanatory variable as it can influence
the solubility, speciation and mobility of arsenic. A key part of the variable selection process was also
avoiding the joint assessment of confounding variables which may cloud the true association between
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those individual variables and the arsenic exceedance. Additionally, the variables were chosen such
that redundancy was avoided. In all, 16 variables were selected for testing association with arsenic
occurrence and evaluating their inclusion in the eventual LR model. It must be noted that while the
association of geogenic arsenic with molybdenum, silica, boron and other trace elements has been
reported in other studies, this data is often sparse (or not reported in the groundwater database) and
these variables were consequently not included in the study. Likewise, other variables that may exert
control on or serve as indicators of arsenic such as oxidation reduction potential or dissolved iron and
a variety of soil-related parameters could not be included due to data availability restrictions as well.

Groundwater data for wells located in this 16-county study region was compiled from the TWDB
groundwater database. This database is updated daily—however, less than 10% of the wells have
current information. Additionally, some of the data presented in this database is not reliable due to
various unmet conditions that compromise its quality. Therefore, the wells chosen for the study were
selected based on the following criteria: (a) data must not be flagged or coded as unreliable; (b) dissolved
arsenic data in the most recent past (between the years 2000 and 2015) must be available; and (c) all
other water quality parameters indicated in the previous paragraph (including trace elements such as
vanadium and selenium) and hydrogeologic data must be available for wells meeting criteria (a) and
(b) for the same time period. Consequently, several wells that had reliable arsenic data were discarded
due to the paucity of explanatory variable data. Where multiple records for the same parameter existed
for a well over the chosen time period, the most recent sample was used for the study.

On this basis, a total of 165 wells were selected, of which 62 wells had arsenic levels above the
MCL. For the purpose of LR modelling, the arsenic concentrations were divided into binary outcomes,
labeled 0 or 1, corresponding to non-exceedance or exceedance of the MCL of 10 µg/L, respectively.
As mentioned earlier, uranium extraction and mineral processing is common in this region; these plants
are mostly clustered in Duval, Live Oak and Webb Counties as shown in Figure 2. In situ leach mining
appears to be common practice in many of these plants, as reported in the United States Geologic
Survey Mineral Resources Data System [46]. The spatially discontinuous nature of arsenic exceedances
is also evident from Figure 2. Many regional studies have reported such spatial irregularities in
groundwater arsenic occurrence as well as drinking-water standard exceedances.
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Information about the aquifer unit a well taps into or is screened in is also available in the
database—these are recorded simply as ‘Gulf Coast Aquifer’ in some instances or on the basis of
the aquifer composition, such as ‘Goliad Sand’, ‘Beaumont and Lagarto Clay’, etc. in other cases.
The TWDB publishes a Groundwater Availability Model (GAM) which includes the top and bottom
depth of each layer or aquifer unit of the Gulf Coast Aquifer in the form of a grid [47]. With the
aid of this GAM, the well depth recorded in the database, and the stratigraphic units described by
Baker [48], the aquifer unit corresponding to each well was identified and then labeled as either Chicot
or Evangeline or Jasper, or as Burkeville confining unit or Catahoula confining unit within a GIS
framework. It must be noted that the Burkeville and Catahoula are low-permeability formations,
but are nonetheless exploited for human use. For LR purposes, these units were numbered 1 through 5,
with 1 representing the top-most unit, the Chicot, and 5 representing the bottom-most or the Catahoula.
It can be seen from Figure 3 that 104 of the 165 chosen wells tap into the Evangeline formation; arsenic
levels in almost 75% of the wells in the Catahoula exceed the MCL and the highest concentrations occur
here as well. All of the 19 wells tapping into the Catahoula are located near the western boundary of
the study area in Duval, Live Oak, Starr and Webb Counties whereas those screened in the Chicot are
predominantly located near the coast.

