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Abstract: Sensitivity analysis (SA) describes how varying inputs to a model subsequently varies
its outputs. Its inclusion can support the systematic calibration of numerical models to back-calculate
intensity properties of past torrent events that would otherwise be difficult or impossible to collect
during their occurrence. Sensitivity analysis for model calibration is assessed with the back-calculation of
a known torrent event. In particular, FLO-2D, a cell-based numerical model, is used to simulate the 2005
debris flow event that occurred in Brienz, Switzerland. Under 4000 simulations were completed with
ranges of physically reasonable parameter values. Model results were compared in 3-dimensions with
both sediment deposition extents (x, y) and estimated deposition heights (z) from available post-event
images. The comparisons highlighted that more accurate input and validation data, namely the
flow behavior of hazardous processes and post-event deposition heights, are required to produce
stronger agreements between simulated and observed results. Furthermore, the application of SA for
model calibration supports systematic exploration of large parameter spaces characteristic of complex
phenomena like natural hazard events. These findings demonstrated how important model input
factors can be identified, which provide guidance for future data collection efforts to capture both the
rheology and the spatial distribution of hazards more accurately.

Keywords: sensitivity analysis; calibration; physical vulnerability; risk analysis; summary
scalar variables

1. Introduction

Torrents are defined as steep waterways in mountainous environments [1]. Hazardous torrent
processes are characterized by the rapid propagation of large quantities of available sediments, debris,
and water from an upslope source via a transit zone, to a downslope depositional area where human
settlements may be established. In theory, torrent processes can be further differentiated as debris
flows, hyperconcentrated flows, or fluvial sediment transport, based on the respective characteristics
and dominant processes of each event [2,3].

While conventional approaches based the classification process on flow behavior alone [4],
peak discharge has since been recommended as a complimentary criterion [3,5]. Observable flow
characteristics reflect variable concentrations of water and sediment, which provides insight into the
internal physics of the flow. For instance, debris flows typically produce thicker, more hummocky
and lobate depositions, and are characterized as very rapid to extremely rapid flows of saturated,
non-plastic materials along steep channels, headed by a coarse surge front [3]. While debris floods are
associated with the transport of considerable quantities of coarse sediments, the flows are generally
characterized as thin, wide sheets of materials [3]. Relative to debris floods, hyperconcentrated
or sediment-laden flows transport relatively less, albeit still notable quantities of fine sediment in
suspension [6,7]. In particular, mudflows have been defined as very to extremely rapid flows of
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saturated plastic debris in a channel, and are characterized by significantly larger quantities of water
content with respect to the amount of solid source materials; the plastic index is greater than 5% [8].
Following the definition by Bradley and McCutcheon [9], mudflows also have sufficient viscosity to
transport sizable boulders, and natural and anthropogenic debris within a matrix of smaller-sized
particles. It is possible for the flow behavior of a single torrent event to evolve as it occurs, depending
on the types, velocity, and quantities of materials propagated downwards. In this respect, events may
often be more realistically described as a combination or evolution of the aforementioned torrent
process types.

The distribution of these materials downslope from the active zone is further influenced by
underlying site characteristics (e.g., topography, presence of confined or unconfined preferential
pathways). Due to the combined effects of composition, flow behavior and site-specific characteristics,
torrent processes are associated with variable peak discharges, sediment transport capacities,
momentums, and subsequently differential potentials to cause damage to elements at risk upon impact.

Assessing the physical vulnerability of elements at risk (e.g., affected buildings) due to these
processes is a part of consequence analysis within risk assessment, where the intensity of a given event
is related to the damages sustained [10,11]. The design and implementation of effective risk mitigation
strategies is dependent on the results of such analyses. The estimation of expected direct losses, as a
result of the hazard process patterns with respect to the properties of exposed elements, is possible
with the derivation of representative physical vulnerability functions [12].

However, a persistent challenge in vulnerability studies on torrent processes is the high
uncertainty and limited amounts of direct, field-based observation data that is available, since its
collection during the occurrence of these types of events is difficult or impossible [13]. Detailed analyses
have been conducted for events that result in high losses in both Austria and Switzerland.
These analyses generally report on the triggering and boundary conditions of the particular torrent
process, the process evolution, the extent of runout zones, and estimates of eroded materials deposited
downslope (e.g., [14,15]). However, comprehensive information on processes, damage patterns, and
their interactions with structural building properties have not been adequately documented to date.

To address this challenge, proxies have been adapted to inform about event intensities, including,
but not limited to sediment deposition heights, velocities, and impact pressures [16,17]. It is of interest
to replicate past events with process models to determine if simulated intensity proxy data can be
considered in further consequence analysis. Following Mazzorana et al. [12], process modeling
is the first three of five steps to accurately assessing the physical vulnerability of the built
environment. A range of recognized methods have been applied to different process models including
empirical [7,18–23], empirical-statistical combined with simple flow equations [24], topographic
gradient-based [25], numerical-based with the integration of shallow water equations [26–41],
and smoothed particle hydrodynamics (SPH) or Lagrangian [42–46] (see References [47,48] for
review). Of the numerical models, 1- (e.g., DAN-W [28]; DFEM-1D [49]) or 2- (e.g., FLO-2D [27];
RAMMS-DF [35,36]; TopRunDF [7]; MassMov2D [34]) dimensional runout modeling approaches can
be adapted. Rickenmann [50] provides a comprehensive overview of the advantages and limitations
of each type of modeling approach as a combination of how flows are propagated and distributed on
the alluvial fan. Furthermore, flows are represented as either single-phased, homogenous fluids with
constant rheological properties, or dual-phased, heterogeneous matrices. Each approach has specific
data requirements, which may limit its application to data scarce case studies. The different model
approaches also highlight tradeoffs between minimizing computational time and various degrees of
accuracy in simulated results. Consequently, the choice of a suitable model is determined by data
availability and how representative a given approach is to representing a complex, heterogeneous 3D
problem, while minimizing the computation time required to return a solution.

Furthermore, known sources of uncertainties can have adverse implications on model results [51].
Sources associated with debris flow models include, but are not limited to, the quality of model
input and calibration data, initial and boundary conditions, how accurately the model structure
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represents events of interest, the sensitivity of defined parameters, and the calibration method applied.
Accurate topographic representation is imperative to model both the propagation of debris flows
within the torrent channel and the lateral distribution of materials that exceed bankfull conditions onto
the alluvial fan [52]. For example, Rickenmann et al. [32] demonstrated that debris flow model results
are sensitive to the presence of local topographic features, which can divert flows and consequently
determine where material is deposited on alluvial fans. Moreover, infrequent generation of topographic
inputs, which are used in debris flow models, may not necessarily reflect the same conditions when the
event occurred. This temporal mismatch results in modelling with topography that does not accurately
represent initial conditions and can include differences in channel slope steepness, channel width,
and inaccurate representation of mitigation structures along the channel [53]. Additional uncertainties
in debris flow modelling stem from the lack of basic data required to reconstruct the characteristics
of debris flow events. These may include the point where the debris flow event was initiated,
the hydrograph peak and duration [16,53], and the volume of material at the start of the event
and further entrained during its course [54]. In lieu of actual data, working assumptions are made to
reconstruct ranges of plausible data values, which contains inherent uncertainties that are introduced in
the simulated results. For example, Rickenmann et al. [32] attributed sources of model errors to the lack
of detailed data needed to describe a debris flow consisting of multiple surges, which was described
with the use of a simpler, single surge hydrograph instead. The degree of model complexity can also be
a source of uncertainty. For instance, sediment entrainment during a debris flow changes the volume
of materials and flow behavior [55,56]. Simpler debris flow models do not replicate entrainment,
but partly consider this process by including additional quantities of material at the debris initiation
point, while more complex models explicitly replicate the spatially and temporally-distributed erosion
of channel materials as the flow is propagated [57]. However, while a more complex model that includes
entrainment can better replicate debris flow heights near the point of initiation [57], this additional
process introduces another source of uncertainty into the model with the introduction of additional
parameters (e.g., erosion rate), which require values that may not be known. Event and site-specific
parameters for debris flow models are estimated through calibration, and efforts usually focus on flow
resistance [48] and rheological parameters [58]. These parameters are associated with wide ranges
of plausible values in literature and may be difficult to determine which are most representative
for a given event. The majority of debris flow model research uses a trial and error approach to
calibration [58], and may not arrive to optimal parameter sets because calibration is time consuming
and the process may be ended prematurely [52]. Methods exist to efficiently derive parameter sets
(e.g., genetic algorithms), but these methods are rarely, if ever, employed in debris flow modelling.

