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Abstract: This paper reviews stable isotopic data concerning spring water in Greece in addition to new
measurements (59); their spatial variations are investigated in order to provide basic information and
identify the locally significant parameters that affect stable isotopic distributions. The area of interest
was partitioned into eight sections according to geographical location and climatic characteristics.
Local spring water lines (LSWLs) are more or less consistent throughout the country. High-resolution
isoscape maps of spring freshwater (Cl− < 200 ppm; and T < 25 ◦C) for both δ18O and δ2H were
generated, revealing several interesting features such as the effect of Pindos ridge, a strong climatic
signal in southern Greece and indications of seawater intrusion in flat coastal areas.
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1. Introduction

The isotopic composition of spring water in Greece is mainly affected by: its location within the
Mediterranean basin (the eastern Mediterranean basin is dominated by air masses on the leeside of
the continental areas due to intense evaporation of seawater in conditions of moisture deficit [1,2]);
a complex morphology dominated by the presence of the Pindos ridge range crossing Greece from
NW to SE (and practically acting as a barrier to the precipitation); and the existence of the Ionian and
Aegean seas around Greece (that further affect the precipitation patterns).

Finally, the lack of a dense sampling network that would be representative of all altitudes and
sides of Greece further complicates the situation.

The use of stable isotopic analyses for investigating paleodiet [3,4], and paleoclimate has generally
proceeded on two fronts: evaluation of the stable isotope compositions in various natural systems to
understand the biological and geological processes, and subsequently to generate predictive models.
These models incorporate spatially variable isotopic parameters to construct isotope “iso-land-scapes”
and have been previously used to trace the origin of unknown ecological (plants, natural products,
animals, humans) and geological (soil, minerals, water) samples.

The use of isotope analysis in modern forensic work would not be possible without the pioneering
work in the fields of geology, hydrogeology, anthropology, archaeology, ecology, and plant physiology.
In particular, the oxygen and hydrogen isotope analysis of water led to the construction of the first
isoscape maps, setting the foundation for isotope forensics studies. This isoscape approach has provided
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an empirical framework from which it is possible to predict the geographic origin of unknown samples
and even identify the residence patterns of unidentified human remains based on their isotopic
signatures (bone, teeth, hair, and nails) [5–9].

In this study, we present the oxygen and deuterium isotope composition of spring waters from
Greece aiming to evaluate the spatial variability of spring water composition and its possible relation
to the isotopic composition of precipitation. We present high-resolution isoscape maps of the spatial
distribution of spring water δ18O–δ2H that could provide important information for hydrological
studies and represent a reference for the assessment of future changes. These maps are the result
of on-going research and are being constantly improved (with new samples and different sampling
years). The same isoscape maps can be used in archaeological studies, like those focused on paleodiet
and paleoclimate, as well as in contemporary forensic studies. Furthermore, we present the Cl−

composition of the spring waters (including springs with high Cl− concentrations) and evaluate the
mixing ratio with seawater.

2. Data and Methods

An extensive literature review was performed in order to gather all available data on the isotopic
composition of water in Greece. Spring water and seawater isotopic, chemical, and physical data were
compiled from international and Greek sources [10–39].

In this work only data from springs were considered, corresponding to Cl− ≤ 200 ppm and
T ≤ 25 ◦C, if those parameters were available. For those springs with more than one record, mean
values were calculated, resulting in 369 (suppl. information of ref. [40]) records for δ18O and δ2H.
In addition, some 74 unpublished measurements (Table 1) made by the authors according to the
procedures described by Epstein [41] and Coleman [42] by means of Finnigan Delta V Plus mass
spectrometers were also included, bringing the total up to 443. The geographical distribution of the
stations considered in this work is presented in Figure 1.

Table 1. General isotopic (δ18O and δ2H) values of 74 Greek spring waters.

NO Spring Location Region North East Sampling
Date

δ18O (‰,
VSMOW)

δ2H (‰,
VSMOW)

1 Chaladra Chios Aegean Isl. 38.55 25.94 2018 −7.2 −43.5
2 Nagos Chios Aegean Isl. 38.56 26.07 2018 −7.3 −45.1
3 Ag. Fokas1 Kos Aegean Isl. 36.85 27.25 2018 −6.3 −38.1
4 Ag. Fokas2 Kos Aegean Isl. 36.86 27.26 2018 −6.0 −31.1
5 Makriammos Thasos Aegean Isl. 40.76 24.73 2018 −8.1 −50.1
6 Potamia Thasos Aegean Isl. 40.71 24.72 2018 −8.1 −49.4
7 Therisso Chania Crete 35.24 23.59 2014 −8.8 −52.5
8 Sterna Heraklion Crete 35.01 25.08 2014 −7.7 −53.1
9 Foteino Arta Epirus 39.09 21.04 2016 −5.8 −35.1

