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Abstract: Radar rainfall forecasting is of major importance to predict flows in the sewer system
to enhance early flood warning systems in urban areas. In this context, reducing radar rainfall
estimation uncertainties can improve rainfall forecasts. This study utilises an ensemble generator that
assesses radar rainfall uncertainties based on historical rain gauge data as ground truth. The ensemble
generator is used to produce probabilistic radar rainfall forecasts (radar ensembles). The radar rainfall
forecast ensembles are compared against a stochastic ensemble generator. The rainfall forecasts are
used to predict sewer flows in a small urban area in the north of England using an Infoworks CS
model. Uncertainties in radar rainfall forecasts are assessed using relative operating characteristic
(ROC) curves, and the results showed that the radar ensembles overperform the stochastic ensemble
generator in the first hour of the forecasts. The forecast predictability is however rapidly lost after
30 min lead-time. This implies that knowledge of the statistical properties of the radar rainfall errors
can help to produce more meaningful radar rainfall forecast ensembles.
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1. Introduction

Flooding is a very common natural disaster around the world, and its frequency and intensity
are expected to rise [1]. Structural measures are not only very expensive but also are built to protect
a particular region from an estimated flood level [2,3]. More intense floods that can overcome the
protective structures will inevitably occur, and the consequences will be increasingly severe, as the
concentration of people and infrastructure in urban areas is on the rise as well. Therefore alternative
measures using flood forecasting and warning systems are in demand, and forecasting floods several
hours ahead can allow a timely emergency response to take place [4]. Rainfall-runoff modelling
has an important function when issuing flood warnings [2]. Over the last couple of decades, much
research has been done to increase the reliability in forecasting rainfall [5–8]. Hydrodynamic models
for real-time flow predictions, utilising radar rainfall and radar-based rainfall forecasts, can be used
for the real-time control of drainage systems in urban areas [9]. It is, however, essential to know the
uncertainties related to the radar rainfall measurements in order to produce reliable forecasts.

For urban flood forecasting applications, rainfall data should have high temporal (e.g., 5 min or
lower) and spatial (e.g., 1 km or lower) resolutions [10,11]. Weather radars measure rainfall in real-time
and provide high-resolution data for short-term precipitation forecasting, which is also known as
nowcasting. Accurate rainfall forecast inputs are one of the main factors that influence accurate flow
predictions. Increasing the predictability of these forecasts has proven to be a challenge given the
small spatial scales involved and therefore reducing radar rainfall-related uncertainties can improve
radar-based rainfall forecasts [8,12]. This paper aims at quantifying the value of radar-based rainfall
forecasts and their associated uncertainties in urban flood forecasting applications.
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Weather radar rainfall is affected by different sources of errors that propagate into the rainfall
forecasts produced by nowcasting models [13,14]. Weather radars send microwaves and receive
backscattered radiation from precipitation particles through the radar reflectivity (Z), which is related
to the rainfall rate (R) using a semi-empirical equation of the form Z = aRb [15,16]. However,
the parameters a and b of the Z-R equation are known to be dependent on the precipitation type
and the raindrop size distribution. Using a constant Z-R equation contributes to an error in radar
rainfall estimation [16,17]. In order to reduce uncertainties due to parameter bias in the Z-R equation,
Hasan [18] developed an error model to assess how rain gauge uncertainties impact in the Z-R
equation. Although the model was shown to improve rainfall estimation, the difference is less than 5%.
According to Gorgucci et al. [19], radar estimations of precipitation have a large degree of uncertainty
(higher than 100%) when the reflectivity error is only a few dBZ for C-band radars. Radar calibration
should regularly be made to avoid inaccurate readings [17]. Lack of accurate determination of the
radar calibration constant leads to systematic errors in the observations.