Given the inherent complexities that characterize natural hazard processes and the contributing
sources of uncertainties, modeling past torrent events requires the exploration of relatively large
parameter spaces, even with model simplifications. Sensitivity analysis (SA) describes how varying
inputs in a numerical model subsequently varies its outputs [59]. The inclusion of SA for model
calibration supports a better understanding of model behavior, its parameterization, and its associated
uncertainties [60].

In this respect, the inclusion of SA offers several advantages as a part of a sound model calibration
and evaluation framework. Firstly, it is instrumental in reducing the number of parameters that require
calibration. Calibration is an example of an inverse problem, where the most optimal agreement
between simulated and observed reference data is obtained with parameter combinations and values
that result in higher model performance. Secondly, SA supports the identification of the degree of
influence that input factors have on model simulation results. Thirdly, SA can highlight limitations of
model calibration due to residual sources of uncertainties once parameter uncertainties are accounted
for [59]. Consequently, the inclusion of SA into the modelling process identifies optimal results while
highlighting application-specific limitations with greater efficiency. Furthermore, epistemic uncertainty
about natural hazard phenomena that occur in complex systems remains prevalent [61]. In particular,
the combination of model and input data limitations compromises the ability to learn about the
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most influential parameter(s) within the systems of interest to a sufficiently high degree of accuracy.
Uncertainties due to imperfect knowledge about initial conditions and simplified representations of
model inputs are generally addressed with ensembles of model predictions, where each simulation
represents a different choice of parameter combinations and values. A structured statistical approach to
assess parametric uncertainty and model performance is preferable, where decisions about parameters
can be made in a transparent and explicit way, using methods that can be easily understood [62].
This study addresses the two aforementioned challenges, firstly, relating to the large parameter spaces
needed to be explored to fully capture the complexities of hazardous torrent events, and secondly,
evaluating model performance to gain a better understanding of epistemic uncertainties.

In response to the first challenge, the utility of SA for model calibration is assessed with the
back-calculation of the 2005 debris flow event that occurred in Brienz, Switzerland. Taking all of
these requirements into consideration, the FLO-2D [27], a simplified, physically-based, 2-dimensional
numerical model, was used to model the event. Single-phased models like FLO-2D are commonly
used to simulate debris flows by researchers and practitioners working in the risk community (Table 1)
as a computationally efficient first step to gain insight into these complex processes [32,63]. In the
study conducted by De Blasioa et al. [38], it was suggested that in principle, the presence of larger
blocks interspersed within a mud matrix may behave comparably to a pure Bingham fluid for certain
types of flows. This working assumption was also adopted to minimize the amount of computation
time to support the evaluation of a wider model parameter space. Furthermore, the application
of more complex models often requires input data and initial conditions that exceed that which is
available [64,65]. With respect to specific model data requirements, FLO-2D results have been reported
to be strongly influenced by topography [58]; the availability of a high resolution SwissALTI3D digital
elevation model (DEM) [66] satisfied this requirement. Previous studies (e.g., [58]) have also cited that
FLO-2D is capable of generating accurate runout distances and capturing the distribution of materials
across the fan through back-calculation. Finally, to support subsequent investigations of building
vulnerability with simulated hazard intensities, FLO-2D is capable of generating sediment deposition
(flow) heights, in addition to flow velocities and impact pressures.

Model performance is assessed against post-event observations of sediment deposition extent,
sediment deposition heights, and a single point estimate of flow velocity for close to 4000 completed
simulations. Focusing only on studies conducted with the commonly applied FLO-2D model, Table 1
presents an overview of published literature on the assessment of simulated results specific to the
back-calculation of torrent events. To date, the performance of simulated torrent events has generally
been assessed by visual comparison, with limited instances where quantitative or hybrid approaches
are applied to consider validation data in 3-dimensions. In particular, while comparisons of observed
sediment deposition extents are more common, the additional inclusion deposition heights is limited.
For instance, only three known studies with FLO-2D assessed results with both post-event observations
of sediment deposition extent and deposition heights. From these cases, sample sizes of observed
points were limited (n < 20), and no further statistical analyses were published at the time this
manuscript was prepared. Furthermore, other studies that quantified model performance presented
the percent of over or under prediction by sediment deposition extent or only visually displayed the
simulated results without quantification.

In light of these findings, statistically-based performance metrics are applied in this study to
address the second challenge. This supports the quantitative formulation of aggregated uncertainties
related to data quality, parameterization, and model suitability; it is a step towards effectively
identifying priorities for data collection and future modeling efforts based on quantitative methods. In
effect, the methods proposed in this study combines SA for calibration together with the evaluation of
model performance and behavior with a set of statistically-based metrics to support the process in a
systematic and efficient way.
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Table 1. Summary of published literature that assessed FLO-2D model results.

Sources of Rheology Values Model Validation Reference Data

Cases from Literature Lab Analyses of
Post-Event Field Samples From Literature Visual

Comparison Quantification Sediment
Deposition Extent

Sediment Deposition
Heights

Number of
Sample Points

Sosio et al. [67]
√ √ √ √ √ √

18
Quan Luna et al. [16]

√ √ √ √
13

Lin et al. [68]
√ √ √ √ √ √

8
D’Agostino et al. [69]

√ √ √ √ √

Boniello et al. [70]
√ √ √ √ √

Rickenmann et al. [32]
√ √ √
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2. Materials and Methods

2.1. Site Description

The proposed framework is applied to a well-documented, high magnitude debris flow event
that occurred along the Glyssibach in Brienz, Switzerland in 2005. A detailed description of the
study site and characteristics of the debris flow was obtained from post-event documentation
(i.e., Lokale Lösungsorientierte Ereignisanalyse or LLE) prepared by local experts and published
in Reference [71].

Brienz is located at the fan of the Glyssibach, a 1.98 km2 alpine catchment situated between
563 m and 2039 m above sea level. The underlying bedrock on location is Lower Cretaceous limestone.
The combination of marl and siliceous limestone found in the vicinity and contributions of weathered
schist provided sources of sediment for the torrent processes.