All pertinent soil data were compiled for the 16-county study region from the United States
Department of Agriculture Soil Survey Geographic Database [49]. SHG and SOM were extracted
at each well location using geospatial tools. There are four distinct categories of SHG ranging from
Group A to Group D, ranked in order of increasing runoff potential from A to D; much of the study
area falls under SHG type B or type C. Group A soils have the highest infiltration rates when wet by
virtue of the large composition of sand whereas soils belonging to Group D at the opposite end of the
spectrum have the highest runoff potential due to their high clay content and/or shallower depth to
water table. To incorporate this parameter into the LR model, it was classified on a scale of 1 to 4, with
1 representing type A soils and 4 representing type D. SOM varied from <1% to 8.5% and showed great
spatial variability. Land-use/land-cover (LULC) data was extracted from Lakes Environmental [50].
For LR purposes, LULC was grouped into three categories—(1) land under agriculture, (2) urban, i.e.,
developed and semi-developed land, including industrial production and (3) rangeland or forestland.
This scheme allows for evaluation of the increased or decreased log-odds of arsenic MCL exceedance
with reference to the baseline category, assigned to agricultural areas. It must be noted that none of
the selected wells were located on barren land and hence this category was not needed. The range of
occurrence of arsenic by LULC is presented in Figure 3. It is interesting to note that the highest median
arsenic concentration occurs in wells underlying rangeland or forestland areas—in fact, the highest
concentrations occur here. However, the results of a Mann–Whitney U test [51] revealed no significant
differences in the median concentrations of arsenic between any pair of LULC groups. As some
previous studies have pointed out, it is likely that natural volcanic sources underlying these areas may
have contributed to arsenic enrichment despite the lack of intensive land-use practices above-ground.
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Figure 3. Distribution of arsenic by LULC and stratigraphic unit (dotted line shows the maximum
contaminant level (MCL)).

The distributions of well depth and pH with stratigraphic unit are shown in Figure 4. As expected,
the shallowest wells are in the Chicot, the top-most layer. The deepest wells are in the Jasper, while wells
screened in the Catahoula, the bottom-most formation are located in the western-most boundary of
the study region, closer to where it outcrops and thus are not the deepest. The effect of pH on the
occurrence, speciation and mobility of arsenic has been well studied (e.g., [7,13]). In general, most trace
metals display lower solubility with increasing pH. However, arsenic forms oxyanions in water and
higher pH waters tend to have more negatively charged arsenate ions—these ions have a lower
tendency to sorb on negatively charged aquifer materials. In our study region, median pH levels
generally increase from the Chicot to the Catahoula as shown in Figure 4. This observation is likely
due to the effect of weathering of volcanic rocks followed by sustained periods of evaporation in the
deeper layers as reported in [34].
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Geochemical analysis of the wells revealed that the waters were typically brackish and Na-Cl
dominated, likely due to mixing of recharging meteoric water and upward migration of brines from
the Yegua–Jackson formation into the Gulf Coast Aquifer as well as dissolution from locally occurring
halites [22,33,35,36]. With regards to fluoride, which has been known to co-occur with arsenic where
volcanic sources are concerned [14,20,35], the highest median concentrations were observed in the
Catahoula. It must be noted that with the exception of one well in this formation, all other selected wells
had fluoride levels under the MCL of 4 mg/L. Vanadium concentrations showed similar vertical trends
to arsenic—the highest median concentrations were again in the Catahoula. The highest recorded
concentration was 400 µg/L in the Evangeline. It must be noted that no MCL exists for vanadium
yet—it has been proposed that a notification level of 15 µg/L be set for drinking-water supplies.
For the sake of brevity, the Piper trilinear diagrams of the geochemical facies or boxplots showing the
distributions of vanadium, fluoride and other selected variables have not been shown here.

2.3. Logistic Regression (LR) Model Development and Evaluation

LR is a commonly-used technique to assess the effect of a set of predictor or explanatory variables
on a binary response or outcome. LR is particularly useful when one or more of the explanatory
variables are ordinal or categorical in nature. In groundwater studies, it has been used extensively to
evaluate the effect of explanatory variables on nitrate and arsenic occurrence above a set threshold,
commonly the drinking-water standard (e.g., [27,39,40,52–54]). In this study, the exceedance or
non-exceedance of arsenic MCL is the chosen response variable. The relationship between probability
of exceedance of MCL and the set of chosen explanatory variables is given by Equation (1):

p(As ≥ MCL) =
1

1 + exp(−z)
; z = β0 + β1X1 + β2X2 + . . . . . βnXn + ε (1)

where p denotes the probability of occurrence of an event—in this case that of arsenic MCL exceedance;
β0 is the intercept, β1, β2, . . . , βn are the coefficients of n explanatory variables estimated by the
maximum likelihood method; X1, X2, . . . , Xn are the explanatory variables; and ε is the random error
associated with the model which is assumed to be normally-distributed with a zero mean. An alternate
expression for the probability of exceedance takes the logit form as shown in Equation (2):

ln
(

p(As ≥ MCL)
p(As < MCL)