Some of the radar rainfall errors are associated with ground clutter echoes, which occur when
the radar beam come across ground targets [16]. Much ground clutter is permanent, and a ground
clutter map can be used to identify these non-meteorological echoes. However, ground clutter maps
are unable to identify radar echoes caused by anomalous propagation conditions [17,20]. In conditions
of anomalous propagation, the radar beam is bent towards the ground due to changes in the refractive
index of the atmosphere producing unwanted ground echoes that can be misinterpreted as heavy
precipitation [17,20]. Polarimetric weather radars have shown promise in identifying anomalous
propagation [21]. Elevated terrain can cause occultation of the main part of the radar beam in some
cases. This can only be corrected if less than 60% of the radar beam is obstructed [16]. Variation in the
Vertical Profile of Reflectivity (VPR) is related to changes in size, in phase, and in shape distribution
of hydrometeors [22]. Using dual polarisation radars permits the measurements of hydrometeor
characteristics such as rain and melting snow, and snow to be identified and corrections to be
applied [23]. This can be used to improve the rainfall estimation on the ground. When the distance
from a radar increases, there is naturally an increase in the radar sampling volume as well. At a higher
altitude, the distribution of hydrometeors changes, leading to a difference between measured rainfall
and rainfall that actually falls on the ground [17,24]. During heavy rainfall events, attenuation might
occur when radars with small wavelengths are used (e.g., C-band or X-band radars) [16,19,25,26].
Finally, the radar rainfall can be adjusted using ground rain gauge measurements using bias correction
methods or geostatistical approaches [27,28].

Once the radar data have been corrected for the different error sources, a radar-based rainfall
forecasting model, such as nowcasting, can be applied. Nowcasting models based on the extrapolation
of Lagrangian trajectories produce rainfall forecasts with a few hours lead-time (with increased loss of
performance after 2–3 h ahead). They have a significant role in enhancing rainfall warning systems,
especially when predicting extreme events or flash floods [29,30]. Nowcasting models use a sequence
of weather radar images, and the generated precipitation forecasts produced with this technique have
a high spatial and temporal resolution [7]. However, uncertainties inherent to the nowcasting model
result in an increasing loss of forecasting skill after 1 h lead-time. Uncertainties in radar nowcasts
are caused mainly by [30–32]: uncertainties inherent in the specific nowcasting model used, errors
in radar rainfall estimation, uncertainties due to the temporal development of the velocity field and
uncertainties caused by precipitation processes such as growth and decay not being taken into account.

Rinehart & Garvey [33] developed a pattern recognition model based on a correlation coefficient
to calculate motion vectors in storms known as TREC (tracking radar echo with correlation). The TREC
algorithm has been modified, and new models are based on this approach. Sokol et al. [34] compared
forecasts produced using two different models. The COTREC model (Continuity of Tracking Radar
Echoes by Correlation vectors), which is based only on extrapolation from radar images and assumes
that rainfall trajectories do not change with time, and the SAMR model (Statistical Advective Method
Radar) that utilizes the same technique, but in addition factors in a statistical model to correct
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precipitation estimations. Results showed that SAMR provides slightly better results, but it is not
capable of predicting new storms or of forecasting any significant changes in existing ones accurately.
The GANDOLF scheme (Generating Advanced Nowcasts for Deployment in Operational Land-based
Forecasts) was developed to increase the predictability of convective rainfall. An object-oriented model
of convection is used that incorporates a model of the life cycle of convective clouds [6]. This advection
scheme showed deficiencies in severe rainfall events. An attempt to address this issue was made by
dividing the rain analysis into blocks and forcing adjacent blocks to have a smooth transitional variation
of the velocity. Bowler et al. [12] derived a new optical flow algorithm, enhancing the GANDOLF
system’s capability to calculate the advection field. This algorithm was used to further develop the
STEPS (Short-Term Ensemble Prediction System) [7]. In the STEPS model, ensemble radar nowcasts
are blended with Numerical weather prediction (NWP) forecasts. This is because NWP models have
been shown to have better forecasting skill after several hours lead-time and can improve the ability to
forecast growths and decays of precipitation when blended with a nowcasting model [7]. NWP models
require high computing power, and although the forecast resolutions are increasing [34,35], they are
still more computationally demanding than nowcasting models. Blending nowcasting with NWP
forecasts has been shown to improve the forecasting skill [9], and it has been successfully used in
real-time applications [7,36]. The uncertainties in the radar rainfall analysis and the temporal evolution
of precipitation were accounted for by using a stochastic perturbation system, in which probabilistic
forecasts are produced by adding spatially correlated stochastic noise to the deterministic forecast.
Although the STEPS performance is higher than GANDOLF’s, results for moderate and heavy rain
still do not match up accurately with the observed precipitation. A newer version of STEPS has
been developed to take into account radar errors [36], using a statistical model to generate ensembles
proposed by Germann et al. [14].

