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Abstract: Here, we propose a conceptual framework of Aeolian sediment transport initiation that
includes the role of turbulence. Upon increasing the wind shear stress τ above a threshold value
τ′t , particles resting at the bed surface begin to rock in their pockets because the largest turbulent
fluctuations of the instantaneous wind velocity above its mean value u induce fluid torques that
exceed resisting torques. Upon a slight further increase of τ, rocking turns into a rolling regime
(i.e., rolling threshold τt ' τ′t ) provided that the ratio between the integral time scale Ti ∝ δ/u (where δ

is the boundary layer thickness) and the time Te ∝
√

d/[(1− 1/s)g] required for entrainment (where
d is the particle diameter and s the particle–air–density ratio) is sufficiently large. Rolling then evolves
into mean-wind-sustained saltation transport provided that the mean wind is able to compensate
energy losses from particle-bed rebounds. However, when Ti/Te is too small, the threshold ratio
scales as τt/τ′t ∝ Te/Ti ∝ sd2/δ2, consistent with experiments. Because δ/d controls Ti/Te and the
relative amplitude of turbulent wind velocity fluctuations, we qualitatively predict that Aeolian
sediment transport in natural atmospheres can be initiated under weaker (potentially much weaker)
winds than in wind tunnels, consistent with indirect observational evidence on Earth and Mars.

Keywords: Aeolian sand transport; saltation; aerodynamic entrainment threshold; saltation threshold;
initiation threshold; static threshold; dynamic threshold; Venus wind tunnel; Titan wind tunnel

1. Introduction

What is the wind shear stress (τ) required to initiate Aeolian sediment transport by atmospheric
wind on Earth and other planetary bodies? The answer to this question is thought to be critical
for predicting dust aerosol emission in climate models [1–4], planetary sediment transport and
bedform evolution [5–7], and for inferring atmospheric wind conditions from sediment transport
observations [8–10]. However, whether a critical fluid shear stress, and thus the mean turbulent
flow, solely controls transport initiation is actually not so clear, as the wind tunnel experiments by
Williams et al. [11] indicate. In contrast to most, if not all, other aerodynamic entrainment experiments
in the literature, these authors intentionally set up their wind tunnel in a manner that produces a
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developing turbulent boundary layer rather than a fully developed one. This setup allowed them to
study the potential influence of both the mean turbulent flow and turbulent fluctuations on transport
initiation, which change quite significantly in a developing boundary layer. For example, while the
boundary layer thickness δ (i.e., the distance from the bed surface to the elevation at which the local
mean wind velocity is equal to 99% of the free stream velocity) and turbulent kinetic energy increase
downwind, the wind shear velocity u∗ =

√
τ/ρa, where ρa is the air density, decreases. In fact,

for all of their four tested sediments (nearly uniform, cohesionless), Williams et al. [11] measured
that, upon increasing the free stream wind velocity, particles are entrained first at the downwind end
of the test section despite the fact that u∗ is smallest there, whereas entrainment at the upwind end
required much larger free stream wind velocities (a similar observation was also made by Bagnold [12]).
Furthermore, we show in Figure 1 that most of these authors’ measurements of u∗t (the threshold
value of u∗ at which particles begin to roll, also called ‘detachment threshold’ [13]) roughly collapse
following the scaling

A ≡ u∗t√
(s− 1)gd

∝
√

sd
δ

, (1)

where A is the rolling threshold parameter (the square-root of the threshold Shields number), s = ρp/ρa

the particle–air–density ratio, g the gravitational constant, and d the characteristic particle diameter.
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Figure 1. Rolling threshold parameter A = u∗t/
√
(s− 1)gd versus dimensionless inverse boundary

layer thickness
√

sd/δ. Symbols correspond to the experimental data by Williams et al. [11], who set up
their wind tunnel in a manner that produces a developing turbulent boundary layer, for four different
sediments consisting of nearly uniform, cohesionless particles. The line corresponds to the scaling
Equation (1). We suspect that the one extreme outlier for d = 165 µm may either have been a faulty
measurement or be associated with the observation that the boundary layer for this particular sand
sample was not always fully turbulent [11].