)
= ln

(
p(As = 1)
p(As = 0)

)
=

n

∑
i=1

βiXi + β0 + ε (2)

where As = 0 and As = 1 represent the binary outcomes of arsenic (As) MCL exceedance and
non-exceedance, respectively. The goal of this modelling process is to develop a parsimonious
LR model that contains only those explanatory variables that are statistically significant but also
demonstrates the ‘best’ performance as defined by a set of well-defined metrics.

As discussed in Section 2.2, a diverse set of explanatory variables was chosen to develop the LR
model. These variables were chosen due to their observational or theoretical relationship with arsenic
occurrence reported in earlier studies. The first step in the model development process involved
univariate analysis or the assessment of the association between each of the 16 explanatory variables,
chosen one at a time, and arsenic exceedance. At this stage, the statistical significance of each variable
was evaluated at a less-stringent p value of 0.25 and only those variables that passed this criterion were
selected for inclusion in the multivariate LR model. This approach of retaining a select few variables
from the originally chosen list of explanatory variables was adopted to avoid an unstable model that
had limited applicability, as recommended by Tabachnick and Fiddell [55] and Hosmer et al. [56].
As a general rule-of-thumb, Agresti [57] recommends that for every independent variable, there be no
fewer than 10 outcomes in each binary category. Considering that there were 62 exceedances (and 103
non-exceedances), it is desirable to then shortlist the number of explanatory variables to seven or fewer.
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Similar recommendations have been made by Peduzzi et al. [58] to avoid overfitting or underfitting
the model.

The next step in the LR model development is the selection of the model validation method.
Several methods have been prescribed in the literature, including, (a) the separation of the dataset into
training subset to first build the model, and testing subsets to validate it; (b) k-fold cross-validation
(CV) involving splitting the dataset into k-number of (roughly) equally-sized subsets for model
development and validation; (c) a computationally more-expensive version of the k-fold CV, known
as the leave-one-out-cross-validation or LOOCV; and (d) bootstrapping with replacement [59–62].
The suitability and limitations of these approaches have been well studied, albeit with no general
consensus or recommendations (e.g., [63–66]). In this study, we have adopted a variant to the k-fold
CV approach for model testing by randomly splitting the dataset into training (95%) and testing (5%)
500 times. It must be noted that this approach was thoroughly tested against the LOOCV as well as
bootstrap approaches to ensure model underfitting, overfitting or paradoxical error did not occur.

Various metrics were used to evaluate the LR model. The commonly used Hosmer–Lemeshow
goodness-of-fit test was used as an overall measure of model fit. Model performance was evaluated
using receiver operating characteristics (ROC). Specifically, the area under the ROC curve (AUC) and
various parameters defined by Fawcett [67] including the true positive rate (TPR), false positive rate
(FPR), true negative rate (TNR), false negative rate (FNR), positive predictive value (PPV), negative
predictive value (NPV) and overall accuracy (calculated as shown in Equations (3)–(9)) were used as a
measure of predictive capacity of the model:

TPR =
∑ TP

∑ TP + FN
(3)

FPR =
∑ FP

∑ FP + TN
(4)

PPV =
∑ TP

∑ TP + FP
(5)

NPV =
∑ TN

∑ TN + FN
(6)

TNR = 1 − FPR (7)

FNR = 1 − TPR (8)

Accuracy =
∑ TP + TN

Population Size
(9)

In the above equations, TP is the number of true positives, TN is the number of true negatives,
FP is the number of false positives, FN is the number of false negatives and the total number of
data points is the population size. Use of these ROC diagnostics have been prescribed for studies
when determining cut-off points to optimize classification accuracy are involved; these measures can
be calculated once a 2 × 2 contingency table comparing the true observations and model-predicted
outcomes has been generated. The statistical significance of each variable was determined using the
p value of the chi-squared test [68]. Additionally, the likelihood ratio test (LRT) was used to assess
whether individual predictors contributed significantly to the model, an approach recommended by
Hilbe [69].