Between 19 and 23 August 2005, continuous rainfall varying between 6 and 16 mm/h fell in the
upstream catchment. This resulted in 320 mm of rain over 72 h, which gradually transported finer
sediments downwards along the Glyssibach into Lake Brienz, prior to the onset of the main debris
flow event. An eyewitness account described the northern bank, where the channel meets the lake,
reaching its retention capacity. The subsequent backpropagation of sediment was deposited upwards
along the main channel until the limit, which is identified in Figure 1. While solid materials did not
breach the confines of the channel, witnesses reported small quantities of water spilling onto the banks.
This observation indicates reduced carrying capacity prior to the occurrence of the main event.

The debris flow was triggered by a landslide in the early morning on 23 August 2005 and lasted for
approximately 15 min. The maximum discharge (Qmax) was estimated to be between 140 and 160 m3/s.
Available sediment was entrained and approximately 72,000 m3 of total bulk volume was subsequently
propagated along the main channel into the settlement, deposited on the alluvial fan, and subsequently
flowed into Lake Brienz. Flow velocities between 6 and 10 m/s at the Glyssibrücke was estimated
with the superelevation approach. This is based on the forced vortex equation, where the difference in
surface elevation of a debris flow is determined as it travels within a known channel curvature [73].
Debris flow materials were described by local experts to be relatively homogeneous, resulting in a
viscoplastic mud matrix composed primarily of fine fractions of silt and sand. In particular, the mud
matrix of the 2005 event is estimated to have been comprised of 30–70% water; 5–8% of the total
sediment volume is comprised of clay. The channelized mud matrix was capable of entraining coarse,
unconsolidated materials (e.g., vehicles, large woody debris) and transported boulders between 3 and
5 m in diameter to the bottom of the alluvial fan. For this reason, the 2005 event is referred to as a
debris flow.

2.2. Methods

Generally, a pre-screening stage is carried out to optimize modeling efforts by focusing on a subset
of inputs based on relative importance [74,75]. Figure 2 outlines the required inputs and expected
outputs of the dynamic FLO-2D simulation model following the pre-screening stage. Both sets of
boundary conditions and model parameter values reflect characteristics of the study site and the 2005
debris flow event described in Section 2. These characteristics were translated into ranges of physically
plausible parameter values used to define the parameter space of interest; Table 2 summarizes key
parameters and associated ranges of values identified from various sources. In particular, full ranges of
acceptable input values are defined in the FLO-2D model reference manuals. Truncated a priori ranges
of these values were further defined based on a combination of literature-based values from debris flow
modeling studies with FLO-2D and values from expert knowledge about the debris flow that occurred
specifically in Brienz. Certain identified parameters are set as initial conditions with fixed values
based on recommendations in the literature, with respect to the degree of uncertainty in required
model parameters. For example, accurate definition of uncertain flow behavior was prioritized over
simulations designed to investigate the impact of changing the spatial resolution of the computational
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grid. Furthermore, the amount of time that would be required to evaluate both input factors and model
parameters was also a consideration. These considerations effectively minimized the parameter space
and optimized the search for parameter combinations that best match the observed reference data.

Geosciences 2018, 8, x FOR PEER REVIEW  6 of 28 

2. Materials and Methods 

2.1. Site Description 

The proposed framework is applied to a well-documented, high magnitude debris flow event 

that occurred along the Glyssibach in Brienz, Switzerland in 2005. A detailed description of the study 

site and characteristics of the debris flow was obtained from post-event documentation (i.e., Lokale 

Lösungsorientierte Ereignisanalyse or LLE) prepared by local experts and published in Reference [71]. 

Brienz is located at the fan of the Glyssibach, a 1.98 km2 alpine catchment situated between 563 

m and 2039 m above sea level. The underlying bedrock on location is Lower Cretaceous limestone. 

The combination of marl and siliceous limestone found in the vicinity and contributions of weathered 

schist provided sources of sediment for the torrent processes. 

Between 19 and 23 August 2005, continuous rainfall varying between 6 and 16 mm/h fell in the 

upstream catchment. This resulted in 320 mm of rain over 72 h, which gradually transported finer 

sediments downwards along the Glyssibach into Lake Brienz, prior to the onset of the main debris 

flow event. An eyewitness account described the northern bank, where the channel meets the lake, 

reaching its retention capacity. The subsequent backpropagation of sediment was deposited upwards 

along the main channel until the limit, which is identified in Figure 1. While solid materials did not 

breach the confines of the channel, witnesses reported small quantities of water spilling onto the 

banks. This observation indicates reduced carrying capacity prior to the occurrence of the main event. 

 

Figure 1. Vectorized post-event orthophotograph [72] capturing the distribution of mud and debris 

in Brienz. 
Figure 1. Vectorized post-event orthophotograph [72] capturing the distribution of mud and debris
in Brienz.

In this study, a global sensitivity analysis was conducted, where the model output was obtained
by varying inputs across their entire feasible space rather than around a reference value. One-at-a-time
(OAT) or all-at-a-time (AAT) methods can be applied to calibrate each input factor independently or
all input factors simultaneously [76]. In this particular study, the AAT method was initially applied to
explore the wider parameter space by considering model output sensitivity to both direct changes to
input factors and to joint input interactions; this corresponds to about 45% of the total simulations
completed for this study or 1764 model runs. The OAT method was applied to specific parameters once
the most influential input factors were identified from evaluations of AAT results. Global sensitivity
analysis was performed semi-automatically with the implementation of Sikuli scripts [77] coupled with
an executable batch file program that was provided by the developers of FLO-2D. Due to constraints
with the batch program (i.e., only a maximum of 20 simulations can be run in a series within the batch
program at a time), fully automated calibration was not supported.
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Figure 2. Schematic illustrating how the different sources of data are fed into the dynamic numerical
model to generate simulated outputs; summary scalar variables are subsequently produced to support
model performance evaluations and provide insight about the potential use of simulated intensity
proxies to further develop physical vulnerability curves.

A distinction is made between model outputs and their translation into summary scalar variables
with different performance assessment functions; these variables (e.g., global root mean square error,
fitness measure F) quantify model performance by comparing simulated results to observed reference
data [59]. In particular, completed simulations were evaluated against reference observation data to
determine whether higher agreements were obtained and new sets of input factor values were defined
based on the results. This procedure was repeated iteratively in phases until no further gain in model
performance was detected with respect to the available event data. Consequently, the evaluation of
model outputs with summary scalar variable describe how influential variations of input factors are.
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Furthermore, the results provide insight about the feasibility of using simulated intensity proxies to
further develop physical vulnerability curves (e.g., [16]).

Table 2. Overview of required inputs in FLO-2D and feasible ranges of values specific to the 2005
debris flow event that occurred in Brienz.