This scaling is very unusual as it fundamentally differs from the currently well-established point of
view [14,15] that, for cohesionless sediments, A is only a function of s and the particle Reynolds number
Red = u∗td/ν, or equivalently of the Galileo number Ga =

√
(s− 1)gd3/ν = Red/A (the use of which

is preferential as it does not incorporate a dependency on u∗t), where ν is the kinematic air viscosity.
Figure 1 also shows that A varies by a factor of about 3 for a given d, which is much beyond the usual
variability of existing threshold measurements for fully developed turbulent boundary layers [16].
Clearly, the data by Williams et al. [11], though obtained for the rather unusual case of a developing
turbulent boundary layer, require an explanation, or, at the very least, raise important questions that
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need to be addressed: what are the roles that turbulent fluctuations play in Aeolian sediment transport
initiation, and what makes the scaling of A for developing boundary layers so fundamentally different
from fully developed ones? In addition, how much can we rely on theoretical predictions adjusted
to wind tunnel experiments given that turbulence in natural atmospheres has turbulent fluctuation
properties that are fundamentally different from that of wind tunnels because of a much thicker
boundary layer (δ ∼0.1–10 km on Venus, Earth, Mars, and Titan [17–20])? The latter question is of
particular relevance because the existence of gravel megaripples (e.g., in the Puna of Argentina [21])
suggests that even centimeter-sized particles may be susceptible to aerodynamic entrainment by
atmospheric wind speeds that, according to wind tunnel experiments, should be way too low to have
an effect. Likewise, based on wind tunnel experiments, it is difficult to explain how sand transport can
be initiated in the present climate on Mars [22], which is problematic because observations suggest
widespread and persistent sediment activity [8,23–25], even of very coarse sand [26].

Here, we tackle these questions by developing, step by step, a conceptual framework of the
initiation of cohesionless sediment transport by wind (Section 2). Cohesive effects, which become
significant for d . 200 µm and crucial for d . 100 µm [19,27–30], are neglected to put more emphasis
on this framework’s novelty but can be relatively easily incorporated in more refined frameworks in
future studies. In fact, the most important novel aspect of our framework is that we consider the critical
roles of the amplitude and duration of turbulent velocity fluctuations [31,32] using the energy criterion
of entrainment [33], which is well established in the fluvial sediment transport community, but largely
unknown in the Aeolian sediment transport community and among planetary scientists. We test
the predictions of our framework with existing and new threshold measurements that have been
carried out for varying density ratio s, Galileo number Ga , and boundary layer thickness δ (Section 3),
and discuss the potential threshold dependency on s for a constant Ga (Section 3). This dependency is
quite controversial [14,15,34], and we suggest that it may be an artifact of a strongly varying thickness
δ of the boundary layers produced by the different experimental facilities.

2. Conceptual Framework of Aeolian Sediment Transport Initiation

2.1. Torque Balance Criterion Associated with a Turbulent Fluctuation Event

What are the minimal requirements for the entrainment of a test particle resting at the bed surface
by a turbulent flow? First, as entrainment in a rolling motion is usually the easiest [33], it is required
that the largest instantaneous fluid torques acting on this particle exceed resisting torques. Such torques
are induced by the largest positive fluctuations of the instantaneous fluid velocity u (evaluated at an
effective particle elevation zeff) around its mean value u. Numerous theoretical studies have derived
expressions for this torque balance criterion (e.g., see the review by Dey and Ali [35]). For cohesionless
particles, one can summarize such expressions in the functional form

um√
(s− 1)gd

≡ α
u√

(s− 1)gd
≥ f1(G), (2)

where G is a bed geometry parameter, which takes into account the size distribution, arrangement,
and shape of bed particles; um is the characteristic value of u associated with its largest positive
fluctuations and α = um/u a parameter that characterizes the maximal relative amplitude of
fluctuations. There are further dependencies on the drag and lift coefficients, both of which we
assume to be constant for simplicity. The threshold parameter A′ = u′∗t/