The steps listed above were followed to build three separate LR models—(a) one for the entire
dataset, henceforth referred to as the master LR model; (b) one for the wells tapping into the top two
layers and thus representing the unconfined formation, henceforth referred to as the unconfined LR
model; and (c) one for only those wells tapping into the Evangeline Aquifer which had the most number
of wells (104) in our dataset, henceforth referred to as the Evangeline LR model. The motivation for
building additional models limited to the unconfined formations and Evangeline was to comparatively
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assess the predictive capacity of the model as well as attempt to investigate characteristics that may be
unique to the unconfined layers. All model development, assessment and metrics evaluation were
conducted in an R environment [70].

3. Results

It was determined that the following variables did not display any statistical significance to
merit inclusion in the model development process: dissolved calcium, magnesium, sodium, chloride,
sulphate, nitrate, selenium, SOM, SHG and LULC. Thus, these variables have been omitted from the
rest of the article.

3.1. Performance of the Master LR Model

Univariate analysis of the explanatory variables showed that only aquifer stratigraphic unit, pH,
fluoride and vanadium were significant at p < 0.25. The master LR model was then cross-validated
and built using these variables. The coefficients for each of the variables in this model as well as their
associated p values are shown in the model summary section of Table 1. It can be seen that fluoride
and vanadium alone show statistical significance at p < 0.05.

Both fluoride and vanadium have positive regression coefficients, suggesting a common volcanic
source. It must also be noted that the coefficient for vanadium displays much higher statistical
significance than fluoride. The results of the LRT (shown in Table 1) indicate that all variables, including
pH, must be retained in the model. It is interesting to note that although the coefficient for pH was
not statistically significant (only marginally above the threshold of 0.05), its contribution to the model
is. The same statement is true of aquifer stratigraphic unit as well, which seems to indicate a (weak)
decreased logit of arsenic exceedance in the Evangeline relative to the Chicot.

Table 1. Summary of the master logistic regression (LR) model (significant variables at p ≤ 0.05 are
shown in bold and asterisk).

Model Summary Likelihood Ratio Test (LRT) Results Summary

Parameter Estimate Std. Error p-Value Parameter Deviance Pr (>Chi)

Intercept 2.1414 1.7188 0.2128 NULL 209.65 -
F * 0.6572 0.3096 0.0338 F * 200.73 0.0028

Aq Strat Unit 2 −1.0517 0.5853 0.0723

Aq Stat Unit * 189.47 0.0327
Aq Strat Unit 3 −1.6687 1.2302 0.1750
Aq Strat Unit 4 0.4209 0.8028 0.5997
Aq Strat Unit 5 0.7737 0.8462 0.3606

pH −0.5065 0.2348 0.0551 pH * 181.93 0.0042
V * 0.0461 0.0098 <1 × 10−4 V * 156.66 <1 × 10−6

The ROC curve for the master LR model is shown in Figure 5 and the ROC metrics are summarized
in Table 2. The AUC is 0.80—for comparison, a model that is no better than a random guess (the outcome
of tossing a coin is often used as an example here) would produce an AUC of 0.5, following a diagonal
from the origin to (1,1). Fawcett [67] notes that points further ‘north-west’ of this diagonal or to the left
of this graph are more conservative as they have low true positive rates as they do not make positive
classifications unless strong evidence is present. This is reflected in the relatively-poor TPR of the model
(0.5645) shown in Table 2. Consequently, the FNR, which is calculated as 1-TPR, is 0.4355, indicating
that the model is incorrectly classifying a large number of observed exceedances as non-exceedances.
From a risk-minimization perspective, an ideal model would have a small FNR particularly if the goal
is to prevent exposure. Nonetheless, the overall accuracy of the model is 0.7628, or 76.28%. The p-value
for the Hosmer–Lemeshow goodness-of-fit test was 0.42, indicating that the null hypothesis of the
model being a good fit was to be retained.
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Table 2. Comparison of model ROC performance characteristics.