Feasible Ranges of Values

Initial
Conditions

Input Factors
for Calibration Description Symbol Units for FLO-2D

Model
for 2005 Debris
Flow in Brienz

√ computational grid
resolution m 5

√
sediment volume m3 70,000–72,000

√ (distributed) Manning’s
values n m−

1/3 ·s

forested areas (0.33),
channels and streets (0.01),

sparsely vegetated
settlement areas (0.08)

√ resistance parameter for
laminar flow K 24–50,000

determined based on
floodplain grid element’s

Manning’s n value

x1 yield stress, α1 τy Pa 0–∞
unknown; see Table 3 for

potentially applicable
values

x2 yield stress, β2 0–∞

x3 viscosity, α1 η Pa·s 0–∞

x4 viscosity, β2 0–∞

x5

volumetric sediment
concentration (determines

mud hydrograph)
Cv 0.03–0.90 0.30–0.70

x6 specific gravity Gs 2.5–2.8 2.5–2.8

x7 surface detention m 0.01–0.50
model-specific input factor;

calibrated with feasible
model ranges

2.3. Data Sources

2.3.1. Initial Conditions and Fixed Parameters

In this study, pre-screening began with the identification of accepted ranges of required input
values for the numerical model [78]. Truncated ranges of physically feasible values were defined to
reflect the specific 2005 debris flow event based on expert consultation. Additionally, unknown values
were identified from literature describing potentially similar study sites and processes. Information
from past SA studies with FLO-2D (e.g., [67–69,79]) was compiled; findings highlighted the degree to
which the model outputs varied with the definition of certain conditions and parameters. Certain inputs
were defined as initial conditions with fixed input values, while others were defined as input factors
with a range of plausible values, based on the findings on relative parameter importance, on available
information about the 2005 event and the amount of computational time required to explore a given
number of parameters. For the 2005 mudflow in Brienz, initial conditions were defined with data
about the underlying topography, the bulk volume of sediment and water propagated downslope,
the inclusion of mitigation structures and building footprints into the topography, surface roughness,
and the spatial resolution of model grid elements (Figure 2; Table 2). Sensitivity analysis for model
calibration was applied to the defined input factors, which effectively reduced the size of the original
problem by minimizing the model parameter space.

A swissALTI3D digital elevation model (DEM; [66]) was obtained at 2 m spatial resolution and
was resampled to 5 m. While decreasing the spatial resolution of grid elements limits the ability
to perform highly detailed analyses, the results provided an overview of reasonable reproductions
of the simulated process with greater computational efficiency. To account for any notable changes
represented in DEM since the occurrence of the mudflow event, additional or modified mitigation
structures were changed to reflect the topographic conditions in 2005 based on information from
expert consultation and review of pre-event orthophotographs. Furthermore, the DEM was adapted to
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include witness accounts of sediment backpropagation up to channel bankfull conditions until the
limit of the blue arrow indicated in Figure 2, prior to the onset of the main debris flow event.

While some studies have calibrated for Manning’s coefficient n (e.g., [79]), which describes
surface roughness as a function of land cover types, fixed distributed values were assigned to forested
areas (0.33 m−1/3·s), channels and streets (0.01 m−1/3·s), and sparsely vegetated settlement areas
(0.08 m−1/3·s) in this study [80].

2.3.2. Input Factors for Calibration

Following the definition of initial conditions, site-specific ranges of physically feasible input
factor values are defined based on expert knowledge and from published literature. This ensures that
simulated outputs, produced by varying these constrained values, are realistic for a given process and
event. Different combinations of input factors represent the simplified physics that govern the flow
behavior of the process, how the materials spread laterally across the alluvial fan and downslope from
the defined triggering location.

For all of the simulations, the same total bulk volume is transported downslope. However,
the volumetric sediment concentration (Cv) input factor is calibrated for, which is the ratio between
solid materials and water. Within the solid component, different grain size distributions can be defined.
This reflects the importance of grain size on energy dissipation in granular flows, which translates to
different effects on geophysical flow mobility [81].

An inflow mud hydrograph is required for each simulation and is generated based on the
defined Cv and discharge data. The amount of precipitation that initiated the debris flow could
not be determined from rain or discharge records most proximal to the study site. Consequently,
an expert-based estimate of maximum discharge from the main channel was used to produce a series
of mud hydrographs based on variations of different volumetric sediment concentrations.

2.3.3. Calibration of Rheological Values

Flow behavior is partially characterized by the amount of volumetric concentration of a fluid
matrix, Cv, where Vs and Vw represent the respective sediment and pore water volumes in a given
mixture [82].

Cv = Vs/(V s + Vw) (1)

Empirical data on relatively homogeneous, single-phased geophysical flows have shown that
the amount of interstitial fluid and its associated properties determine both the viscosity and yield
strength [83–85]. In general, both viscosity

η= α1 eβ1Cv (2)

and yield stress
τy= α2 eβ2Cv (3)

increase exponentially with the volumetric concentration of fine sediments.
The empirical coefficients or material parameters, αi and βi, are key parameters within the

FLO-2D model that define the internal resistance of the mudflow materials. In particular, the study
conducted by D’Agostino et al. [69] demonstrated that the simulated results are highly dependent
on the correct definition of rheological parameters. While these values are typically determined by
lab-based analyses of representative field samples collected shortly post-event (e.g., [67,70,82,83]) to
describe process flow behavior, it may not always be possible to obtain such samples. In lieu of
post-event field samples, rheological values have been calibrated from existing values reported in the
literature (e.g., [67,70]).

Consequently, in addition to the aforementioned input factors, rheological values were also
calibrated for this study due to the lack of more detailed information about the sediments that
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were transported. A selection of rheological values (x1–4) that was compiled from the literature for
consideration and subsequent calibration in FLO-2D (Table 3).

Specific to FLO-2D, the additional calibration of an input factor referred to as sediment detention
(x7) modifies the defined rheology by introducing a uniform height threshold (in m) to each
computational grid cell, so that the volume of materials propagating downslope is retained until
the defined height is exceeded.

Table 3. Summary of selected rheological values from the literature to evaluate with the FLO-2D model
with respect to the 2005 debris flow event, in lieu of location-specific post-event field samples; a unique
ID is assigned to each group of values.

Yield Stress (Ty) Viscosity (n)

ID Sources from Literature Sample Name α1 β1 α2 β2

Dynes/cm2 Poises

A O’Brien and Julien [83] Glenwood 4 0.00172 29.5 0.000602 33.1
Glenwood 1 0.0345 20.1 0.00283 23
Glenwood 3 0.0765 16.9 0.648 6.2
Glenwood 2 0.000707 29.8 0.00632 19.9

B O’Brien and Julien [83] Aspen pit 1 0.181 25.7 0.036 22.1
Aspen pit 2 2.72 10.4 0.0538 14.5

Aspen natural soil 0.152 18.7 0.00136 28.4
Aspen mine fill 0.0473 21.1 0.128 12

Aspen natural soil source 0.0383 19.6 0.000495 27.1
Aspen mine fill source 0.291 14.3 0.000201 33.1

C Sosio et al. [67] Scenario A 0.0013 23 0.0000283 19
Scenario B 0.000093 23.5 0.000183 19
Scenario C 0.0011 21.8 0.0000283 18.2

L1 (deposit sample) 0.000127 22.8 0.0000297 18.8
L2 (source area sample) 0.0004 22 0.000203 18

D D’Agostino and Tecca [69] Rio Dona 0.05 22 0.0015 22
Fiames 0.152 18.7 0.0075 14.39

E Lin et al. [68] Nan-Ping-Kern 0.2433 4.116 0.001386 3.372
Jun-Kern; Err-Bu 0.7299 12.348 0.004158 10.116

Shan-Bu 0.4055 6.86 0.00231 5.62
Fong-Chu 0.85155 14.406 0.004851 11.802

Tung-Fu Community 0.811 13.72 0.00462 11.24
Her-Ser 1 1.0543 17.836 0.006 14.612

Chui-Sue River 1.2652 16.464 0.924 14.612

F Boniello et al. [70] Fella sx debris flow 1 0.000005 42.01 0.00000002 42.23
Fella sx debris flow 2 0.0383 19.6 0.000495 27.1

2.3.4. Observed Reference Data for Model Verification

Observed reference data was based on contributions of volunteered geographic information (VGI)
from local residents, experts, and authorities. On the building level, available data included post-event
photographs taken by residents. Point-based estimates of sediment deposition heights (Figures 3 and 4;
in meters) and degrees of loss were determined for each affected building.