√
(s− 1)gd associated with

the fluctuation-induced torque equilibrium now follows from Equation (2) and the fact that the ratio
u′∗t/u is predominantly a function of the particle Reynolds number Re′d = GaA′ (which controls the
flow velocity profile) and the bed geometry G (which controls zeff/d):

A′ = f2(G, Ga)
min(u)√
(s− 1)gd

= α−1 f1(G) f2(G, Ga). (3)
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At this point, we would like to emphasize that a torque balance criterion does not result in a
dependency of A′ on the density ratio s for a constant Galileo number Ga . For this reason, it has been
argued that the additional dependency of Aeolian sediment transport initiation on s suggested by
some experiments [14,15] is a signature of a particle–inertia effect, such as a dynamic collision force
caused by the impact of a hopping particle with the test particle [14]. However, this impact–force
hypothesis cannot explain why the initiation of saltation transport (i.e., the transport regime in
which particles hop along the bed in large ballistic trajectories) is usually preceded by a rolling
regime further upwind [12,14]. In contrast, a strong density ratio dependency is inherent to dynamic
saltation threshold models [36–40], some of which simultaneously explain available measurements of
Aeolian and viscous and turbulent fluvial sediment transport thresholds despite not being fitted to
these measurements [40].

2.2. Energy Criterion Associated with a Turbulent Fluctuation Event

When the threshold parameter A′ is exceeded, the test particle will begin to roll whenever the
largest turbulent fluctuation events occur. However, in order for this particle to leave its pocket
and be truly entrained, such events must last sufficiently long [31–33]. Otherwise, it will just roll
back and forth around its pocket, which is visually perceived as an oscillatory rocking motion.
Note that this rocking regime has not only been observed in fluvial environments [31], but also
in Aeolian environments [15,41]. A criterion that roughly quantifies whether actual entrainment,
beyond rocking, occurs was first given by Diplas et al. [31] (the ‘impulse criterion’ [32]) and later
refined by Valyrakis et al. [33]: (the ‘energy criterion’, which shares some similarities with energy
accumulation-based models of the resuspension of aerosols in turbulent flows [42,43]). According to
the energy criterion, entrainment occurs if

〈u〉2〈v〉Ti ≥ cT(G) f1(G)2(s− 1)gd2 (4)

during a turbulent fluctuation event that exceeds the torque equilibrium [Equation (2)], where 〈v〉
and 〈u〉 are the particle and effective instantaneous fluid velocity, respectively, averaged over the
duration Ti of this event. As we are interested in the minimal requirement for entrainment, we take Ti
as proportional to the integral time scale, which is a measure for the maximal temporal correlation
of fluid velocity fluctuations [44], and 〈u〉 as proportional to the characteristic fluid velocity um

resulting from the largest positive fluctuations. However, we replace these proportionalities by
equalities (i.e., 〈u〉 = um) and incorporate the associated constant proportionality factors in the
bed-geometry-dependent function cT(G). Importantly, for mild bed slopes, cT(G) changes with the
average pivoting angle θ (i.e., the angle between the horizontal and the lever arm through the pivoting
point) as cT(G) ∝ tan θ(1− sin θ) [33] and thus decreases with θ for θ > 38◦. Because, for nearly
uniform sediments, typical pivoting angles are significantly larger (e.g., θ = 60◦ for a two-dimensional
close packing), we consider cT(G) as a function that decreases with particle exposure to the flow.
Using 〈u〉 = um and Equation (2) and defining the entrainment time scale Te = d/〈v〉, we can rewrite
Equation (4) as

Ti/Te ≥ cT(G). (5)

Equation (5) means that, if the threshold parameter A′ is exceeded (i.e., the largest turbulent
fluctuations exceed the torque balance), the ratio Ti/Te must exceed the critical value cT(G) in order
for the test particle to roll out of its pocket after a finite period of time. Hence, the rolling threshold
parameter A is given by