Parameter Master LR Unconfined LR Evangeline LR

Accuracy 0.7628 0.7458 0.7959
True Positive Rate 0.5645 0.4250 0.5455
False Positive Rate 0.1064 0.0897 0.0769
True Negative Rate 0.8936 0.9103 0.9231
False Negative Rate 0.4355 0.5750 0.4545

Positive Predictive Value 0.7778 0.7083 0.7826
Negative Predictive Value 0.7568 0.7553 0.8000

3.2. Performance of the Unconfined and Evangeline LR Models

There are 125 wells in our dataset in the Chicot and Evangeline formations, of which 21 are
in the Chicot—these were used to develop the unconfined LR model. Univariate analysis of the
unconfined LR model showed that pH, fluoride, vanadium and well depth were significant at p < 0.25.
A summary of the statistical significance of these variables in the resulting model is presented in Table 3.
As was observed in the master LR model, vanadium and fluoride were the most statistically significant
variables, both with positive coefficients. Once again, none of the variables that are suggestive or
indicative of (human) above-ground inputs showed any statistical significance. As was observed in
the master LR, pH shows a negative regression coefficient, albeit with a p-value of only marginally
above the 0.05 threshold. The LRT indicates that the variables that contribute most to the reduction
in deviance of the model are pH, fluoride and vanadium, despite pH’s regression coefficient not
displaying statistical significance.
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Table 3. Summary of the unconfined LR model (significant variables at p ≤ 0.05 are shown in bold
and asterisk).

Model Summary LRT Results Summary

Parameter Estimate Std. Error p-Value Parameter Deviance Pr (<Chi)

Intercept 0.9843 1.6711 0.5585 NULL 151.12 -
F * 0.6921 0.3292 0.0355 F * 146.56 0.0325

Well Depth −0.0007 0.0345 0.4533 Well Depth 146.34 0.2344
pH −0.4450 0.2364 0.0597 pH * 140.89 0.0172
V * 0.0349 0.0104 <1 × 10−3 V * 127.36 <1 × 10−3

The unconfined LR model had the poorest performance in terms of ROC diagnostics of the
three models developed. The ROC curve for this model is shown in Figure 6 and the AUC is
0.72. While the overall accuracy of this model is good (74.58%), it suffers from a high rate of false
negatives (57.50%) as shown in Table 2. This indicates that over half of the wells where exceedance was
observed were incorrectly classified as non-exceedances. This model also has the lowest TPR (42.50%).
However, as was the case with the master LR, the unconfined LR model passed the Hosmer–Lemeshow
goodness-of-fit test as well.

A summary of the Evangeline LR model characteristics is shown in Table 4. Vanadium was
the only statistically significant variable with a positive coefficient again. However, the LRT shows
that both fluoride and vanadium contribute significantly to reduction in deviance of the model. It is
interesting to note that the p value of the regression coefficients for pH is again negative and only
marginally-above the chosen threshold. The master LR and unconfined LR models displayed similar
characteristics in terms of pH.
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Table 4. Summary of the Evangeline LR model (significant variables at p ≤ 0.05 are shown in bold
and asterisk).

Model Summary LRT Results Summary

Parameter Estimate Std. Error p-Value Parameter Residual Deviance Pr (<Chi)

Intercept −0.2339 1.1887 0.8440 NULL 123.81 -
pH −0.3175 0.1752 0.0699 pH 122.33 0.2237
F 0.6476 0.3894 0.0966 F * 115.61 0.0168

V * 0.0473 0.0111 <1 × 10−3 V * 99.34 <1 × 10−4

The AUC for the Evangeline LR (see Figure 7) was 0.82, a marginal improvement over the AUC
of the master LR model treated earlier. However, this model has a very good accuracy of 79.69%,
a marked improvement over both the master and unconfined LR models, as shown in Table 2. It can
also be seen that the Evangeline LR outperforms the other two models in all other categories except
the TPR and FNR. The Evangeline LR model also passed the Hosmer–Lemeshow goodness-of-fit test.
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4. Discussion