All height estimations are associated with a confidence level, primarily based on the quality of the
post-event photograph and the ability to determine deposition heights accurately. Figure 4 shows three
examples of photographs of affected buildings in Brienz. In the top left, sediment deposition heights
can be observed on the outer wall of the building, however, the location of the ground (i.e., reference)
cannot be clearly determined.

As a result, this estimated observed height would be assigned a lower confidence level (2 or 3:
somewhat uncertain) than the height estimated from the photograph in the top right (1: very certain),
where the ground can be observed. While sediment deposition heights can be observed in the
orthophotograph (bottom) for several buildings, the associated confidence level (4: highly uncertain) is
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much lower due to the angle at which the photograph is taken. Figure 4 shows the spatial distribution
of estimated sediment deposition heights with respect to associated confidence levels. Post-event
orthophotographs [72] provide a synoptic view of the affected site and building level damages.
The sediment deposition extent (Figure 3) was delineated from an orthophotograph that shows the
limits of where the debris flow materials were deposited in Brienz.
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In summary, three sources of reference data were available to support model validation,
namely the sediment deposition extent, estimates of sediment deposition heights distributed across
the alluvial fan area, and a point-estimate estimate of flow velocity (i.e., between 6 and 10 m/s) at
the Glyssibrück.

2.4. Model Description

FLO-2D [27] is a two-dimensional, physically-based distributed flood routing model that is
also capable of simulating non-Newtonian sediment flows. In particular, cumulative shear stress
in hyperconcentrated sediment flows is simulated, which includes debris flows, mudflows and
mud floods [58]. Cumulative shear stress in the model is comprised of five components, namely,
cohesive yield stress, Mohr–Coulomb shear, viscous, turbulent, and dispersive shear stress. A quadratic
rheological model function of sediment concentration adds turbulent and dispersive terms to the
original Bingham equation when the aforementioned components are expressed as shear rates [86].
Furthermore, the model is driven with the definition of a mudflow hydrograph and conserves the
defined volume of sediment and water over a square grid-based, user-defined computational domain
based on a cell storage approach. Variable combinations of model parameter values results in a specific
rheology or flow behavior, which effectively describes how the mud matrix is distributed over a given
landscape. In particular, the geophysical flows are modeled as simplified Bingham fluids, which is
defined by yield stress and viscosity coefficients [86]. The rheology can be further calibrated with the
definition of the model-specific sediment detention input factor.
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2.5. Performance Metrics

While numerical models have been previously applied to replicate hazardous events, it is
instrumental to gain a sound understanding about simulated outputs, in addition to model- and
calibration-specific limitations, with respect to available data. Performance metrics provide a means to
assess these components in a systematic and reproducible way. In this study, two sets of performance
assessments are carried out to address two different objectives. In particular, the assessments
provide insight into model performance with respect to validation data and parameter importance on
simulated results.

Model performance is evaluated on the degree of agreement between simulated results with observed
data, which is quantified by a series of summary scalar variables. In this study, a three-dimensional
evaluation was conducted with validation data describing both the sediment deposition extent (x, y)
and sediment deposition heights (z). Furthermore, a single, point-based comparison of simulated and
estimated flow velocities was performed to determine whether the simulated outputs were within a
reasonable range.

A measure of fitness, F, quantifies the binary (i.e., yes or no) agreement between observed and
simulated sediment deposition extent per grid cell as a percentage over the study site. Both instances
of over- and under-prediction in the simulated extent were penalized with respect to the observed
extent [87].

F[%] =
extentobs ∩ extentsim
extentobs ∪ extentsim

× 100 (4)

The global root mean square error (gRMSE) provides insight on the overall agreement between
observed and simulated sediment deposition heights and is expressed in meters. Once the summary
scalar variables were computed, model outputs were ranked by highest F scores and lowest gRMSE
values to identify combinations of input factors that matched the validation data most closely.

Models of complex phenomenon, such as natural hazards, are often characterized by a large
number of input factors that may interact in non-linear ways [88]. To minimize the uncertainty
associated with SA findings, a larger number of simulations is required to increase the sampling
density [89]. This is especially important for the exploration of high dimension parameter spaces,
so that there is a higher chance of capturing complex interactions among parameter sets. In this study,
3876 simulations representing different input factor combinations were completed. Further assessment
of input factor combinations was conducted with two statistical approaches, namely regression trees
and random forests.

Regression trees [90] begin with a root node and end with terminal nodes or leaves. The root
node of the regression tree accounts for the total number of completed simulation runs or training
set of data that are being considered in the analysis, with respect to a defined objective function
(e.g., higher F or lower gRMSE). The training set is recursively partitioned into subsets of simulations
that reflect combinations of input factor values that satisfy the objective function. The complexity
parameter, cp, is a value that defines the amount by which splitting the current node improves the
relative error. In the case of ANOVA splitting, if the overall r2 is increased by the defined cp value
at each step, the regression tree continues to grow. In this study, two regression tree models were
generated, based on average gRMSE and F scores, respectively.

A random forest is based on a set of independently generated regression trees [91]. To further the
analysis, a measure of predictor importance (%IncMSE) was returned after a random forest was grown.
If a predictor is important in the model, randomly assigning it realistic values (i.e., permuting predictor
values over the dataset) should result in a worse prediction with the same model. A comparison can be
made with respect to a predictive measure (i.e., mean squared error or MSE) by comparing the model
prediction results based on original and permuted datasets. It is expected that predictions with the
original dataset are better than ones made with the permuted dataset.

Consequently, %IncMSE represents the increase in the mean squared error (MSE) of predictions,
which is estimated by out-of-bag cross validation. First, a regression forest is grown. The MSE
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associated with the original model is computed and assigned to MSE0. Each predictor variable is then
permuted a new model MSE(x) is calculated. %IncMSE of the predictor is determined by: (MSE(x)
− MSE0)/MSE0 × 100%, or the difference between the reference model MSE0 and the new model
MSE(x). The values are scaled to support the comparison over multiple predictors. The predictor is
considered to be relatively important if the %IncMSE is higher.

While random forests do not have the same explanatory power as individual regression
trees [90,92,93], they have offer the advantages of limiting overfitting while minimizing errors due
to bias. This is because an individual regression tree is sensitive to changes in the training data and
splitting criteria, which can result in different tree structures and subsequent explanations [90]. Thus,
results from both statistical methods are complimentary and provide insight on model behavior as a
function of the relative sensitivity of individual parameters and the effects of their joint interactions.