Even with extensive research to correct radar errors and improve rainfall estimation, residual
errors are present in processed radar images, and they are an important source of errors in the first
hours of the forecasts [14,31,37]. Ensemble forecasts consist of a number of different forecasts, all of
them equally likely, that might occur in the same space and time. Ensemble forecasts can be obtained
by adding spatially correlated stochastic noise as described above to the initial radar analyses, in order
to produce a series of equally likely forecasts. An advantage of producing ensemble radar-based
forecasts is that it provides additional information about the uncertainties in the forecasts, either
from the nowcasting model or from the radar analyses [5,9,34,38]. Germann et al. [15] proposed
a radar rainfall ensemble scheme that uses rain gauge data as a reference to estimate the residual
errors in radar rainfall. This approach was coupled with a semi-distributed rainfall-runoff model to
demonstrate the propagation of the radar rainfall uncertainty in the simulation of river flows [14].
Rico-Ramirez et al. [37] implemented the model proposed by Germann et al. [14] and assessed how
uncertainties in radar rainfall propagate into urban drainage flows. The results showed that this model
is able to capture the temporal and spatial correlations of the radar rainfall errors. The results also
showed that the uncertainties in radar rainfall could explain some of the uncertainties observed in
the simulated flow volumes, but additional uncertainties in the sewer flow model structure play an
important role.

As shown in this section, the majority of past papers attempt to model the uncertainties in radar
rainfall, but this leaves a research gap with regards to assessing and quantifying the value of radar
rainfall ensembles in short-term rainfall forecasting (i.e., nowcasting), as well as in urban sewer flow
forecasting. This study aims to model radar rainfall uncertainties in radar nowcasting to assess how
these uncertainties propagate in the prediction of sewer flows of a small urban area. Section 2 of this
paper describes the methodology and the data sets used. The results from the rainfall probabilistic
forecasts and the results of applying these ensembles in the hydraulic model are shown in Section 3.
A discussion of the results is presented in Section 4 and, Section 5 summarises the conclusions of
this work.
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2. Materials and Methods

Composite radar data from the UK Met Office, available through the British Atmospheric Data
Centre (BADC) [39] were used in this study. The radar data has a temporal resolution of 5 min
and a spatial resolution of 1 km × 1 km. The dataset used in this study is from the year 2008 and
can be correlated with the available flow observations. The UK Met Office radar network consists
of C-band weather radars capable of producing high-resolution precipitation data for the UK [39].
Ground clutter is identified using ground clutter maps. The Z-R equation is constant for all types
of rainfall (a = 200 and b = 1.6). The radar data processing includes an algorithm to correct for
rain attenuation, which can be significant at C-band frequencies. The algorithm can be unstable in
cases of severe attenuation and further uncertainties can occur with attenuation correction in cases
where the weather radars are not properly calibrated [17]. Currently, there are 18 C-band weather
radars in the UK [37]. Most of these radars have been upgraded with dual-polarisation technology in
the last few years. This will result in significant improvements in terms of data quality (e.g., better
identification of non-meteorological echoes), attenuation correction and rainfall estimation. Images
from adjacent radars and previous images from the same radar are analysed in order to discard
corrupted images. Anomalous propagation is removed from the radar data using a combination
of the radar data and Meteosat images. In order to take into account the variation in the vertical
reflective profile, an idealized vertical profile is identified at each radar pixel and this is defined by the
background reflectivity factor and incorporates simple parameterizations. A radar horizon is used
to correct for occultation of the radar beam [17]. The Met Office radar data processing system also
includes correction algorithms for uncertainties due to noise filtering, antenna pointing, mean field
bias and conversion from Cartesian to polar coordinates [40].

Rain gauge data was provided by the UK Environmental Agency. The rain gauge data is freely
available upon request (national.requests@environment-agency.gov.uk) under the Open Government
License. A network of 229 tipping bucket rain gauges (TBRs) with 15 min temporal resolution were
available for the study area in the north of England. Although rain gauges are used as a reference
and are known to be reliable precipitation instruments, they are also subject to measurement errors.
Uncertainties are related to gauge calibration, wind effect, wetting-evaporation losses, timing-errors,
hydrodynamic water flow instabilities, blockages, malfunction and underestimation during heavy
rainfall [37,41]. In order to minimise inaccuracies in measurements different rain gauges were
compared, and only reliable rain gauge data was used. Rain gauge data that presented significant
deviation when compared to the surrounding rain gauges or showed an anomalous behaviour (e.g.,
blockages) were discarded (22 rain gauges in our case). It is also necessary to deal with sampling
errors when comparing weather radar and rain gauge data. It is also worth recognising that rain gauge
measurements are point measurements at ground level, whereas weather radar measurements occur
at a higher altitude and with a larger sampling volume in space. Therefore, part of the discrepancies
between both measurements are due to differences in the sampling volumes [42]. Providing the rain
gauge data is quality-controlled, they can be considered as ground true measurements to validate the
radar rainfall observations.