Groundwater contamination with arsenic has proved to be one of the biggest challenges in public
health management in rural areas. The general lack of reliable predictors of elevated levels of arsenic
in the Gulf Coast Aquifer has been highlighted in earlier works; the highly irregular spatial nature of
its occurrence has also been emphasised. Therefore, the identification of variables which are relatively
easy to measure or data for which is readily available that may act as a surrogate or indicator of arsenic
exceedance is critical. It appears from the three LR models developed in this study that dissolved
vanadium is consistently the variable with the highest statistical significance as well as the parameter of
utmost importance in terms of its contribution to model performance. Several earlier works [23,33–37]
have documented the correlation of arsenic with vanadium in the Ogallala Aquifer and Gulf Coast
Aquifer; arsenic in both these systems is suspected of having the same origin (volcanoclastic sediments).
In the Gulf Coast Aquifer itself, positive correlations of arsenic with vanadium (r2 as high as 0.43)
have been recorded, leading to the consensus that natural geologic sources are involved. In this study,
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we have built on this information by using variables such as vanadium for binary classification
purposes and have demonstrated the positive nature of its logistic regression coefficient as well as
its high statistical significance, thus corroborating the results of earlier works. Despite the spatial
irregularities in arsenic occurrence, vanadium is nonetheless a significant variable in the LR models
everywhere, suggesting a regional source of arsenic, likely volcanic deposits. As such, there are
several other interesting and significant findings that provide insight into the mechanisms of arsenic
occurrence that are discussed below.

While vanadium is evidently the most statistically significant variable, its practical use as a
predictor is limited by the cost of its measurement—if dissolved vanadium levels are being sought,
one could just as easily test the same sample for arsenic and other dissolved metals as well. Thus,
from a variable selection perspective, it is critical to note the importance of fluoride in each of the
three models presented. Similar to the stratigraphic distribution of arsenic, the highest concentrations
of fluoride are also found in the Catahoula (figure not shown). If we consider the master LR and
unconfined LR models, fluoride has the highest (positive) coefficient indicating the strong control it
exerts on arsenic. As mentioned earlier, exploration of the relationship between arsenic and other ionic
species such as fluoride in earlier studies has been limited to correlation coefficients—we have shown
in this study that fluoride can serve as a reliable predictor of arsenic as well, at least as far as the region,
in general, or the unconfined formations, in isolation, are considered.

The relationship between pH and the arsenic logit merits discussion as well. Along with vanadium
and fluoride, pH was the only variable to feature in each of the three models. It is interesting to
note that its inclusion in these models is warranted, as evidenced by the LRT, despite the statistical
insignificance of its regression coefficients. If we were to relax even marginally our rejection criterion
(of p < 0.05), pH would be included in all three models. pH also consistently displays a negative
coefficient indicating increased odds of arsenic exceedance with pH decrease. This is rather anomalous,
considering that current literature reports arsenic levels in groundwater impacted by volcanic activity
generally increase with pH (up to 8.5) (e.g., [15,71] etc.) Additionally, it has been shown that higher
pH tends to limit arsenic adsorption in saline groundwaters [20]. As such, more investigation of the
pH control on arsenic is recommended; this would require knowledge of other variables, particularly
redox and sorption conditions, and environments as well as that of other dissolved species that may
encourage arsenic dissolution. Other treatment methods, which are discussed later in this section may
also help uncover this contradictory behavior.