10 Graikiko Ioannina Epirus 39.42 21.04 2016 −7.1 −41.5
11 Kranoula Ioannina Epirus 39.55 29.45 2015 −8.3 −52.5
12 Kranoula Ioannina Epirus 39.55 29.45 2016 −8.1 −51.5
13 Mili Ioannina Epirus 39.78 21.1 2016 −7.3 −43.9
14 Sepeta (s) Ioannina Epirus 38.45 20.5 2015 −8.3 −52.3
15 Sepeta (s) Ioannina Epirus 39.45 20.5 2016 −7.7 −50.5
16 Vathipedo Ioannina Epirus 39.62 21.08 2016 −8.1 −52.6
17 Vikos Ioannina Epirus 39.57 20.42 2015 −8.0 −54.9
18 Vikos Ioannina Epirus 39.57 20.42 2016 −7.7 −52.6
19 Nea Tenedos Chalkidiki Macedonia 40.32 23.25 2014 −6.8 −46.9
20 Petralona Chalkidiki Macedonia 40.37 23.17 2014 −8.6 −62.1
21 Polygiros Chalkidiki Macedonia 40.23 23.27 2018 −8.2 −51.5
22 Kato Nevrokopi Drama Macedonia 40.88 24.09 2016 −8.2 −54.1
23 Anthemia Imathia Macedonia 40.28 23.02 2014 −7.6 −49.3
24 Anthemia Imathia Macedonia 40.28 23.02 2018 −7.7 −50.3
25 Korifes Kavala Macedonia 41.06 24.45 2014 −8.0 −47.0
26 Makrinitsa Kilkis Macedonia 41.3 22.99 2016 −7.2 −45.3
27 Notia Kilkis Macedonia 41.06 22.07 2016 −9.3 −64.5
28 Kopanou Kozani Macedonia 40.64 22.12 2014 −9.3 −65.2
29 Drosia Pella Macedonia 40.47 21.52 2016 −9.1 −62.8
30 Polichni Thessaloniki Macedonia 40.67 22.96 2014 −7.1 −44.9
31 Vlacherna Arkadia Peloponnese 37.71 22.23 2015 −7.9 −53.1
32 Vytina Arkadia Peloponnese 37.67 22.19 2014 −7.2 −43.1
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Table 1. Cont.

NO Spring Location Region North East Sampling
Date

δ18O (‰,
VSMOW)

δ2H (‰,
VSMOW)

33 Vytina Arkadia Peloponnese 37.67 22.19 2015 −7.3 −45.2
34 Loutraki Corinthia Peloponnese 37.98 22.99 2014 −6.8 −47.9
35 Kaliani Korinthia Peloponnese 37.89 22.49 2014 −9.1 −61.4
36 Kaliani Korinthia Peloponnese 37.89 22.49 2015 −9.1 −56.9