3. Results

3.1. Model Performance Assessments

A total of 3876 simulations were completed with the FLO-2D model, each representing the
evaluation of a different combination of the seven input factors described in Table 2. Summary
scalar variables were calculated to determine how closely simulations matched the observed debris
flow event. For all completed simulations, the F scores ranged between 24.28% and 53.42%, which
represent the lowest and the highest percent of binary agreement between the simulated and observed
sediment deposition extent. The global root mean square error ranged between 0.60 and 1.16 m when
considering only estimated reference heights associated with very high confidence (gRMSE1), and
between 0.87 and 1.23 m when data points of all confidence levels were considered (gRMSE4). Based
on this result, only gRMSE1 was subsequently used to rank the performance of simulation runs.

Tables 4 and 5 present the highest overall performing simulations ranked based on F and gRMSE1
scores, respectively. In general, the simulations with lower gRMSE1 scores are associated with a
difference between simulated and reference sediment deposition heights of approximately 0.10 m
lower than height differences associated with the top performing simulations ranked on the F score.
However, the corresponding agreement between simulated and observed extents is 8–9% lower.

Furthermore, Table 6 presents the highest performing simulations from each group of rheological
values that were evaluated in this study (Table 2) based on F scores. The ranges provide a first
impression about model sensitivity to different parameter combinations, especially to definitions of
rheology (i.e., input factors x1–4 and x7).

In general, F scores were low (i.e., a maximum of 53% agreement matching the observed extent)
and gRMSE1 values were high (i.e., >0.6 m difference between the simulated and observed heights).
Summary scalar variables associated with the highest performing simulations for each type of rheology
(i.e., A–F) are presented in Table 6. Figure 5 illustrates the simulated results that were generated based
on the definition of two different rheologies (i.e., B and F) and input factor combinations. While there
are certain similarities in terms of deposition extent (i.e., fairly close reproduction on the right side
of the alluvial fan towards the mountains and under-prediction of extent in the bottom-left side),
there are notable differences in the spatial distribution of sediment heights within the modelled extent.
Additionally, the flow behavior that is defined in each simulation affects the flow velocities across the
alluvial fan. The linkages among flow behavior, sediment deposition extent and heights, and flow
velocity are further exemplified in the comparison of the two selected simulations. While the modelled
output of B53 captures the sediment deposition heights relatively better than the output of F300, the
maximum velocity is notably lower than that estimated at the Glyssibrücke (i.e., 2–4 m/s versus 6–10
m/s); the point-based simulated velocity of the F300 output matched that of the estimate provided by
local experts. However, the agreement between simulated and estimated deposition heights is lower
and a larger quantity of simulated debris flow materials was deposited into Lake Brienz.
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Table 4. Overview of top 10 performing simulations based on highest F fitness measurement values.

Input Factors for Model Calibration Summary Scalar Variables I

x1, x2: Yield Stress x3, x4: Viscosity
x5: Volumetric

Sediment
Concentration

x6: Specific
Gravity

x7: Surface
Detention F gRMSE1 gRMSE4

Rank Simulation
Run ID α1 β1 α2 β2 (%) Very Certain

Data Points (m)
All Data

Points (m)

1 B53 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.8 0.80 53.42 0.71 0.92
2 B54 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.8 1.00 53.34 0.72 0.92
3 B52 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.8 0.60 53.22 0.71 0.92
4 E48 Chui-Sue River 1.2652 16.464 0.924 14.612 0.50 2.5 1.40 53.15 0.87 0.94
5 B34 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.65 1.00 53.02 0.72 0.93
6 E103 Chui-Sue River 1.2652 16.464 0.924 14.612 0.50 2.65 1.40 52.99 0.87 0.94
7 B41 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.8 0.50 52.98 0.71 0.92
8 E158 Chui-Sue River 1.2652 16.464 0.924 14.612 0.50 2.8 1.40 52.97 0.87 0.93
9 B33 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.65 0.80 52.96 0.71 0.93
10 E49 Chui-Sue River 1.2652 16.464 0.924 14.612 0.50 2.5 1.50 52.95 0.84 0.92

Table 5. Overview of the top 10 performing simulations based on lowest gRMSE1 values calculated with very certain reference height data only.

Input Factors for Model Calibration Summary Scalar Variables I

x1, x2: Yield Stress x3, x4: Viscosity
x5: Volumetric

Sediment
Concentration

x6: Specific
Gravity

x7: Surface
Detention F gRMSE1 gRMSE4

Rank Simulation
Run ID α1 β1 α2 β2 (%) Very Certain

Data Points (m)
All Data

Points (m)

1 E112 Chui-Sue River 1.2652 16.464 0.924 14.612 0.30 2.80 1.00 44.66 0.60 0.88
2 A6 Glenwood 4 0.00172 29.5 0.000602 33.1 0.35 2.50 1.00 42.71 0.60 0.90
3 E2 Chui-Sue River 1.2652 16.464 0.924 14.612 0.30 2.50 1.00 44.72 0.60 0.87
4 E57 Chui-Sue River 1.2652 16.464 0.924 14.612 0.30 2.65 1.00 44.81 0.60 0.87
5 B1 Aspen pit 1 0.181 25.7 0.036 22.1 0.30 2.50 0.80 42.84 0.61 0.89
6 B21 Aspen pit 1 0.181 25.7 0.036 22.1 0.30 2.65 0.80 42.69 0.61 0.89
7 B41 Aspen pit 1 0.181 25.7 0.036 22.1 0.30 2.80 0.80 42.58 0.61 0.89
8 A26 Glenwood 4 0.00172 29.5 0.000602 33.1 0.35 2.65 1.00 42.57 0.61 0.90
9 B26 Aspen pit 1 0.181 25.7 0.036 22.1 0.35 2.65 1.00 43.18 0.61 0.92
10 B46 Aspen pit 1 0.181 25.7 0.036 22.1 0.35 2.80 1.00 43.29 0.61 0.92
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Table 6. Comparison of parameter combinations and summary scale variables for the top performing simulations runs for each of the six sets of rheologies obtained
from published literature to back-calculate the 2005 debris flow in Brienz.

Model Inputs for Calibration

x1, x2: Yield Stress x3, x4: Viscosity
x5: Volumetric

Sediment
Concentration

x6: Specific
Gravity

x7: Surface
Detention

Rank Simulation
Run ID α1 β1 α2 β2

1 B53 Aspen pit 1 0.181 25.7 0.036 22.1 0.45 2.80 0.80
2 E48 Chui-Sue River 1.2652 16.464 0.924 14.612 0.50 2.50 1.40
3 A55 Glenwood 4 0.00172 29.5 0.000602 33.1 0.45 2.80 1.50
4 D50 Rio Dona 0.05 22 0.0015 22 0.30 2.80 1.30
5 F300 Fella sx debris flow 2 0.0383 19.6 0.000495 27.1 0.30 2.65 1.30
6 C60 Scenario A 0.0013 23 2.83 × 10−5 19 0.30 2.80 1.30

Summary Scalar Variables I

F gRMSE1 gRMSE4 Adjusted r2

Rank Simulation
Run ID (%) Very Certain Data

Points (m) All Data Points (m) Very Certain Data
Points All Data

Simulated
Maximum

Velocity (m/s)

1 B53 Aspen pit 1 53.42 0.71 0.92 0.24 0.07 2–4
2 E48 Chui-Sue River 53.15 0.87 0.94 0.08 0.04 0.5–1
3 A55 Glenwood 4 52.03 0.86 0.93 0.11 0.06 1–2
4 D50 Rio Dona 46.27 0.72 0.96 0.10 0.06 2–8
5 F300 Fella sx debris flow 2 46.11 0.72 0.95 0.11 0.06 6–8
6 C60 Scenario A 45.73 0.72 0.97 0.09 0.01 6–8
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Figure 5. The two selected maps exemplify the agreement between simulated and observed sediment
deposition extents, in addition to the spatial distribution of the simulated deposition heights for two of
the best performing simulation runs; simulated maximum velocities provide a quick comparison with
the point-based velocity estimate of 6–8 m/s that was determined by local experts at the Glyssibrücke.