A sequence of three radar images with a time-step of 5 min were used to produce forecasts
every 5 min with a 3-h forecasting lead-time and 1 km spatial resolution. The STEPS model provided
by the UK Met Office was used in this analysis. STEPS is a rainfall-forecasting model that blends
rainfall extrapolation nowcasts with NWP rainfall forecasts. The nowcasting module isolates small
characteristics (estimation of advection field, temporal evolution of rainfall and spectral decomposition)
into multiplicative cascades. This ensures that features which cannot be accurately predicted by the
model are substituted by stochastic noise. The model assumes that the rate of temporal evolution of
rainfall and temporal development of velocity fields remain stationary during the forecast. Even with
the uncertainties inherent to this model, radar nowcasting produces more skilful forecasts than NWP
forecasts up to 2 h lead-time, and therefore STEPS uses a multi-cascade approach to blend the two
components [7,36]. For this study, the nowcasting component of the STEPS model was used to produce
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the forecasts up to 3 h ahead. Liguori and Rico-Ramirez [43] produced probabilistic nowcasts using the
STEPS model and concluded that with a number of ensembles larger than 10–20 members it does not
effectively increase the accuracy of the forecast. In different research papers, a number of ensembles
between 20 and 30 are commonly used [44–50]. In this research, each probabilistic forecast is formed
by 25 ensemble members.

The radar rainfall errors were modelled using the model proposed by Germann et al. [14].
This model uses the difference between the radar measurements and a reference (e.g., rain gauge
observations) obtained from a large historical data set. The perturbation fields are calculated through
the covariance matrix of the residual errors, by using radar and rain gauge measurements. Values with
no rainfall are excluded from the calculations. Temporal correlation of the errors is imposed using an
autoregressive model AR(2) [37]. The perturbation fields (δ) are added to the radar rainfall (R) in the
log domain, resulting in radar rainfall ensemble members (φ). Radar rainfall ensembles (RE) attempt
to assess in a realistic way the residual uncertainties that remain even after the correction algorithms
are applied to the radar data. These radar rainfall ensembles are used instead of the original radar
images to generate forecasts using the nowcasting model from STEPS. A deterministic forecast is
produced using each of the 25 radar ensemble members. As a result, each of these 25 forecasts become
the ensemble forecasts. Ensemble forecasts based on this method will be referred to as radar ensembles
in this paper, while ensemble forecasts generated using the stochastic ensemble generator by STEPS
will be referred as STEPS ensembles. Note that the STEPS ensembles are generated by adding spatially
correlated noise to the deterministic radar forecasts.

The rainfall forecast output was used as an input in a hydrodynamic sewer network model built
in the Infoworks CS software package to simulate the flows in the sewer network. Rainfall-runoff
processes and the flow through the sewer network conduits were modelled utilising the Infoworks
model provided by Yorkshire Water for research purposes. The sewer system is mainly combined,
being used to carry both wastewater and rainfall runoff. The urban area, Ilkley, is located in the
Pennine hills and has an area of 11.06 km2 (Figure 1). This study utilises the geographic grid reference
of the Ordnance National Grid for the radar rainfall data [51]. Infoworks CS uses both rainfall-runoff
volume and runoff routing models to simulate flows in the catchment and in this study the New UK
percentage Runoff model, the Wallingford model and the Double Linear Reservoir model, were used.
The full St Venant equations are used in the model to calculate the flows in the sewer conduits [9].
Schellart et al. [52] and Liguori et al. [9] provide further information about the Infoworks CS model
used in this study. The calibration of the hydrological urban model was performed using current
industrial standards [53] and data from three storm days and one dry day from events that happened
between March and April 2000 were used. Data from 5 tipping bucket rain gauges and flow monitors
within the urban area were used for calibration.

Data from 7 depths monitors, 4 additional rain gauges (not shown in Figure 1) and 16 flow
monitors are available from 2007 until 2009 within the urban area [9]. In this study data from 2008 was
used for validation. Liguori et al. [9] provide more detailed information about the urban model, and
their Figure 2 presents the location of the flow monitor used in this study.