37 Monastiraki
Vonitsas Aitoloakarnanias Sterea 38.84 20.96 2016 −7.5 −56.8

38 Helliniko Attiki Sterea 37.9 23.73 2018 −6.1 −34.9
39 Kalamos Attiki Sterea 38.14 23.74 2018 −7.7 −43.8
40 Kalamos Attiki Sterea 38.14 23.74 2018 −7.6 −42.8
41 Velouchi Evrytania Sterea 38.94 21.8 2015 −9.7 −66.5
42 Velouchi Evrytania Sterea 38.94 21.8 2018 −9.6 −65.9
43 Mornos Fokida Sterea 38.53 22.17 2015 −6.2 −37.1
44 Mornos Fokida Sterea 38.53 22.17 2018 −6.3 −38.5
45 Kamena Vourla Fthiotida Sterea 38.77 22.79 2014 −8.2 −48.8
46 kamena Vourla Fthiotida Sterea 38.77 22.79 2015 −5.0 −33.0
47 kamena Vourla Fthiotida Sterea 38.77 22.79 2018 −5.1 −30.8
48 Monastery Fthiotida Sterea 38.78 22.75 2015 −7.8 −51.0
49 Aliartos Viotia Sterea 38.37 23.1 2015 −7.9 −49.9
50 Kanalia Karditsa Thessaly 39.4 21.81 2018 −8.3 −52.4
51 Neo Monastiri Karditsa Thessaly 39.26 22.26 2018 −8.2 −54.0
52 Zografia Karditsa Thessaly 39.43 21.73 2018 −7.7 −46.8
53 Apostoli Trikala Thessaly 39.57 21.73 2018 −8.0 −48.9
54 Kotroni Trikala Thessaly 39.46 21.56 2018 −8.3 −51.9
55 Pyli Trikala Thessaly 39.47 21.62 2018 −7.8 −50.1
56 Agitis Drama Thraki 41.22 23.89 2014 −8.6 −57.0
57 Avas Evros Thraki 40.97 25.9 2014 −6.9 42.1
58 Doriskos Evros Thraki 40.86 26.13 2014 −6.3 −40.8
59 kounia Evros Thraki 41.28 25.9 2015 −7.9 −50.9
60 kounia Evros Thraki 41.28 25.9 2018 −7.8 −49.6
61 Pentalofos Evros Thraki 41.64 26.18 2015 −9.1 −61.4
62 Pentalofos Evros Thraki 41.64 26.18 2016 −8.8 −61.1
63 Plati Evros Thraki 41.58 26.32 2015 −7.8 −53.0
64 Plati Evros Thraki 41.58 26.32 2018 −7.9 −53.9
65 Polia Evros Thraki 41.43 26.22 2015 −6.1 −40.1
66 Polia Evros Thraki 41.43 26.22 2018 −6.2 −41.0
67 Rizia Evros Thraki 41.63 26.37 2016 −8.1 −55.0
68 Valtos Evros Thraki 41.55 26.31 2014 −8.6 −58.9
69 Elatia Komotini Thraki 41.5 24.35 2015 −8.1 −53.0
70 Elatia Komotini Thraki 41.5 24.35 2018 −8.0 −51.3
71 Nea Kessani Rodopi Thraki 41.13 25.08 2015 −7.2 −42.9
72 Nea Kessani Rodopi Thraki 41.13 25.08 2018 −6.1 −38.1
73 Agkistro Serres Thraki 41.38 23.73 2015 −8.5 −55.8
74 Ochiro Serres Thraki 41.21 23.89 2016 −8.7 −56.1
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Figure 1. Geographical distribution of the stations considered in this work.
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The area of Greece was divided in eight regions according to geographical criteria. Figure 2
presents the average δ18O, δ2H, deuterium excess (d), and Cl− values for each region and for Greece.
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Figure 2. Average δ18O, δ2H, deuterium excess (d), and Cl− values for each region and for Greece.

On the basis of that division and using the obtained average isotopic values (annual or other),
local spring water lines (LWSLs) for spring water were calculated for each region, using the ordinary
least squares regression (OLSR) and the generalized least squares (GENLS) that is suitable for cases
where the errors of both x- and y-values are not constant and can also incorporate analytical or other
Type B uncertainties [43]. In the cases where the analytical uncertainty was not reported, typical values
of 0.1‰ for δ18O and 1.0‰ for δ2H were assumed. Statistical uncertainties were calculated as standard
errors of the mean, or weighted mean, where applicable. We have constructed gridded isotopic data
sets with a resolution of 30” × 30” (approximately 1 km × 1 km) using the methodology proposed by
Bowen [44] as implemented in Lykoudis [45]. The GTOPO30 data set maintained by the United States
Geological Survey [46] was used. This methodology and its assessment are described elsewhere [40].

3. Regional Climate

The climate of Greece can be generally described as Mediterranean, with dry and hot summers
and wet mild winter. Yet, the presence of the high altitude Pindos ridge that crosses mainland Greece
creates a large variety of climatic conditions. Areas with a continental climate and cold winters exist,
while a northward temperature gradient, from subtropical (south Greece) through temperate to cold
(north Greece), is observed. Annual average temperatures range from 19.7 ◦C in Ierapetra (35.0◦ N),
17.7 ◦C in Athens (38.0◦ N), to 15.7 ◦C in Thessaloniki (40.5◦ N). Altitude and distance from the sea
are also significant factors, with Karpenisi (38.9◦ N, 998 m) having a mean annual temperature of
11.7 ◦C in contrast to 17.6 ◦C recorded in Mytilene in the eastern Aegean (39.1 ◦C, 5 m). At elevations
higher than 1500 m, snow represents a significant part of precipitations for a large part of the year.
In southern and central Greece precipitation is unevenly distributed throughout the year, about 70–80%
being measured between October and April. Further north, there is a second maximum during spring,
whereas in the north-eastern mountains of Rodopi, precipitation has a somehow uniform distribution.
Summer is the driest period for the entire area of Greece.
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4. Results and Discussion