Scatterplots with simple linear regression models compared the performance of simulated
sediment deposition heights against all of the reference height data and a subset consisting of only
very certain height data (Figure 5). The adjusted r2 value [76] associated with using all of the data
ranged from 0.01 to 0.07, while the adjusted r2 value associated with the subset was relatively higher
and ranged from 0.09 to 0.24 (Table 6). For the highest performing model output (i.e., B53), 24.57% of
the variance between simulated and reference heights could be explained, an increase of about 17%
from using all available observation heights associated with variable confidence levels.
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As the model outputs did not reproduce the debris flow event in a highly satisfactory way
(e.g., F > 75%; gRMSE < 0.5 m), it is difficult to justify further inclusion of simulated results to develop
physical vulnerability curves. However, the wide ranges of both F scores and gRMSE values indicate
that some parameter combinations did perform better than others.

3.2. Parameter Importance and Model Behaviour Assessments

To investigate model behavior as a function of the relative sensitivity of individual parameters
and the effects of their joint interactions, two statistical methods described in Section 2.2 were applied.

Two were regression trees grown to support this study. The resulting tree models can change
according to variable definitions of cp values; this describes the range of input factor combinations that
generally produce simulations that have higher or lower agreements with observed data. For instance,
in both of the regression trees, simulated outputs with higher degrees of agreement with observed
data were produced by increasing the surface detention input factor from the default value of 0.03 m
to a certain limit before performance no longer improves. In Figure 6, the blue circle indicates the
cluster of simulation runs (n = 21) that is associated with the lowest averaged gRMSE1 values (0.68 m).
These simulations have defined surface detention values < 1.4 m, a volumetric sediment concentration
< 47%, and rheological parameters where the viscosity coefficient β2 < 28 and yield stress coefficient
α1 < 356 × 106. In Figure 7, the cluster of simulation runs (n = 228) indicated by the blue circle
produced results with the highest averaged F scores (44% agreement between observed and simulated
extents). These simulations were defined by surface detention values < 0.7 m, a volumetric sediment
concentration < 32%, and the viscosity coefficient β2 ≥ 23.
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Figure 7. Regression tree based on averaged F statistic values; cp = 0.02.

Based on the results of the random forest model (Figure 8), the predictors within the FLO-2D
model are identified and ranked. Relative parameter importance is determined based on highest
%IncMSE. In this study, volumetric sediment concentration, surface detention, viscosity coefficients,
and yield stress coefficients are the most important input factors in the FLO-2D model, respectively.
Specific gravity is associated with a negative %IncMSE. This indicates that the randomly permuted
predictor values performed better than the original values. Consequently, while the variability
observed in Tables 4 and 5 show notable variability in the specific gravity values associated with
top performing simulations, model outputs are insensitive to these changes and the predictor is
not considered to play an important role in the model with respect to the contributions of other
input factors.
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4. Discussion

4.1. Sensitivity Analysis for Model Calibration

The utility of conducting SA for the calibration of a process model to reproduce a past event was
assessed with a series of performance metrics. In natural hazard studies, observations or reference
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data have inherent uncertainties attributed to a range of sources such as lack of standardized data
collection and interpretation guidelines, pre-processing errors, and uncertainties introduced with
spatial averaging. Furthermore, sources of uncertainties also exist with respect to model limitations
and working assumptions. With the acknowledgement of these uncertainties, absolute corroboration
or rejection of a model on the basis of performance metrics alone has its limitations. Nevertheless,
the results of a sensitivity analysis provide useful guidance on the identification of parameter
importance on model behavior and effectively reduces the amount of parameter space to explore.

Based on the results presented in Tables 3 and 4, it can be observed that the accurate definition of
rheological parameters is the basis to capturing representative flow behavior. Additional input factors
such as surface detention and volumetric sediment concentration were identified by both regression
trees and the random forest model to have a notable effect on improving the overall agreement between
simulated and reference data through further calibration. In particular, sediment detention values
effectively modify rheological properties by introducing a height threshold to each computational
grid cell, so that the debris flow materials are retained for a longer time before further propagating
downwards as the detention height threshold is exceeded. In effect, the surface detention value
modifies the flow viscosity. Volumetric sediment concentration values are directly used to generate
mud hydrographs, which influence the definition of flow characteristics. The results of the sensitivity
analysis helped to refine reasonable range of values for the two input factors for further calibration,
highlight the importance of rheological properties, in addition to showing that variations in specific
gravity did not result in notable changes in model outputs. Through the investigation of parameter
importance and their joint interactions, we can continue to build a knowledge base for a more efficient
locally-based calibration within sub-regions of the parameter space that may be of interest [59].
With respect to processing modelling past torrent events with FLO-2D, it is recommended that in situ
sediment samples be collected to represent flow behavior as accurately as possible.

4.2. Model Performance Assessment: Potentials and Limitations

Several working assumptions should be considered to determine if the FLO-2D model is suited to
replicating torrent event and the potential limitations if it is applied. Firstly, certain gravity-driven
geophysical flows that comprise of solid particles within a fluid (e.g., snow avalanches, lava, mud and
debris flows) are assumed to behave as relatively homogeneous, single-phase flows at a macroscopic
scale [28]. In reality, the materials that comprise the matrix may be more accurately described as
multi-phased. Furthermore, in the case of Brienz, the matrix was also capable of transporting boulders
between 3 and 5 m in diameter. Since particles within granular flows experience frictional and
collisional interactions, discrete element modeling is needed to account for these types of interactions
in order to effectively describe flow behaviors [81]. The treatment of such geophysical flows as a
single-phase phenomenon effectively reduces the complexity of the problem [94,95]. Consequently,
both pore pressure and inter-grain frictional effects are considered to be negligible and bulk rheological
properties (i.e., constant dynamic viscosity and yield stress) are assumed to apply to the entire matrix
in FLO-2D. Furthermore, the theory and working assumption of viscoplasticity may not be valid for
describing all geophysical flows, where Coulomb plasticity or other models may describe the behavior
more accurately [96,97]. In the study conducted by Bertolo and Bottino [98], the authors expressed that
given the complexity of geophysical flows, multiple rheological models may be necessary to capture
the full range of characteristics of a specific debris flow. This recommendation also applies to different
events occurring at the same location.