A ' A′ = α−1 f1(G) f2(G, Ga) if Ti/Te ≥ cT(G). (6)
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2.3. Torque Balance Criterion Associated with the Mean Turbulent Flow

Even if the typical duration of turbulent velocity fluctuations is much too short [Ti/Te � cT(G)],
entrainment can still occur when the mean turbulent flow is so strong that the mean fluid torques
acting on the test particle exceed resisting torques. Instead of Equations (2) and (5), the entrainment
condition then becomes

u/
√
(s− 1)gd ≥ f1(G). (7)

Analogous to Equation (3), the rolling threshold parameter A associated with an arbitrary
entrainment condition, such as Equation (7), can be expressed as

A
A′

=
α

f1(G)

min(u)√
(s− 1)gd

, (8)

where we used Equations (2) and (3). Hence, inserting Equation (7) in Equation (8) yields

A = αA′ = f1(G) f2(G, Ga) if Ti/Te � cT(G). (9)

2.4. The Intermediate Regime between Mean Flow Entrainment and Fluctuation-Induced Entrainment

We now consider the intermediate case in which Ti/Te is smaller than cT(G), but still so large that
mean flow entrainment is not yet required (i.e., neither Equation (2) nor Equation (7) are characterizing
entrainment), which implies that the energy criterion Equation (4) is solely controlling entrainment.
Using again 〈u〉 = um and Te = d/〈v〉, we rewrite Equation (4) as

u2

(s− 1)gd
≥ cT(G)α−2 f1(G)2 Te

Ti
. (10)

Hence, inserting Equation (10) in Equation (8) yields

Intermediate regime:
A2

A′2
≡ τt

τ′t
= cT(G)

Te

Ti
. (11)

2.5. The Time Scale Ratio Te/Ti

For a cohesionless test particle at the torque balance equilibrium, the torques induced by fluid
drag and lift just overcome the resisting torque induced by its submerged weight [35]. Once this
particle begins to roll within its pocket, these torques change because of increasing pivoting angle.
Hence, if the fluid drag and lift force remain approximately the same, this particle will be accelerated
at a rate proportional to g(1− 1/s) that depends only on the pivoting angle, which is why we estimate
the entrainment time scale as

Te = f3(G)
√

d/[(1− 1/s)g], (12)

where f3(G) is another bed-geometry-dependent coefficient. Using that the integral length scale
Li = Tiu [44], which is a measure for the maximal spatial correlation of fluid velocity fluctuations,
is approximately proportional to the boundary layer thickness δ (Li ≈ 0.4δ [45]), we thus obtain

Ti
Te
≈ 0.4 f3(G)−1

√
(s− 1)gd

u
δ√
sd

. (13)
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When u is just large enough to exceed the respective threshold criterion (Equation (2) or
Equation (7) or Equation (10)), we can insert Equation (8) in Equation (13), which yields

cT(G)−1 Ti
Te
≈ α fT(G)−1 A′

A
δ√
sd

, (14)

where fT(G) = 2.5cT(G) f1(G) f3(G) is a bed-geometry-dependent coefficient. Importantly, the smaller
the fT(G), the more the bed particles are exposed to the flow because particle exposure decreases cT(G)

(as discussed before), the flow velocity needed to exceed the torque equilibrium (and thus f1(G)),
and the time needed for entrainment (and thus f3(G)). For the intermediate regime, Equation (14)
approximately implies

Intermediate regime:
A
A′ ≈ α−1 fT(G)

√
sd
δ

, (15)

where we used Equation (11). Equation (15) resembles the scaling (Equation (1)) that collapses most
of the experimental data by Williams et al. [11] because A′ is relatively constant for the experimental
range of Galileo numbers (Ga ∈ (19, 554)). This constancy of A′ follows from the constancy of the
saltation threshold As measured in wind tunnel experiments that mimic the atmosphere on Earth
and produce a fully developed turbulent boundary layer (Figure 15a of Durán et al. [46]), for which
As ' A ' A′ [14] (reminder: this equality does not apply to the developing boundary layer wind
tunnel experiments by Williams et al. [11]). Finally, combining Equation (15) with Equations (6) and (9),
we obtain

A
A′ ≈

1 if B < 1 (Fluctuation-torque-balance regime)
B if 1 ≤ B ≤ α (Intermediate regime)
α if B > α (Mean-torque-balance regime)

(16)

B = α−1 fT(G)

√
sd
δ

.