4.1. Spring Water

In Figure 3, we present the correlation between δ18O and δ2H in spring water. In the same figure,
we present the global meteoric water line (GMWL) [47] the local meteoric water line (LMWL) for
comparison [40]. The calculated relationship between δ2H and δ18O for spring waters has a slope
of 7.3. Generally, an isotope relationship between δ2H and δ18O with a slope of <8 shows that the
spring waters are subjected to evaporation relative to input. For the Crete and the Aegean islands,
the oxygen isotope values of spring waters range between −7.90‰ and −4.30‰, while for continental
Greece it ranges between −10.90‰ and −3.193‰. The deuterium values range between −46.3‰ and
−26.6‰, and −73.6‰ and −28.5‰, for the same areas. The northern areas of Greece (Macedonia and
Thrace) present the most negative values, while in the south part of Greece (Peloponnese) along with
the Aegean islands, we observe the most positive values.
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Figure 3. δ18O versus δ2H spring waters from bibliography data from the Greece territory. The hollow
circles are unpublished data from this work. The black dash line is the global meteoric water line
(GMWL), the blue dot-dash line is the local meteoric water line (LMWL), and the solid red line is a
linear fit of the spring water data.

In Figure 4, we present the spring samples collected in the various regions of Greece and calculated
the respective LSWL. Spring waters are more enriched in heavy isotopes in respect to meteoric
water [40]. In general, in evaporative conditions, an enrichment of heavy isotopes in spring water is
observed with a decrease in the deuterium excess value. In fact, in all regions’ spring water, a decrease
in the LSWL slope and intercept is observed in relation to the meteoric water, indicating that the
spring water is affected by the influence of evaporation processes [47–49]. A possible cause for this
enrichment is the partial evaporation of water before infiltration, the infiltration of recycled irrigation
water, and evaporation of soil water. In northern Greece and Epirus, where there is a significant
plant-covered area, the water is also alleviated of plant transpiration, probably changing the isotopic
composition of the water. Moreover, an enrichment of the springs in Epirus is observed in relation to
the spring waters from Thessaly. Presumably, the springs of Thessaly reflect the climatic conditions of
central Greece. Because of the presence of Pindos ridge between Epirus and Thessaly, the clouds are
discharged over Epirus and as a result only ‘light’ precipitation reaches Thessaly. More pronounced
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evaporation due to more arid conditions through Greece, from north to south, is not clearly observed;
however, it seems that the evaporated spring waters are more commonly located in Crete and in
eastern Aegean rather than in Thrace, Macedonia, and Epirus.
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4.2. Geographical Distribution of δ18O Values in Precipitation and Spring Water

The geographical distribution of spring water composed of δ18O–δ2H is shown in Figure 5a,b.
The regression models obtained are:

δ18Ospring = −27 + 1.4 · Latitude − 0.02 · Latitude2 − 0.00148 · Altitude, R2 = 0.55

As a general feature, a gradual rise of values of spring water δ18O–δ2H across Greece can be
observed, proceeding from higher altitudes towards the coastal areas. In addition, a gradual rise of
values of δ18O–δ2H is observed in relation to the locations of the stations relative to the sea.

In northern Greece, the values of δ18O and δ2H of the spring water vary from −7.5‰ to −45‰
for the plains, to lower than −8‰ and −55‰ for massif areas, and from −6.5‰ to −5.5‰ and −35‰
for coastal lowlands. From west to east, apart from Peloponnese, more positive spring water values
are observed at the western coast, while the most negative values are reported in the central part of
the mainland where the mountain ranges are located. Plains with medium isotopic values extend
between coasts and the mainland massifs. In Peloponnese, the values for massif areas still have the
most negative δ18O values, close to −9.5‰, and −55‰ for δ2H, but the coastal areas present uniformly
enriched values, close to −5‰ and −25‰ for δ18O and δ2H, respectively, regardless of their western or
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eastern location. The same is true for the islands of the southern Aegean and coastal areas comprising
the largest part of Crete.Geosciences 2018, 8, x FOR PEER REVIEW  7 of 12 
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spring water δ2H.

The factors that can be identified as influential in these spring data are the location of the stations
relative to the sea and the altitude effect. A general feature of the spatial distribution for spring water
δ18O is also a gradual rise of values when proceeding from higher altitudes towards the coastal areas.
The mountainous regions of Greece are characterized by δ18O and δ2H values ranging from −10.5‰
to −8.5‰ and −75‰ to −55‰, respectively, whereas the lowlands of northern Greece, extending
from Thessaloniki to Evros, present more positive values, ranging from −7.5‰ to −5.5‰ and −45‰
to −35, respectively. These differences in the isotopic values between the mountain regions and the
northern lowlands are an indication of the different isotopic composition of the recharging rainfalls.
Possible explanations, like different hydrological circuits, are excluded since all the springs considered
in this study have low a Cl− content. In addition, this isotopic enrichment effect may indicate a
contribution from vapor originating from evaporation of the seawater surface [50]. Such a scenario is
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facilitated by the low elevation of the river valleys of northern Greece, these include the deltas of the
biggest rivers of the country (from east to west: Evros, Nestos, Strymonas, Axios, and Aliakmonas).
Therefore, in the southern part of northern Greece, extending from Thessaloniki to Evros, the enriched
isotopic values are mainly the result of the addition of water vapor from the Aegean Sea.