Under the assumption of homogeneity, the geophysical flow modelled in FLO-2D should primarily
be comprised of fine materials. Ideally, laboratory-based assessments of collected field samples can
then be conducted to infer rheological properties about the materials [60]. However, field samples
of the torrent event of interest may not be available. For these cases, it may be possible to simulate
an event using rheological values cited in literature from materials with comparable mineralogical
compositions and/or grain size distributions (e.g., [69]).
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Model results provide insight about the feasibility of simulating past natural hazard events with
limited field-based model input data. The study focused on determining whether ranges of FLO-2D
input factor values could be adequately estimated from available data and whether model calibration
could generate simulated results with a strong agreement with the reference data. In particular,
the definition of flow behavior based on rheological values from literature highlighted the limitations
of this approach. For this study, where the exact grain size distribution is unknown and the estimated
range of the volumetric concentration is wide (i.e., 30–70%), the event was simulated based on
assumptions of homogeneity. Rheological parameter values obtained from literature varied in terms
of their mineralogical compositions. Furthermore, it is important to note that flow behavior within a
torrent can change within the duration of a given event. Consequently, the defined range of parameters
captures generalized flow physics. In lieu of additional information to constrain available rheological
values in literature, those that were associated with comparable grain size distributions to the study
site were favored.

In a study by Sosio et al. [99], shear stress was observed to vary for flows comprised of greater
amounts of solid content at relatively higher volumetric concentrations (Cv = 45–63%). This variability
has been attributed to the local effects of air bubbles or the formation of grain clusters in the mixture,
which violate the continuum assumption for mud matrices characterized by a higher Cv. This could
provide some explanation for the lower agreement of simulated and observed extents when using
literature-based values corresponding to materials from torrent events characterized by a lower Cv to
calibrate for higher Cv values (i.e., 45–70%) in this study.

Additionally, O’Brien and Julien [84] observed that for mudflow matrices with < 20% volumetric
sand concentrations, the viscosity corresponds with that of the silt-clay fraction of the mixture.
This relationship is important since rheological analysis to determine viscosity and yield stress values
is only conducted with the fine fraction of a given mixture. The specific maximum threshold of grain
size that is included in a given rheological analysis is independently determined by each working
group. For example, lab-based rheological analyses were conducted based on grain sizes < 0.425 mm
and < 0.063 mm from field samples, in studies conducted by Sosio et al. [67] and Boniello et al. [70],
respectively. This highlights potential limitations with determining the rheological properties of a
complex event, such as the 2005 debris flow, based only on the defined fine fraction of the associated
grain size distribution. Uncertainty is further introduced when rheological values derived with this
reductionist approach are applied to calibrate a different study site such as Brienz. Furthermore,
considering the working assumptions of homogeneity while reviewing the range of materials that are
identifiable in post-event photographs, it is clear that the impact of grain sizes beyond the defined
fine fraction and larger pieces of debris within the mud matrix cannot be accounted for with this
specific model. However, simulated results are generated based on the consistent application of rules.
Consequently, outputs will have a consistent degree of error attributed to problem oversimplification
or the effects of spatial averaging. This is in contrast to variable, often human errors that can be
introduced from data collection and subjective interpretation stages, especially when multiple parties
and participants are involved.

The FLO-2D model respects mass conservation. Consequently, over-prediction of the sediment
deposition extent is related to the consistent under-prediction of sediment deposition heights.
Additionally, the accurate definition of the flow behavior through the rheological parameters
characterizes the velocity at which the flow propagates downwards and the manner in which it
spreads laterally across the alluvial fan. Lower performing simulations were generally characterized
by an over-prediction of the extent, low deposition heights and high velocities attributed to flows with
low viscosity (Figure 5, simulation F300). On the contrary, relatively higher performing simulations
were generally characterized by a combination of under- and over-prediction of the extent, relatively
higher deposition heights and low velocities attributed to more viscous flows (Figure 5, simulation
B53).
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The results of this study illustrate that while the visual agreement between simulated and observed
deposition extents may look promising, quantifying the degree of agreement with a three-dimensional
approach provides a clearer picture about the feasibility of reproducing a past event under the
aforementioned constraints. In particular, this addresses past observations that while process models
often require calibration, many simulated results have yet to be comprehensively evaluated against
field events [32]. In the case of reproducing past torrent events, additional agreement between
simulated outputs and reference deposition heights and/or available flow velocities is necessary to
determine the accuracy of the defined flow behavior. The current study effectively extends the analysis
initiated by past studies that were conducted with the consideration of only a limited number of
sediment deposition heights (i.e., n < 20). It is a prerequisite to accurately define flow behavior to be
able to generate representative intensity proxies (e.g., velocities and impact pressures) via process
modeling. Only then can the inclusion of accurately simulated intensity proxies contribute to the
derivation of physical vulnerability curves for consequence analysis.

5. Conclusions

Based on the analysis results to date, sources of uncertainties from the model, input data and
reference data limit further inclusion of simulated intensity proxies from this study for further
development of physical vulnerability curves. Nevertheless, the proposed method and tools support
the quantitative representation of aggregated uncertainties related to data quality, parameterization
and model suitability. In light of these findings, the following recommendations may be of interest to
researchers and practitioners in the natural hazards and risk community:

The findings of the sensitivity analysis demonstrated how the most influential input factors within
a given model can be identified. This provides guidance on setting priorities for future data collection
and process modeling efforts. In particular, the definition of flow behavior is a key prerequisite to
obtaining more highly accurate simulated results and is predicated upon acquiring representative
post-event field samples. Collecting field samples of materials to determine rheology in the lab
generates much higher agreement in modelled results than the use of rheology reported in literature
from other study sites. Additionally, Tiranti and Deangeli [100] presented a method of interest that
predicts probable rheologies of alpine debris flows, based on the availability of source area data such
as lithology.

Exploration of alternative methods to determine deposition heights in a consistent way to reduce
uncertainties about validation data accuracy (i.e., reduce the range of confidence levels) is imperative
before a more accurate understanding of process and model behavior is possible. For instance,
advances in satellite, especially after 2015, enables researchers to produce highly accurate and up
to date digital terrain models that reflect the landscape characteristics well, especially with shorter
temporal return periods where images captured immediately following event occurrence become more
readily available. Differences in the landscape before and after a hazard event can be calculated from
a pre-event and post-event image acquired immediately over the affected area. Cavalli et al. [101]
presented a method to detect geomorphic changes in mountain catchments based on increasingly
available high-resolution DEM data. Alternatively, the difference between pre- and post-event
orthophotographs containing height information can also be used to calculate the sediment deposition
height across an area of interest.

Exploration of alternative process models with different working assumptions and approaches
and consideration of models that can be calibrated automatically to support the efficient exploration
of larger parameter spaces is instrumental. Models with the latter characteristic can reach optimal
solutions under reduced computational times.

In summary, the conclusions of this study are twofold. Firstly, the results support previous
findings (e.g., [102]) that the main limitation of the FLO-2D model is predicated on the use of simplified
Bingham equations to represent complex debris flow physics. In doing so, the granular flow of
heterogeneous materials such as debris and rock fragments within an interstitial mud [103] is reduced
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to a single-phased, homogenous flow. While the model may effectively support other types of
investigations, it is not suitable for back calculating past hazardous events, where highly accurate
simulated intensity outputs are required for further analysis. Secondly, the study demonstrated the
utility of SA to focus efforts on areas of parameter space associated with higher model performance,
rather than evaluating all potential parameter combinations. It is especially useful to have large
numbers of simulation runs completed under a shorter amount of time when exploring a complex
problem characterized by a large parameter space. The application of statistical tools can support data
exploration to gain insights from modeled results. Finally, results from SA provide guidance for future
data collection efforts based on the identification of important parameters and parameter combinations
for a given model.
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