The capacity of the hydrodynamic model in simulating flows was assessed using radar and gauge
data from 15 April 2008 until 31 December 2008. The period was chosen to include a wide range
of events. The root mean square error (RMSE) was calculated comparing simulated flow with the
measured flow. The RMSE was only computed for measured flow higher than 0.1 m3/s to exclude
flows measured in dry periods and to minimise uncertainties related to the flow measurement.

An overview of the events with the start date and time, duration, peak flow, maximum average
rainfall and storm type is shown in Table 1. Events with high peak flow were selected, and flow
forecasts were performed every 30 min, including forecasts of low, medium and high flows. In order
to classify the storms as convective or stratiform, each pixel of the radar scan was classified as either
stratiform or convective using to the algorithm proposed by Steiner et al. [54]. A storm was classified
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as convective if more than 3% of the pixels of the study area are convective for a period of more than
3 h. The events that did not fulfil these requirements are classified as stratiform [37].

Table 1. Event start dates, duration, peak measured flow, maximum average rainfall and storm types
(S—stratiform and C—convective) for the Ilkley urban catchment.

Event Date Starting Time Duration (h) Peak Flow
(m3/s)

Max Average Rainfall
(mm/h)

Storm
Type

29 April 2008 23:30 6.5 0.3974 5.344 S
30 April 2008 15:30 3.3 0.3477 8.511 S
12 May 2008 04:00 6 0.5582 4.117 S
26 June 2008 13:00 9 0.2869 11.426 S
7 July 2008 15:00 4 0.5024 7.144 S
29 July 2008 05:00 4 0.5826 6.444 S

1 August 2008 01:30 4.5 0.9904 8.073 C
20 August 2008 20:00 5 0.58 10.564 S
4 October 2008 15:00 13 0.3378 8.489 S

14 October 2008 15:00 5 0.2754 7.358 C
8 November 2008 20:00 5 0.2592 5.412 S
9 November 2008 13:30 7 0.563 18.41 S
13 December 2008 00:00 9 0.4551 1.813 S
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3. Results

Radar rainfall ensembles were generated using both the method described by Germann et al. [14]
and the STEPS ensembles [7]. Figures 2 and 3 illustrate an example of radar scans and two different
radar ensemble members at different time steps. In the images it is possible to see how the rainfall
is developing according to the radar measurements. In Figure 3 the forecast started at 02:00 so the
results show forecasts with lead-time of 30 min, 60 min and 90 min. There are clear differences between
the radar rainfall and the rainfall forecasts and the results show how these differences increase with
lead-time. Using different ensembles to estimate and forecast rainfall can give more information about
how the storm will develop according to the initial uncertainty of the radar rainfall measurement.
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3.1. Rainfall Forecasting

To assess the predictability of the ensembles rainfall forecasts, the Receiving Operating
Characteristic (ROC) curves were calculated. ROC curves have been widely used to analyse
uncertainties in probabilistic forecasting systems and can measure the ability of a model to identify
the occurrence of an event correctly. The method is based on a binary system, where yes/no forecasts
and yes/no observations are computed [9]. For a sequence of threshold, a ‘hit-rate’ (HR) (proportion
of events correctly forecasted) and a ‘false-alarm rate’ (FAR) (proportion of events that were not
forecasted) are computed and used to define the ROC curve [55]. The better the forecast, the higher
the HR (and lower the FAR). The area beneath the ROC curve should be above 0.5 (random forecast)
and is equal to 1 when the model can perfectly forecast an event that occurs or not [9].

Some of the results obtained for a selection of events with rainfall intensities equal or higher than
0.1 mm/h, 1.0 mm/h and 3.0 mm/h, are presented in Figures 4–7 at different forecasting lead-times.

To summarise the results from the events analysed, the area beneath the ROC curves for different
rainfall thresholds and forecasting lead-times are plotted in Figure 8. The results show that the forecast
skill decreases with both, forecasting lead-time and higher rainfall intensities.
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Figure 4. Receiving Operating Characteristic (ROC) curves for event on 7 July 2008 starting at 15:00 for
Radar ensembles and rainfall thresholds (th) equal to 0.1 mm/h (a), 1.0 mm/h (b) and 3.0 mm/h (c).
and Short-Term Ensemble Prediction System (STEPS) ensembles and rainfall thresholds equal to
0.1 mm/h (d), 1.0 mm/h (e) and 3.0 mm/h (f).
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Figure 5. ROC curves for radar and STEPS ensembles for event on 1 August 2008 starting at 01:30 for
Radar ensembles and rainfall thresholds (th) equal to 0.1 mm/h (a), 1.0 mm/h (b) and 3.0 mm/h (c).
and STEPS ensembles and rainfall thresholds equal to 0.1 mm/h (d), 1.0 mm/h (e) and 3.0 mm/h (f).
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3.2. Sewer Flow Simulations