However, note that the actual transitions between the different regimes are likely not as sharp as
predicted by our very simplified framework.

2.6. The Maximal Relative Amplitude of Turbulent Velocity Fluctuations

The maximal relative amplitude of turbulent velocity fluctuations is characterized by the
parameter α = um/u, which depends on the characteristic value um of the effective instantaneous fluid
velocity u associated with its largest positive fluctuations. This value is controlled by the distribution
of u/u∗, which has been extensively studied in the past (e.g., see the review by Smits et al. [47]). It has
been found that this distribution is predominantly controlled by the dimensionless distance from the
wall (zu∗/ν) and the boundary layer Reynolds number δu∗/ν. Hence, as u is evaluated at the effective
particle elevation zeff (which slightly depends on G), α obeys the functional form

α = fα(G, Ga, δ/d). (17)

In particular, α exhibits a slight log-like increase with δ/d for a constant Ga [48], which was used
by Lu et al. [34] to explain why A is smaller in air than in water. According to Equation (16), α controls
the maximal variability of A. The variability of the data by Williams et al. [11] therefore suggests
that α may be significantly larger than 3 for their wind tunnel experiments mimicking atmospheric
conditions on Earth (Figure 1), and thus even larger in wind tunnels that mimic such atmospheres and
produce a fully developed boundary layer (larger δ), and thus even larger in the field (much larger
δ), which emphasizes the critical role of turbulent velocity fluctuations for the initiation of Aeolian
sediment transport.
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2.7. The Rolling-Saltation Transition

Once particles begin to roll along the bed surface, they will be accelerated towards the mean
near-bed fluid velocity, provided that the acceleration during fluctuation events exceeds the potential
deceleration when such events are over (we expect that Ti/Te ≥ cT(G) is a sufficient condition fulfilling
this requirement), and thus eventually begin to saltate (some particles may also be entrained directly
into saltation [32,33]). However, whether this saltation motion is limited to the immediate vicinity of
the bed or whether particles accumulate more and more height with each rebound at the bed surface
depends on the ability of the flow to compensate the energy losses from such rebounds. Pähtz &
Durán [40] recently showed that the dynamic-saltation-threshold parameter Ar is associated with the
question of whether the mean flow is able to compensate such losses for fully developed saltation
transport (i.e., large particle hops), which is easier than compensating energy losses of particles
hopping near the bed because the time between successive particle-bed rebounds is larger, and because
the wind velocity increases with elevation. We thus hypothesize that the threshold parameter As

associated with the initiation of fully developed saltation obeys

As ' A ' A′ if Ti/Te ≥ cT(G) AND A′/Ar ≥ C(Ga, s), (18)

where C(Ga, s) ≥ 1 is a critical value of A′/Ar that depends on the energy gap between particle
trajectories associated with fully developed saltation and particle trajectories associated with saltation
near the bed surface, which depends on the density ratio s and Galileo number Ga [40]. The fact that
As and Ar are usually close to each other [12,49,50] (except for very large s, like on Mars [36–38,51,52])
implies that C is usually close to unity (except for very large s).

3. Test of Entrainment Framework with Existing and New Experimental Data

The prediction of Equation (16) for the intermediate regime has already been tested against the
experimental data by Williams et al. [11] (Figure 1). Though this prediction is, in general, consistent
with these data, there are significant deviations for the intermediate particle diameter d = 655 µm,
for which we have no explanation. In order to further test Equation (16), we scanned the literature
for simultaneous rocking, rolling, and/or saltation threshold measurements. However, we would
like to emphasize that, for conditions in which these thresholds significantly differ from each other,
measurements of A′ likely overestimate the actual rocking threshold as too short-lived rocking events
may not be detected by the experimental setups. We therefore focus on the validation of the qualitative
predictions of Equation (16): A ' A′ and thus likely As ' A′ (from Section 2.7 and the fact that usually
As is significantly larger than the dynamic threshold Ar in wind tunnels) if a critical value of the
dimensionless boundary layer thickness δ/(

√
sd) is exceeded.