Comparing the western mainland in relation to the eastern part of Greece, we observe the most
negative values in the eastern part, as expected because of the orographic lifting effect of the Pindos
ridge that separates Greece into two parts; the western with rich rainfalls and the eastern with the most
depleted ones. Contrary to the above, an isotopic anomaly is noticed in the area of the Sperchios delta
and the Attica peninsula. The −6.5‰ and −35‰ value of δ18O and δ2H, respectively, that is observed
in the Sperchios plain, at a point more than half way between the east and west coast undoubtedly
indicates that this area is affected by water vapor transported from the Aegean Sea.

The highest spring water values of δ18O and δ2H for all continental Greece, higher than −5.5‰
and −25‰, respectively, are reported at the western and eastern part of Peloponnese. This pattern
might be seen as indicating a climatic transition towards warmer and drier climatic conditions from
the Greek mainland to Peloponnese, a fact related to increased evaporation processes.

Figure 6 presents a map of the differences between the gridded δ18O data for springs and
precipitation. We observe an enrichment of spring waters by about 1–2‰ compared to the precipitation
for the western part of Greece, and more general at the western side of massifs and in NE Greece,
indicating a significant contribution from melting snow. For springs located in the plains of Thessaly
and Macedonia, as well as Peloponnese and Crete, we observe very similar δ18O values as the local
precipitation with the exception of certain springs that appear depleted in relation to precipitation
indicating recharging by precipitation occurring at significantly higher altitudes [51].
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4.3. δ18O Values in Relation to the Salinity of Spring Water

The samples collected from springs all over Greece, with high Cl contents, represent cold waters.
The regions from which the samples were collected cover a wide area of Greece. Many samples
come from islands (Aegean Isl., Crete, and Chios) and from continental Greece (Sterea area: Asopos,
Axios, Kalamos; Peloponnese: Ilia, and Sparta). The quality of these waters has been degraded by the
elevated salinity.

According to Figure 7a,b which presents the variation of Cl− versus δ18O and δ2H, all the
water samples are on an ideal mixing line between seawater and fresh water. This suggests that
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the observed Cl− contents derive predominantly from seawater, which is more or less diluted by
fresh water and that the supply of these ions by rock leaching is negligible. The locations of the data
points also indicate that the samples are distributed along different lines, between seawater and fresh
water of meteoric origin, corresponding to different sampling zones. If these lines were mixing lines,
their x-axis intercepts would represent the δ18O and δ2H contents of the meteoric component of the
mixtures. This corresponds to values between –9.3‰ and –6.2‰, and −58.9 and −32.3 for δ18O and
δ2H, respectively.
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A lot of samples plot relatively close to the seawater–groundwater mixing line as observed in
Figure 7, and at the same time contain more than 2500 ppm of Cl−. This indicates that the seawater
intrusion is more than 10%. On the basis of the stable isotope–Cl− relations, balance equations can be
used to determine the marine contribution for these samples. The same type of balance equation [17]
can also be made using only Cl− contents, with the assumption that Cl− is provided only by the
marine component. These balances give very similar results: <50% marine contribution to the water of
Sparta, <25% marine contribution to the water of Ilia, <20% marine contribution to the water of Axios
and Chios, and <15% marine contribution to the water of Crete and Asopos.

5. Conclusions

The isotopic compositions of spring waters across Greece result from various processes, including
the contribution of moisture sources and the Pindos ridge.

The first map of the isotopic composition of water springs over Greece is presented. From
this map we can conclude a depletion of δ18O in spring water at higher altitudes (altitude effect),
and a gradual rise of values of δ18O in relation to the location of the stations relative to the sea.
Furthermore, we observe a large area with relatively depleted values in the eastern part of Greece
that is related to the lower altitudes of the region and indicates a possible orographic shadow effect
(Pindos ridge). The highest δ18O values in spring water are reported in south Greece (Peloponnese
and Crete), indicating a hot and dry climate and a possible climatic transition towards warmer and
drier conditions that could explain the supposed evaporation increase.
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