The hydrodynamic model was verified using radar rainfall and the additional rain gauge data
within the urban area as input. Figure 9 presents the results comparing the measured flow with flow
simulated using radar data and Figure 10 shows the results comparing measured flows and flows
simulated using gauge data. The simulation using gauge data presents a slightly better result than
using radar data. The results show that the hydrodynamic model simulated the flows accurately
in many cases. To exclude dry periods, the RMSE was only calculated for measured flows over the
threshold of 0.1 m3/s. The RMSE for the radar flow simulations is 0.0956 m3/s and for the gauge flow
simulation is 0.0838 m3/s using a time period from 15 April 2008 to 31 December 2008.
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3.3. Forecasting Sewer Flows

The sewer flow simulation results obtained by using radar rainfall, rain gauge measurements
and rainfall forecasts were compared against the sewer-measured flows. Because the forecasted peak
flow sometimes appeared a few minutes later (or earlier) compared to the flow observations, it was
decided to compare the peak flows within a particular time window (e.g., 30 min or 1 h). The results
are presented in Figures 11–13.

RMSE calculations were carried out to assess the performance of the ensembles. Due to the time lag
present between the measured peak flow and the ensemble-simulated peak flows, a cross-correlation
correction was performed between the measured flows and ensemble flows. As the lags are not
consistent, the cross-correlation was adjusted for each case. RMSE for each ensemble member was
calculated for measured flows higher than 0.1 m3/s. (Figure 14). Table 2 presents the mean of the
RMSE for both STEPS and Radar ensembles. Given the fact that there is a significant loss of forecast
efficiency after 1 h lead-time, the RMSE is only shown for this period. In most events, the time lags
between measured flow and forecasts are less than 15 min.

The forecasted flow in Ilkley only produced reliable forecasts with lead-times up to 30 min,
although in some cases the predictability maintained up to 1 h ahead depending upon the nature of
the rainfall event.
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Table 2. RMSE mean for radar and STEPS ensembles for 0–1 h after the start of the forecast.

RMSE Mean (m3/s)

Event Date Starting Time Radar Ensembles STEPS Ensembles

7 July 2008 15:00 0.170 0.200
1 August 2008 02:30 0.405 0.430
1 August 2008 03:00 0.140 0.166

9 November 2008 14:00 0.287 0.169
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4. Discussion

4.1. Rainfall Forecasting

The tendency observed in this study is that the forecast accuracy decreases with longer lead-time
and higher rainfall intensities as shown in Figure 8. The first forecasted hour shows a high forecast
ability, however with the increase of lead-time the ability is rapidly reduced. The forecast skill also
decreases with higher rainfall thresholds, indicating that high rainfall intensities are more challenging
to forecast and are subject to more errors. In most cases the ROC curve is below the random forecast
line for a threshold of 3 mm/h, demonstrating that in these situations the model fails to forecast higher
rainfall intensities efficiently. The ROC curves shown in Figures 4–7 demonstrate how the forecast
efficiency decline after the first hour forecasted for a threshold of 3 mm/h. For a rainfall threshold of
0.1 mm/h, all the events for both probabilistic forecasts produce skilful predictions up to 3 h lead-time.
With an increased lead-time however, the forecast ability also decreases.

The events analysed produced good forecasts up to 1 h lead-time for all rainfall thresholds, but
overall the radar ensembles performed slightly better than the STEPS ensembles during this period.
The STEPS ensembles lose forecasting skill less rapidly and more constantly between the time-steps
used when the thresholds are between 0.1 mm/h and 1.0 mm/h. Significant forecast accuracy is
lost after the first hour for the radar ensembles. The area beneath the ROC curve is reduced by
approximately 20% for rainfall intensities higher than 0.1 mm/h. For a threshold of 3.0 mm/h, the area
beneath the ROC curve is reduced by around 24% after the first forecasted hour. For lead-times longer
than 1 h, the STEPS ensembles perform better than the radar ensembles in most cases. Seeing as radar
errors are the predominant source of uncertainties in the first hour forecasted, an ensemble generator
based on the modelling of the radar residual errors is expected to produce more accurate results at the
beginning of the forecast [14,50].