Simultaneous rocking, rolling, and saltation threshold measurements were carried out by
Iversen et al. [53,54] in a large wind tunnel (δ ≈ 1.2 m) that mimics atmospheric conditions on
Earth [53,54]. Indeed, it was mentioned in a later study that there was nearly no difference between
As, A, and A′ for these experiments [14]. Likewise, Greeley and Marshall [41] reported simultaneous
measurements of As, A, and A′ for their experiments under conditions mimicking the atmosphere
on Venus in a pressurized wind tunnel, the so-called ‘Venus Wind Tunnel’. Similarly, Burr et al. [15]
measured As and A′ under conditions mimicking the atmosphere on Titan using the same facility
(renamed to ‘Titan Wind Tunnel’). Further saltation threshold measurements using this facility were
reported by Greeley et al. [55]. The Venus (Titan) Wind Tunnel produces a relatively thin boundary
layer: Burr et al. [15] reported exactly one measurement (δ = 1.9 cm), which we therefore assume to be
the value of δ for all threshold measurements carried out using this facility. Note that experimental
wind tunnel studies with a non-standard and/or unclear experimental setup are not considered here.
For example, de Vet et al. [13], who also reported differences between rolling and saltation thresholds,
placed patches of sand on a surface with a similar but not equivalent roughness rather than using a
spatially homogeneous sand bed, which may have caused significant disturbances of the boundary
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layer. Likewise, in contrast to other experimental studies, these authors may not have manipulated the
boundary layer at the wind tunnel entrance to create a fully developed boundary layer, in which case
the boundary layer would have been a developing one (i.e., δ cannot be easily inferred).

Figure 2 shows the various measurements in log-scale, to emphasize the relative threshold
gaps, where the estimated value of the dimensionless boundary layer thickness δ/(

√
sd) has

been color-coded.
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Figure 2. Measurements of the rocking (A′), rolling (A), and saltation (As) threshold parameters from
the literature [15,41,53,55] and ourselves (isolated-particle measurements, see Figure 3) versus the
Galileo number Ga. The color indicates the value of the dimensionless boundary layer thickness
δ/(
√

sd), which is a measure for the ratio between the integral time scale Ti and the entrainment time
scale Te.

It can be seen that, for most conditions, saltation, rolling, and rocking thresholds become
indistinguishable when δ/(

√
sd) exceeds a critical value [δ/(

√
sd) & 6.6], in agreement with the

theoretical prediction (Equation (16)). The only exception are the measurements by Greeley and
Marshall [41], which exhibit significant relative threshold gaps even for their smaller sands (d = 105 µm
and δ/(

√
sd) ' 29). These measurements are particularly odd because Greeley et al. [55] explicitly

stated for the very same experiments that there was nearly no difference between As and A′ for small
sands. Consistently, the saltation threshold measurements reported by Greeley et al. [55] are below the
saltation threshold measurements by Greeley and Marshall [41] and rather close to the latter authors’
rocking threshold measurements, as one would expect if there was no significant difference between
rocking and saltation thresholds. Note that in a later study that compiles existing threshold data to
demonstrate the effect of the density ratio s on the initiation of fully developed saltation transport [14],
Greeley, Marshall, and coauthors do not incorporate the measurements of Ref. [41] in their threshold
diagrams, which suggests that there may have been a problem with these measurements. For these
reasons, we do not consider these measurements as a contradiction to the existence of a critical value
of δ/(

√
sd) above which rocking, rolling, and saltation thresholds become indistinguishable.