The effect of land-use practices, namely agriculture and uranium extraction operations, are not
conclusive from this study. It was pointed out earlier that the highest arsenic concentrations actually
occur on rangeland and forestland, albeit with no statistically significant difference in median arsenic
levels between wells associated with these two areas. LULC was not a significant variable even during
the univariate analysis phase. Hudak [34] suggested that the effect of arsenical pesticides applied
on cotton farmlands in this area prior to the 1990s has likely diminished due to decreased use of
such chemicals as well as ‘stronger controls exerted’ by geogenic sources. Although well depth did
not play a significant role in the unconfined model, it was originally shortlisted because it had met
the less-stringent critieria of p < 0.25 in the univariate analysis phase (it had a p value of 0.09 when
treated singularly). Thus, the possibility of a land source, albeit with a much weaker effect, cannot
be entirely ruled out, at least as far as the top two layers are concerned. Some recent studies such
as Podgorski et al. [72] have encouraged the use of irrigated acreage as a stronger variable than the
categorical LULC variable we have used. However, this data was not readily available. A review of
the USDA Mineral Resource Data System showed that all plants associated with uranium mining or
processing were limited to Duval, Live Oak and Webb Counties. These plants appear to have largely
been operational prior to the 1990s—some of these plants were still active in the early 21st century.
It has been reported that open-pit mining as well as solution mining were the commonly employed
uranium exploitation methods here [33,35] Given the spatial clustering of these plants and the higher
number of arsenic exceedances in these three counties, as shown in Figure 2, it appears that the effect
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of such extraction and processing is likely limited to a smaller spatial scale as opposed to providing an
explanation for arsenic distribution on a regional scale. More advanced geospatial methods statistical
techniques of exploring this relationship in these counties are warranted.

As far as the model performance metrics are concerned, it is evident that all three models have
relatively high FNRs, indicating that they are unable to correctly classify the observed exceedances.
In particular, the performance of the unconfined LR model in relation to the other two models,
especially the Evangeline, is diminished. It is likely that the spatial variability in arsenic in the Chicot,
the top-most layer is far too complex for the unconfined LR to capture adequately. However, when the
other wells are included, i.e., the master LR model, the performance improves marginally and when the
Chicot wells are removed to produce the Evangeline LR, the performance improves markedly. As such,
this finding suggests that a lumped approach of modelling occurrence without distinguishing between
the aquifer unit may not be prudent. Considering that majority of the wells in the Southern Gulf Coast
tap into the Evangeline (not just in our study but as a sweeping statement), it is recommended that
these wells be treated uniquely. Their FNRs notwithstanding, both the master LR and the Evangeline
LR models display good accuracy, in excess of 75%.

We also acknowledge some of the limitations of our study. The primary objective of this study was
the identification of reliable predictors of arsenic exceedance using LR techniques alone—thus, we have
paid limited attention to exploration of transport and mobilization mechanisms from a mass balance
perspective. We are also constrained by the limitations in data availability. The inclusion of other
oxyanion-forming variables such as molybdenum, dissolved species like uranium and silica, as well as
redox indicators would likely have not only enhanced the performance of the models but also aided
in the explanation of some of the transport/mobilization mechanisms—however, this data is sparse.
With regard to the data used in the study, the groundwater data used is reflective of the most
recent records available in the TWDB database; this database relies on reporting from various local
groundwater conservation districts as well as self-reporting from private owners. While we have
been extremely cautious in selecting reliable data alone, we acknowledge the uncertainty therein.
The authors also acknowledge recent developments in risk-modelling and variable importance
investigations. We are aware of recent studies [73–76] that have demonstrated the applicability
of artificial neural networks, k-nearest neighbours, and random forests in modelling groundwater
contamination risks. Considering that the LR models we have developed, despite their good overall
accuracy, were still deficient in their false negative rates, it is suggested that the aforementioned
statistical frameworks be considered for evaluation and comparison in our study region.

5. Conclusions

In conclusion, arsenic occurrence at elevated levels in the Southern Gulf Coast Aquifer of Texas
is an urgent public health concern considering the rural nature of this area. Water supplies in
many of these areas are decentralized and the need to identify arsenic ‘hot spots’ using surrogate
measures is critical. The LR models developed in this study show that vanadium and fluoride exert
the largest control on arsenic occurrence in the area and that fluoride on its own can be used as a
reliable predictor. As such, volcanic deposits appear to be the regional source of groundwater arsenic,
but on smaller spatial scales other factors may be responsible for localized arsenic enhancement.
Considering the differences in the performances of the three models developed, it is recommended
that arsenic occurrence in the Evangeline formation, where most of the wells are screened, be treated
separately. We have found the highest arsenic concentrations to occur in the Catahoula, pumping
from which appears to be common along the western boundary of the study region where it outcrops.
We recommend that exploitation of this formation for drinking-water purposes be avoided.
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