For higher rainfall intensities, the decrease in forecasting accuracy can be up to 27% per hour after
1 h lead-time. In most cases with a 3.0 mm/h threshold and lead-time longer than 2 h, the forecast
is unable to predict the rainfall intensities accurately at these small spatial scales and presents areas
beneath the ROC curve equal or lesser than 0.5. The loss of efficiency in the forecast is consistent
with other studies [9,56]. Due to the fact that regions with high-intensity rainfall are smaller there is a
decline in the performance of the ensemble rainfall forecasts for higher rainfall thresholds. The area
beneath the ROC curves for the radar ensembles are on average 10% higher than the STEPS up till
30 min lead-time. The difference falls to 6% when the forecasting lead-time is up to 1 h.

4.2. Sewer Flow Simulations

For low flow situations, the model can accurately estimate flows using radar and gauge data.
However, for flows over 0.5 m3/s, the gauge estimations underestimate the flow peaks in most
cases. Results using radar data produce better estimates for higher flows and are able to predict
peak intensities more accurately for flows around 0.5 m3/s. For higher intensity flows the model also
underestimates the flow in most cases. For low-intensity flows, both the gauge and radar estimations
produce accurate results and mimic the flow pattern. Flow simulation with rain gauges have a lower
RMSE (0.084 m3/s) than using radar rainfall (0.096 m3/s). These results are expected given the fact
that the rain gauges used to simulate the flow are located within the urban area.

4.3. Forecasting Sewer Flows

In the event shown in Figure 11, the radar probabilistic forecast is able to simulate the peaks in the
first hour of the forecast and also accurately simulate the second flow peak. The STEPS probabilistic
forecasts underestimated both flow peaks. For this event, it is clear that using rain gauge data to
produce the radar rainfall ensembles adds valuable information to improve the forecasts. This allows
the flow peak and flows patterns to be forecasted better using the radar ensembles. For radar ensembles,
the measured flow (0.509 m3/s) is very close to the 75th percentile flow (0.418 m3/s). For the STEPS
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ensembles, the measured flow is only captured by the more extreme ensembles, as can be seen on the
boxplot. The flow simulations using radar data and the deterministic forecast show similar results
to the STEPS ensembles peak flows, both underestimating the flow peaks. The simulation using rain
gauge data replicate the first flow peak more accurately but underestimate the second one. The radar
ensembles have the advantage of combining information from both the radar and the rain gauges
and are able to predict both flow peaks. The second large flow peak occurred around 2 h lead-time,
and cannot be forecasted by any of the probabilistic or deterministic forecasts. This indicates that at
lead-time longer than 1 h the flow forecast loses its forecasting skill. For this event, the radar ensembles
perform better in analysing the RMSE mean. For the first hour, the mean is approximately 15% smaller
for radar ensembles when compared to the STEPS ensembles.

The simulated flow peak in Figure 12 is overestimated using radar rainfall. Flow simulations
using rain gauge data are much closer to the measured peak flow, but there is a delay in time of a few
minutes. In this example, both radar and STEPS forecasts can capture the flow peak, however, the radar
ensembles produce a flow forecast with a higher spread than the STEPS forecast. The measured peak
flow (0.563 m3/s) falls between the 25th and 75th percentile for the radar ensembles (Figure 12b) in
the first forecasted hour. In the second hour of the forecast, the STEPS ensembles forecast the flow
intensity more accurately than the radar ensembles. The radar ensembles produce a much larger
spread and therefore there is an overestimation of the flow by a large part of the ensembles. This leads
to an increased RMSE (0.287 m3/s) for the first hour of the forecasts and a higher value than using the
STEPS ensembles (0.0169 m3/s). The STEPS ensembles produce a smaller RMSE mean for the whole
duration of the event.

In Figure 13, the nowcasting model’s efficiency is rapidly lost with increased lead-time. This figure
shows the results of forecasting the same rainfall event but at different starting times (30 min apart).
The forecasts for both ensembles initiated at 02:30 on 1 August 2008 (Figure 13a) fail to predict the flow
peak correctly, and the time lag between the forecasted flow and the measured flow is higher than
for shorter lead-times. In the forecasts initiated at 03:00 (Figure 13b), the peak flow falls into the first
forecasted hour and the forecast produced replicates the peak flow better. In this case both ensembles
were able to capture the peak flow, however, only some of the radar ensembles can reproduce the
peak flow correctly. Because the STEPS has a higher spread, the peak flow can be forecasted by more
ensemble members under these circumstances. The event presented in Figure 13 presents the highest
measured flow among all the selected events. Accurately forecasting high rainfall intensities has
proved to be more challenging and both forecasts were able to predict the peaks at a short forecasting
lead-time. The RMSE mean for the forecast initiated at 02:30 is higher (0.405 m3/s for radar ensembles
and 0.430 m3/s for STEPS ensembles), and in contrast to the other events, the flows were forecasted
with a delay of around 20 min. Starting the forecast 30 min later improved the ability to predict flow
peaks and the RMSE for radar ensembles was nearly a third of the previous forecast. In the event
represented in Figure 13, there were no rain gauge data available. So, the advantage of using radar
rainfall ensembles is more evident. The RMSE indicates that the radar ensembles overperform the
STEPS ensembles during the first hour forecasted.