Another qualitative prediction that can be tested is the effect of particle exposure. Equation (16)
predicts that the smaller the relative gap between the rolling threshold A and rocking threshold A′,
the more exposed the bed particles are to the flow because of smaller fT(G). A large particle exposure
can be achieved when placing a test particle on top of a close packing [56]. We thus prepared a close
packed bed (4 m× 2.4 m, 22.6 m from the tunnel entrance) of uniform particles (ρp = 80.8 kg/m3,
d = 40 mm) in a wind tunnel at Beijing University (δ ≈ 2 m) and placed an isolated particle of the
same weight and size on its top (Figure 3).
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Figure 3. Photograph of experimental setup. A 0.1 mm resolution laser distance sensor (LDS,
manufactured by Leuze Electronics, Owen, Germany) was used to track the motion of the target
particle. A red laser beam with 655 nm wavelength launched by LDS shone at the center of the
target particle. Once the particle began to rock along or against the wind direction, the corresponding
displacement could be measured by the sensor. The measuring range of the sensor was set from the
rest position of the target particle to the top of the downstream supporting particles, where the mobile
particle would be considered to have been completely entrained. Calibration of the setup showed that
the measured displacement of the target particle is a linear function of the signal intensity of the sensor.

The corresponding aerodynamic conditions (s ' 67, Ga ' 12755) were thus similar to some of
the ones by Greeley and Marshall [41]. Upon increasing the wind free stream and thus shear velocity,
which we measured from extrapolating the log-layer law wind velocity profile (recorded using a hot-film
anemometer), we determined A and A′, the values of which are also shown in Figure 2. It can be
seen that, despite exhibiting the rather small dimensionless boundary layer thickness δ/(

√
sd) ' 6.1

(for which the comparable measurements by Greeley and Marshall [41] exhibit large relative threshold
gaps), there is nearly no relative gap between A and A′, which thus supports the derived dependency of
A/A′ on particle exposure to the flow [Equation (16)].

4. Discussion and Conclusions

Probably the most important insight provided by our study is that the current point of view [14,15]
that the density ratio s has a strong influence on the saltation initiation threshold As for a constant
Galileo number Ga (or a constant particle Reynolds number Red) may not be true, at least in wind
tunnels. This point of view has been established as a result of experiments carried out using the
‘Venus Wind Tunnel’ [55], also called ‘Titan Wind Tunnel’ [15], for conditions with intermediate
density ratios (s ∼ 100). These experiments indicate significantly larger values of As than one would
expect from semi-empirical models calibrated for atmospheric conditions on Earth (e.g., [14,15,28,54]).
However, the Venus (Titan) Wind Tunnel produces a much thinner boundary layer (δ ≈ 1.9 cm)
than wind tunnels usually used to mimic atmospheric conditions on Earth and Mars (δ ∼ 1 m),
and Figures 2 and 4 suggest that this may be the reason why the saltation thresholds (As) measured in
this wind tunnel are larger, as we explain in the following.
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Figure 4. Measurements of the rocking (A′), rolling (A), and saltation (As) threshold parameters versus
the Galileo number Ga. Only those conditions from Figure 2 that obey A′ ' A ' As [15,53] are shown.
The color indicates the the thickness of the boundary layer δ relative to the particle diameter d (different
from Figure 2), which controls the relative amplitude of turbulent fluid velocity fluctuations for a
constant Ga.

First, one can see that the measurements of As by Iversen et al. [53] (diamonds in Figures 2 and 4),
obtained from experiments in a comparably large wind tunnel (δ ≈ 1.2 m), follow a relatively smooth
behavior as a function of Ga despite the fact that s varies between 175 and 9458. In particular, the one
measurement for s ' 175 and Ga ' 50 (open diamond) does not deviate much from its two neighboring
points ((s, Ga) ' (916, 40) and (s, Ga) ' (2083, 58)), which one would expect if s really had a significant
influence on As for a constant Ga. Furthermore, this measurement by Iversen et al. [53] is significantly
below the measurements of As by Burr et al. [15] for similar values of s and Ga, which also cannot be
explained by the density–ratio hypothesis. However, this behavior is consistent with our theoretical
framework (Figure 4) because the relative magnitude of turbulent velocity fluctuations and thus the
parameter α increase with δ/d for a constant Ga (Section 2.6). Increasing α means that a weaker mean
flow is required for aerodynamic entrainment (i.e., lower A′ and thus As). In other words, thresholds for
a given sediment size can be lower when the boundary layer is relatively thicker. Hence, semi-empirical
threshold models fitted to a certain wind tunnel data set may neither be applicable to other wind tunnels
with significantly different boundary layer thickness δ nor to natural atmospheric conditions even when
s and Ga are the same.

Second, for the experiments by Burr et al. [15], saltation and rocking thresholds become
indistinguishable when the dimensionless boundary layer thickness δ/(

√
sd) & 6.6 (Figure 2).

However, when δ/(
√

sd) falls below this critical value, As > A′, which is particularly apparent
for the three bluish-colored measurements at Ga ≈ 600 in Figure 2. These three measurements
were largely responsible for the finding by Burr et al. [15] that As is unusually large (see the three
largest-diameter measurements in their Figure 2). However, for the natural atmosphere of Titan
(δ ≈ 3 km [17]), δ/(

√
sd) is much larger, and our theoretical framework thus would predict that As is

very close to A′ and thus considerably smaller than the values measured by Burr et al. [15] even if the
additional effect of δ/d on As from controlling the relative amplitude of turbulent velocity fluctuations
(Figure 4) was not considered. There is an easy test that should be done by future studies to figure
out whether this prediction holds true. If the Venus (Titan) Wind Tunnel was used to measure As for
standard air (i.e., atmospheric conditions on Earth) rather than Titan-like air, the value δ/(

√
sd) would

be even smaller because of a larger value of s, and one would thus expect an even larger deviation from
semi-empirical threshold models when using the the Venus (Titan) Wind Tunnel with standard air.
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Finally, one must ask the question of whether wind tunnel experiments, in general, are an
appropriate means to estimate Aeolian sediment transport initiation thresholds under natural
atmospheric conditions. Natural atmospheres exhibit much thicker boundary layers (δ ∼ 0.1–10 km on
Venus, Earth, Mars, and Titan [17–20]) and thus larger values of α (Section 2.6), which are associated
with smaller initiation thresholds (cf. Figure 4). In fact, observations from the Mars rovers Opportunity
and Curiosity [24–26] and the existence of gravel megaripples on Earth (e.g., in the Argentinean
Puna [21]) suggest that the initiation of sediment transport may be much easier in the field than in
wind tunnels. If this hypothesis were generally true, the problem of whether fully developed saltation
can be initiated under natural atmospheric conditions would essentially reduce to the problem of
whether saltation transport initiated by a large turbulent fluctuation event can be sustained by the
mean turbulent flow. Answering this question requires knowledge of the dynamic saltation threshold
Ar (and the function C(Ga, s) discussed in Section 2.7), for which turbulence only plays a minor
role and for which an analytical model exists that reproduces available measurements in Aeolian
and viscous and turbulent fluvial environments despite not being fitted to these measurements [40].
Hence, we would be able to predict saltation transport initiation on extraterrestrial planetary bodies
much more reliably than we currently do. Another consequence would be that the saltation initiation
threshold As in the field, in contrast to the one in wind tunnels, would, like Ar, significantly decrease
with the density ratio s for a constant Galileo number Ga [40]. Clearly, controlled field measurements are
needed to test the hypothesis of whether sediment transport initiation in the field is truly much easier
than in wind tunnels and thus to test whether all of these potential consequences hold true. Likewise,
wind tunnel experiments in the spirit of Williams et al. [11] with the purpose to study the influences of
the boundary layer thickness δ and turbulence frequency spectra on the different initiation thresholds
and related quantities (e.g., bed particle removal rates, particle removal PDFs) can also shed more light
on these questions.
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