Analysing the 13 events for longer forecasting lead-times, the performance is case dependent,
but both radar ensembles and STEPS ensembles tend to lose their accuracy as forecasting
lead-time increases.

In the majority of the events there is a time-lag between the measured and forecasted flows,
however, this time-lag is not consistent. In some events, the flow peaks are predicted in advance of the
actual flow and in other cases, the forecasted flow has a delay when compared to the measured flow.
The simulated flows for both radar and gauge do not present the same time lag, confirming that these
are uncertainties inherited in the rainfall forecast. The fact that the area studied is an urban area of
small dimensions with both permeable and impermeable surfaces means that the catchment response
time is very small, and any uncertainties related to the rainfall forecast have an almost immediate effect
in the flow forecast. Tests performed with the ensembles forecasts, where high-intensity rainfall pixels
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were only displaced a few kilometres, could have a great impact in the flow simulation. This highlights
the importance of improving the accuracy of rainfall forecasts for applications in urban areas.

5. Conclusions

This work assessed how radar rainfall uncertainties propagate from the radar rainfall
measurements into radar rainfall forecasts, and further on into urban sewer forecasting. The work also
compared the accuracy of flow forecast prediction using two different rainfall ensemble generators.
A stochastic ensemble generator, which adds spatially correlated noise to the deterministic forecast,
was used as reference (STEPS ensembles). An ensemble generator that adds spatially-correlated noise
based on the residual radar error between radar rainfall and rain gauge measurements was used to
assess the radar rainfall uncertainties (radar ensembles) and how these uncertainties propagate into
the simulated sewer flows of an urban area.

Results from the rainfall forecasts show that both ensembles can produce accurate forecasts for
lead-times up to 3 h for all rainfall intensities larger or equal to 0.1 mm/h. With intensities larger
than 1 mm/h the results vary depending on the event. Skilful forecasts could be produced up to
1 h lead-time in most cases and in some events, it was possible to produce a skilled forecast even
when the lead-time was 3 h. For a high rainfall threshold (larger than 3 mm/h) reliable forecasts were
produced for at least 1 h lead-time. The radar ensembles produced slightly better results than the
STEPS ensembles in the first hour of the forecasts. After this, the radar ensembles lost accuracy more
rapidly than the STEPS ensembles.

The flow forecasts in the urban areas were generated using an Infoworks CS model. The radar
ensembles produced better results than the STEPS ensembles in the first hour of the forecasts and were
able to better reproduce the flow peaks. The RMSE mean for the radar ensembles was lower than the
RMSE mean for the STEPS ensembles for most of the events in the first hour forecasted. This was true
even in cases where the simulated flow using the radar rainfall is overestimated or underestimated,
thus being able to better reproduce the flow hydrograph. With lead-times longer than 1 h, all the
forecasts lose predictability independently of which ensemble generator is used.

The radar ensembles produced reproducible forecasts with improved accuracy at predicting the
flow peaks when compared to the STEPS ensembles. However, there were events where neither of the
ensembles could adequately forecast the flow peaks. In general, this happened in cases where both,
radar and rain gauge simulated flows were very different from the observed flow.

The results show a time-lag of some minutes between the measured and forecasted peak flows.
However, even with this limitation, it is possible to improve the forecast of peak flows in urban areas
using the method proposed in this study, and it can be used in real time to enhance existing warning
systems in urban areas with up to one hour lead-time. The nowcast skill can be potentially improved
by blending radar nowcasts with NWP forecasts, especially as the forecasting lead time increases.
With up to one hour lead-time, the nowcast has a major impact on the forecast and this improvement
enhances the flow forecasts during this period. Future works can incorporate uncertainties caused by
growth and decay of precipitation using for instance the method described by Foresti et al. [57].
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